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Associations of myeloid cells with cellular
and humoral responses following
vaccinations in patients with
neuroimmunological diseases
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Disease-modifying therapies (DMTs) are widely used in neuroimmunological
diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum
disorder (NMOSD). Although these treatments are known to predispose
patients to infections and affect their responses to vaccination, little is known
about the impact of DMTs on the myeloid cell compartment. In this study, we
usemass cytometry to examineDMT-associated changes in the innate immune
system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23).
We also investigated the association between changes in myeloid cell pheno-
types and longitudinal responsiveness to homologous primary, secondary,
and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated mye-
loid cell clusters, in particular CD64+HLADRlow granulocytes, showed sig-
nificant correlations with B and T cell responses induced by vaccination. Our
findings suggest the potential role of myeloid cells in cellular and humoral
responses following vaccination in DMT-treated patients with neuroimmu-
nological diseases.

Neuromyelitis optica spectrum disorder (NMOSD) is a rare antibody-
mediated autoimmune disorder of the central nervous system (CNS).
Characteristic symptoms include acute attacks of optic neuritis,
transverse myelitis and encephalopathic syndromes1–3. Due to some
overlapping clinical features, it can easily be confused with multiple
sclerosis (MS), and thus misdiagnoses are common.

While MS and NMOSD are both chronic demyelinating dis-
eases, they exhibit distinct patterns of tissue injury and degen-
eration. In NMOSD, disease-specific auto-reactive IgG1 antibodies
target the aquaporin-4 (AQP4) water channel protein on astrocytes
leading to astrocytopathy and secondary demyelination and

neuron loss. Previous studies have investigated the unique
immunophenotypes of NMOSD patients, which differ to some
extent from those of MS patients4–6. However, there is a lack of
research on innate immunophenotypes in patients with these
neuroimmunological diseases, disregarding an integral aspect of
(auto-) immunity. The relevance of the innate immune system is
indicated, for instance, by elevated numbers of neutrophils infil-
trating NMOSD lesions and in the cerebrospinal fluid during
relapses7–9. Furthermore, neutrophils derived from NMOSD
patients show a decreased functionality compared to neutrophils
from MS patients or healthy individuals10. Our previous study
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showed that there were only mild changes in the phenotype of
immune cell populations in early MS11.

Similar to MS patients, most NMOSD patients require early
immunomodulatory treatment to prevent permanent neurological
damage caused by disease relapses. While these disease-modifying
therapies (DMTs) help reduce inflammation-related damage, they also
predispose patients toward infections and decrease responsiveness to
vaccinations, primarily due to the depletion or suppression of the
lymphocyte compartment. Understanding vaccine responses in DMT-
treated patients has become particularly relevant during the COVID-19
pandemic. However, the contribution of innate immune cells in this
context remains poorly understood.

Myeloid cells, including circulating monocytes and neutrophils,
take on an indispensable role in immune responses by stimulating
naïve T cells and promoting their differentiation into effector cells,
which in turn foster the survival and proliferation of B cells with the
highest affinity to antigens12–14.

Although detailed mechanisms of action of mRNA vaccines are
still not fully understood, tissue-resident myeloid cells such as mac-
rophages and DCs are known to play key roles at the site of injection.
These cells facilitate the production of translatedproteins that activate
T and B cells, which are essential for mounting an effective immune
response. Several studies have shown that the immunogenicity of
COVID-19 vaccines varies among MS patients, with differences mainly
dependent on the type of treatment they received at the time of vac-
cination. B cell depleting (BCD) therapies and sphingosine-1 phosphate
(S1P) receptor antagonists had the greatest impact on the humoral
(and in the case of S1P, cellular) vaccination response15,16. Importantly,
studies investigating immune characteristics specific to MS in an
inactivated state (I.e., without exposure to an antigen) have also con-
cluded that immune cell compositions are more likely dependent on
the type of treatment rather than the disease course6. However,
detailed immune signature changes, particularly those in the innate
immune compartment, upon primary and repeated exposure to a
novel antigen in MS and NMOSD patients have not been evaluated.
Furthermore, little is known about the effect of DMTs on the innate
immune cell composition in NMOSD patients compared to MS
patients.

In this study, we characterized changes in both the innate and
adaptive arm of the immune system after DMTs in MS and NMOSD
patients, compared with untreated patients. Changes in the myeloid
compartment predominantly varied between diseases and types of
treatments. Furthermore, we demonstrated the correlations of some
DMT-associated myeloid cell sub-populations and humoral and T cell
vaccination responses. Finally, we suggest that monitoring myeloid
cell compartment alongside lymphocyte populations may aid physi-
cians in better assessing a patient´s immune status. However, the
decision should be based on individual factors such as the specific
DMT, the patient’s neuroimmunological disease phenotype (e.g., dis-
ease subtype, duration, and severity), and their risk factors (e.g., aging,
lifestyle, and comorbidities).

Results
Disease- and treatment-specific immunophenotypic signatures
prior to primary antigen exposure
To investigate the effect of primary and follow-up exposure to a novel
antigen on innate and adaptive immune signatures in patients with
well-defined neuroimmunological diseases, including MS and the rare
disease NMOSD, we examined a total of 62 patients (i.e., 39 with MS
and 23 with NMOSD) before and after mRNA COVID-19 vaccination.
Among them, 14 were untreated and 48 were on common immuno-
modulatory monotherapies (Supplementary Table 1). Medical his-
tories, blood samples and nasopharyngeal swabs were collected prior
to (baseline; T0) and 1 month after primary vaccination (i.e., 1st dose;
T1), up to 6 months after secondary vaccination (i.e., 2nd dose; T2) as

well as up to 4 months after tertiary vaccination (i.e., 3rd dose; T3)
(Supplementary Table 1 and Fig. 1A).

We first evaluated the effect of DMTs typically used in MS on
innate and adaptive immune cell compositions before the first COVID-
19 vaccination (T0). Using our CyTOF workflow as previously
described11 with some modifications (see Materials and Methods for
more detail), whole blood samples were characterized using an anti-
body panel of 37 antibodies (i.e., Panel A, Supplementary Table 2).
Clustering with the FlowSOM and ConsensusClusterPlus packages
revealed a total of 18 immune cell clusters in all patients at all time
points (Fig. 1B; see data pre-processing in Supplementary Fig. 1).
Overall, HLA-DR-CD66b+CD16+ granulocytes (cluster 1, C1) were the
most common cell type in the peripheral blood of all patients,
regardless of their disease or therapy, representing 77.43% ± 7.62 of all
CD45+ leucocytes (Fig. 1B). Before the primary vaccination (T0), the
proportion of CD19+ cells (C15) was significantly reduced in MS
patients treated with BCD therapies (i.e., anti-CD20 monoclonal anti-
bodies (aCD20); ocrelizumab and rituximab) or the S1P receptor
antagonist fingolimod (FTY) (Fig. 1C and D), as were natural killer (NK)
cells (C10 for interferon β (IFNβ) and C16 for aCD20 and FTY),
FcεR1ahiCD11c+ DCs (C4), and CD14dimCD16dim (C14) and CD4+ T cells
(C6). Conversely, BCD and FTY therapy resulted in a higher proportion
of granulocytes (C1 and C2, Fig. 1D) and CD14+CD16- monocytes (C8
and C9) were increased in FTY- and IFNβ-treatedMS patients (Fig. 1D).

We found that aCD20 therapies had a similar effect on reducing
B cell counts in NMOSDpatients (Fig. 1E, F) at T0. In contrast, NMOSD
patients treated with the immunosuppressant mycophenolate
mofetil (MMF) did not show a reduction in B cell abundance. In
contrast to MS patients, the proportion of granulocytes (C1) in
aCD20-treated NMOSD patients appeared to be comparable or lower
than that in untreated patients. Similarly, MMF-treated NMOSD
patients showed similar granulocyte abundance (C1) to that of
untreated and aCD20-treated NMOSD patients (Fig. 1F). It is impor-
tant to note that the results obtained from NMOSD patients in this
study should be considered as observations rather than statistically
significant findings, given the limited number of participants.
Nevertheless, our results suggest that treatment-related changes in
the granulocyte compartment of NMOSD patients differ from those
detected in MS patients.

Next, we examined the changes in immune cell compositions
across all four timepoints by usingprincipal component analysis (PCA)
to summarize the proportions of the 18 identified immune cell clusters
in terms of the first two dimensions (Dim1 and Dim2) at T0, T1, T2 and
T3 in both untreated and aCD20-treated MS and NMOSD patients
(Fig. 2). The loading plots depict the cell populations that exhibited
high variance and had a strong influence on a principal component
(indicated by the length of the vector), highlighting differences
between patients (i.e., between untreated and aCD20-treated
patients), consistent with the results presented in Fig. 1. Granulo-
cytes (C1), B cells (C15), DCs (C4), monocytes (C8, C9 & C14), NK cells
(C10) and T cells (C6) significantly contributed to the first dimension
(Dim1), accounting for 36.3% of the total variance-covariance, and
thereby defining the overall variability, including those between
untreated and aCD20-treated MS patients (Fig. 2A). Similar sets of
clusters exhibited high variance among all treatment groups (i.e.,
untreated, aCD20-, FTY- and IFN-β-treated patients, Supplementary
Fig. 2A). However, no changes in immune cell proportion were
detected after vaccination (Supplementary Fig. 3), while treatment-
driven differences were evident across all time points (Supplementary
Figs. 2 and 4; Fig. 2C, E and G). In NMOSD patients, the granulocyte
cluster C1 showed less influence on Dim1 (44% of the total variance-
covariance) compared to other cell populations (Fig. 2B, untreated vs
aCD20-treated NMOSD patients and Supplementary Fig. 2B, all treat-
ment groups). Nevertheless, T cells (C6 and C18), DCs (C4) and
monocytes (C7 and C9) also exhibited high variance and contributed
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to the overall variability between conditions in NMOSD patients.
Similar cell populations consistently showed substantial contributions
to the overall variability between untreated and treated NMOSD
patients across all four time points (Fig. 2B, D, F and H; Supplementary
Fig. 2). These variabilities were not influenced by vaccination

(Supplementary Fig. 3), but predominantly varied between diseases
and DMTs (Supplementary Fig. 4). Taken together, our findings sug-
gest that the overall variability between samples, particularly between
untreated and treated patients, was primarily driven by treatment
rather than vaccination.
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In-depth characterization of myeloid and NK cell subpopula-
tions and their potential link to humoral vaccination responses
Next, we investigated whether the changes in immune cell composi-
tion, which were attributed to DMTs and identified in Fig. 2, were
associated with vaccine-specific antibody production (i.e., anti-SARS-
CoV-2 spike protein subunit 1 (S1) immunoglobulin G (IgG)) following
primary, secondary, and tertiary vaccination. In line with our previous
research16, we found that aCD20-treated MS and NMOSD patients, as
well as FTY-treatedMSpatients, had no or very low levels of anti-S1 IgG
at one month after the primary vaccination (T1) (Supplementary
Fig. 5A). However, the number of S1 IgG-seropositive patients
increased at T2 and T3 (Supplementary Fig. 5B, C). To evaluate the
impact of lymphocyte depletion on the apparent dominance of mye-
loid cells and to comprehensively analyze changes in each major cell
populationmore closely, we performed sub-clustering analyses of pre-
gated CD19+ B cells (antibody Panel B, Supplementary Table 3, Sup-
plementary Fig. 6), CD66b+ granulocytes, CD3+ T cells (Supplementary
Fig. 7), and other myeloid and NK cells (Supplementary Fig. 8).

Sub-clustering analysis of pre-gated CD19+ B cells (Supplementary
Fig. 1) revealed 18distinctphenotypic clusters (SupplementaryFig. 6A,B).
Most of the B cell sub-clusters were strongly depleted by aCD20
treatment (Supplementary Fig. 6C, D), except for CD20- sub-clusters
B6 which remained unaffected. Similar changes in cluster abundance
were observed in aCD20-treated NMOSD patients (Supplementary
Fig. 6E). The proportion of CD20+ B cell sub-clusters (B2, B3, B4, B5, B7,
B9, B10, B12 and B16), whichwere affected by the respective treatment
(as shown in Supplementary Fig. 6D), showed a positive correlation
with anti-S1 IgG levels after vaccination (i.e., T1-T3, see Supplementary
Fig. 6F). Therefore, the presence of these B cell subsets wasmost likely
required for vaccine-specific IgG antibody production. Additionally,
we identified one CD20- and six CD20+ B cell subsets (CD20-: B6, a
mixed population of CD20-IgM-IgDlowCD138+ CD38+ CD27+Ki67+IgGK+

and IgA+ B cells; CD20+: B1, CD20+IgMhiIgD+; B8, CD20+IgA+; B13,
CD20+TbethiCD11c+; B15, CD20+CD24hiCD38hi; B17, CD20+IgM+IgDhi;
B18, CD20loIgMloIgD-CD38hiHLADRhiCD1c+). The proportions of these
subsets were not significantly affected by DMT but showed a positive
correlation with antibody production (Supplementary Fig. 6F).

CD66b+ granulocytes were sub-clustered into 18 sub-
clusters (Supplementary Figs. 1 and 7; Fig. 3A, B). Our results demon-
strated treatment-dependent increase in the proportion of two
granulocyte sub-clusters (G1: CCR4hiCXCR4lowHLA-DR- and G3: HLA-
DR-CCR4+CXCR4low) as well as a reduction of one cluster, G6: CD14+, in
MS patients treatedwith aCD20 at T0 (Fig. 3C; see Supplementary Fig. 9
for non-significantly differential abundant clusters). No differences were
found in the proportions of all three sub-clusters between FTY- and IFN-
β-treated patients and untreated patients. However, the same changes
were not evident in aCD20-treated NMOSD patients (Fig. 3D). On the
other hand, an NMOSD patient treated with the immunosuppressants
MMF showed a strong reduction in the proportion of G1 (HLA-
DR-CD16-CCR4hiCXCR4low), G3 (HLA-DR-CD16+CCR4hiCXCR4low) and G6
(HLA-DR-CD14+) at T0 (Fig. 3D). Nonetheless, as mentioned above, the
results obtained from NMOSD patients should be interpreted with
caution due to low statistical power of testing.

Among these DMT-affected granulocyte sub-clusters, HLA-DR-G1
and G9 exhibited a strong contribution to the overall variability in all

MS patients (including DMT-mediated differences) across all post-
vaccination time points (i.e., T1-T3) as shown in the PCA (Fig. 3E).
Interestingly, in aCD20-treated MS patients, the proportions of both
G1 and G9 were negatively correlated with anti-S1 IgG antibody pro-
duction (Fig. 3F (upper panel)). Moreover, we detected significant
correlations between anti-S1 IgG levels and other clusters with high
variance in the PCA, i.e., HLA-DR-CCR4- G11, G13 and G17 (negative
correlation, Fig. 3F, upper panel) as well as HLA-DRlow/dim G7, G10 and
G15 (positive correlation, Fig. 3F, lower panel). However, we could not
detect any significant correlations between granulocyte sub-clusters
and anti-S1 IgG antibody production in untreated and FTY-treated MS
patients.

Unlike MS patients, untreated NMOSD patients showed a sig-
nificant correlation between anti-S1 IgG antibody production and
the proportion of CD14+ G6 (positive correlation) and HLA-DRlow/dim

G18 (negative correlation) (Fig. 3G). Furthermore, we identified
similar granulocyte populations which highly contributed to the
overall variability in both untreated and treated NMOSD patients
(i.e., aCD20 and MMF; Fig. 3H). Consistent with the findings in MS
patients, we observed a positive correlation between HLA-DRdim/+

sub-clusters (G2 and G7, but not G10) and anti-S1 IgG levels in
aCD20-treated NMOSD patients (Fig. 3I). However, in contrast to
untreated MS patients, the proportion of CD64+ sub-clusters G12
and G16 negatively correlated with anti-S1 IgG production after
vaccination (Fig. 3I). No significant correlation between granulo-
cyte sub-clusters and antibody production in the MMF-treated
NMOSD patient was detected, possibly due to low statistical power.
In summary, the granulocyte sub-clusters that showed a positive
correlation with anti-S1 IgG levels were predominantly HLA-DRlow/+

(Supplementary Fig. 10), while those with a negative correlation
commonly exhibited higher CXCR4 expression levels (Supple-
mentary Fig. 10).

Pre-gating and sub-clustering analysis of other myeloid and NK
cells (MNK) using antibody panel A (Supplementary Fig. 8) resulted
in three NK cell sub-clusters (N5, N6, and N7) and fifteen sub-clusters
ofmyeloid cells (Fig. 4A, B). Prior to vaccinations (at T0), we detected
DMT-mediated increase (Fig. 4C) or decrease (Fig. 4D) in the pro-
portion of eleven myeloid cell sub-clusters, as well as a decrease in
one NK cell sub-cluster (N6) (Fig. 4E) in MS patients. However, these
changes in cell compositions appeared to differ in NMOSD patients,
apart from M13 (Fig. 4F–H). In aCD20-treated MS patients, we
observed positive correlations between anti-S1 IgG antibody pro-
duction and three myeloid cell sub-clusters (M11: CD14-CD16-CD64+;
M15: CD14loCD16+; M17: CD14+CD16+CD68hi), as well as one NK cell
sub-cluster (N7: CD56+CD16+CD8hi) (Fig. 4I). Additionally, we detec-
ted a negative correlation between the CD14+CD16- monocyte sub-
cluster (M10) and anti-S1 IgG levels (Fig. 4I). However, there was no
significant correlation between MNK cell proportions and anti-S1 IgG
levels in untreated, FTY-, or IFN-β-treated MS patients, as well as in
untreated or MMF-treated NMOSD patients. In contrast to aCD20-
treated MS patients, aCD20-treated NMOSD patients showed a
positive correlation betweenM10 and a negative correlation between
M17 and anti-S1 IgG production (Fig. 4J). Additionally, the CD8- NK
cell sub-cluster (N6) was negatively correlated with anti-S1 IgG anti-
body levels (Fig. 4J).

Fig. 1 | Study design and immune cell characterization at the baseline (T0 prior
to vaccination) using CyTOF (antibody panel A). A Schematic overview of
longitudinal study design, vaccine administration scheme and sample collection in
relation to vaccinations across four time points forMS andNMOSD groups. Cohort
information is shown in the bottombox.BUMAPprojection, coloring indicates 1-18
clusters. Phenotypic heatmap of cluster identities depicting themedian expression
levels of selected markers per cluster. Heat colors of expression levels have been
scaled for each marker individually (to the 1st and 5th quintiles) (black, high
expression; white, no expression).CProportion of each cluster (except granulocyte

clusters) from each sample inMS groups at T0.D Box plots of the ten differentially
abundant clusters (mean± SD) from untreated-MS (n = 7), aCD20-MS (n = 15), FTY-
MS (n = 9), IFNβ-MS (n = 3) at T0. Each dot represents the value of each sample.
Boxes extend from the 25th to 75th percentiles. Whisker plots show the min
(smallest) andmax (largest) values. The line in theboxdenotes themedian. Kruskal-
Wallis and Dunn’s multiple comparison test. (E) Proportion of each cluster (except
granulocyte clusters) from each sample in NMOSD groups at T0. (F) Box plots of
the ten clusters as inD (mean ± SD) fromuntreated-NMOSD (n = 2), aCD20-NMOSD
(n= 4), MMF-NMOSD (n= 1) at T0.
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Link betweenmyeloid cell involvement and SARS-CoV-2-specific
CD4+ T cell responses
Next, we assessed the heterogeneity and composition changes of T cell
populations in untreated and treated patients after vaccination (i.e.,

T1-T3). Using antibody panel A, we identified 18 T cell sub-clusters
(Fig. 5A, B; Supplementary Fig. 7). The proportion of CD4+CCR7+ (T3)
sub-cluster was significantly reduced in FTY-treatedMS patients, while
the proportion of CD4-CD8-CCR7- double negative (DN) sub-clusters
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Fig. 2 | Contribution of immune cell sub-populations to aCD20-mediated dif-
ferences in cell composition at different timepoints depicted by principal
components analysis (PCA). A–H PCA for the 18 identified immune clusters in
untreated and aCD20-treatedMSA, C, E&G and NMOSDpatients B,D, F&H at T0
A, B, T1 C,D, T2 E, F and T3G,H. Each point represents one sample’s scores on the
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cell cluster on the first 2 principal components. Gray scale indicates the contribu-
tion value of variables toDim1 andDim2.The reddashed line on the graph indicates
the expected average contribution. The graph shows top variables (with a con-
tribution larger than average) contributing to Dim1.
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(T7 and T9) was found to be increased (Fig. 5C). Additionally, we
detected an increased proportion of two DN sub-clusters (T7 and T8)
and a decreased proportion of CD8+HLADRhi T cells (T12) in MS
patients on BCD therapies (Fig. 5C). We did not observe any significant
differences in T cell sub-clusters between untreated, aCD20- andMMF-
treated NMOSD patients (Fig. 5D). To investigate whether these

changes in T cell composition were related to T cell vaccination
responses, we examined antigen-specific CD4+ T cell reactivity to
SARS-CoV-2-spike glycoprotein, using the S-I peptide pool post-
vaccination. Untreated MS patients and those on BCD therapies dis-
played an increased S-I-specific CD40L+4-1BB+ CD4+ T cell response
after vaccination, irrespective of their neuroimmunological disease
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(Fig. 5E, F). However, no significant increase of S-I-specific CD4+ T cell
reactivity was detected in FTY-treatedMS patients, which is consistent
with our previous findings15. Correlation analysis revealed a negative
correlation between S-I-specific CD4+ T cells (depicted as Stim.Index)
and three CD4+/CD8+ICOSloCD226+ (T2, T10 and T14) T cell
sub-clusters in untreated MS (Fig. 5G). In addition, we observed a
negative correlation between S-I-specific CD4+ T cells and the
CD4+HLADRhiICOS+CD226+ sub-cluster (T1) in aCD20-treated MS
patients (Fig. 5H). However, in FTY-treated MS patients, two
CD4+ICOSloCD226-/lo T cell sub-clusters (T3 and T5) were positively
correlated with S-I-specific CD4+ T cell activity (Fig. 5I). In untreated
NMOSD patients, in contrast to untreated-MS patients, we found a
positive correlation between four CD4+/CD8+ICOS+CD226+ T cell sub-
clusters (T1, T4, T6 andT15) and S-I-specificCD4+ T cell activity (Fig. 5J).
Only a positive correlation between S-I-specific CD4+ T cells and the
CD8+HLADRhi sub-cluster (T12)wasdetected in aCD20-treatedNMOSD
patients (Fig. 5K).

Given the links identified between granulocytes as well as other
myeloid and NK cells and the humoral vaccination responses, we fur-
ther investigated whether immunophenotypic changes of these cell
compartments correlated with vaccine-induced spike-specific CD4+ T
cell responses. Interestingly, the correlations observed in MS patients
were different from those in NMOSD patients (Fig. 6A). Specifically, in
untreated MS patients, we found a positive correlation between HLA-
DRlow G7 sub-cluster and both vaccine-specific antibody production
and S-I-specific CD4+ T cell reactivity (Fig. 6B). However, in aCD20-
treated MS patients, the G7 sub-cluster showed a negative correlation
with vaccine-specific CD4+ T cells (Fig. 6C). Furthermore, the CXCR4low

sub-clusters (G3 and G13), which were negatively correlated with anti-
S1 IgG antibody production, were also negatively linked to S-I-specific
CD4+ T cell responses in untreated and aCD20-treated MS patients
(Fig. 6B). In FTY-treated MS patients, we observed a positive correla-
tion between theCD16loCXCR4lo sub-cluster (G17) and S-I-specific CD4+

T cell reactivity (Fig. 6D). In untreated NMOSD patients, in contrast to
untreated MS patients, the CXCR4low sub-cluster (G11) was positively
associated with S-I-specific CD4+ T cell reactivity (Fig. 6E). However, in
aCD20-treated NMOSD patients, the CD64+CXCR4lo sub-cluster G12,
which was negatively correlated with anti-S1 IgG antibody levels
(Fig. 3I), exhibited a positive correlation with S-I-specific CD4+ T cell
responses (Fig. 6F).

In line with the findings on granulocyte sub-clusters, we also
found correlations between myeloid (M) and NK (N) cell sub-clusters
and S-I-specific CD4+ T cells (Fig. 7A–E). Specifically, we detected
positive correlations between the NK cell sub-clusters N5, N6 and N7,
and the monocyte cell sub-cluster M17 in untreated MS patients,
while slightly inverse correlations were observed in aCD20-treated
MS patients (Fig. 7B, C). In MS patients treated with FTY, the pro-
portion of HLADR+CCR7+CD14-CD16- (M13) myeloid cells showed a
positive association with S-I-specific CD4+ T cell responses (Fig. 7D).

In contrast to aCD20-treated MS patients, in untreated NMOSD
patients, the proportion of two HLADR+CCR7+CD14-CD16- myeloid
cell clusters (M16 and M18) negatively correlated with CD4+ T cell
reactivity (Fig. 7E).

Discussion
In this study, we conducted in-depth profiling of immunophenotypic
signatures to identify distinct immune cell (sub-)populations inMS and
NMOSD patients undergoing different immunomodulatory treat-
ments. We then investigated these subpopulations and their link to
cellular and humoral immune responses in the context of primary and
booster SARS-CoV-2 vaccinations, serving as correlates of exposure to
novel antigens. It is well-known that immunomodulatory therapies can
hamper vaccination responses and increase risk of infection, despite
their high efficacy in managing disease activity17–22. Our results
demonstrate differential changes in the distribution of sub-
populations of both the lymphocyte and myeloid cell compartment
in MS and NMOSD patients treated with DMTs. These changes inclu-
ded an increased proportion of granulocytes and changes in the dis-
tribution of sub-populations in this cell type. Furthermore, some of
these sub-populations showed either positive or negative correlations
with both cellular and humoral responses after vaccination. Our find-
ings suggest that, in addition to lymphocytes, thedistributionof innate
immune cell sub-populations is also alteredbyDMTs.These alterations
may consequently affect the risk of infection and/or responses to
vaccination. Antigens/pathogens stimulate cellular and humoral
immune responses through similar mechanisms irrespective of the
specific infection or vaccine. Thus, studying immune responses to a
single antigen/pathogen can provide valuable insights into broader
immune responses to other antigens/pathogens, such as infections
and vaccines.

Innate immune cells, particularly neutrophil granulocytes, are the
first line of defense of the immune system with diverse functions,
including atypical antigen presentation as well as initiation and reg-
ulation of adaptive immunity23–30. For example, aged neutrophils were
characterizedbyupregulation ofC-X-Cmotif chemokine receptor type
4 (CXCR4), a migration and homing factor, in mouse models24,31,32 and
exhibited a higher phagocytic activity compared to non-aged
neutrophils24. This distinct behavior of “experienced” aged neu-
trophils during inflammation may allow them to instantly translate
inflammatory signals into immune responses. CD64 expression, which
serves as receptor for the Fc region of IgG and can increase over 10-
fold in activated neutrophils compared to resting ones, has long been
used as a surrogate marker for infectious disease and inflammatory
proccesses33–35. However, little is known about the CD64+ neutrophils
in patientswithMSorNMOSDandhow they are associatedwithDMTs.
In our analyses, we characterized heterogeneity of granulocytes and
detected proportional changes of various sub-populations in response
to DMTs, including CXCR4dim/lowHLA-DR-, HLA-DRlow/+, and CD64+

Fig. 3 | Association of granulocyte sub-population with anti-S1 IgG antibody
production at T1-T3 in MS and NMOSD groups. A UMAP plots of granulocytes.
B Phenotypic heatmap depicting the median marker expression levels of each
granulocyte clusters. C Proportion of the three differentially abundant clusters
(mean ± SD, Kruskal-Wallis and Dunn’s multiple comparison test), compared
between Untreated-MS (n = 7), aCD20-MS (n = 15), FTY-MS (n = 9), IFNβ-MS (n = 3)
at T0. D Proportion of the three clusters as in C (mean± SD) between Untreated-
NMOSD (n = 2), aCD20-NMOSD (n = 4), MMF-NMOSD (n = 1) at T0. E PCA for all 18
granulocyte clusters and IgG level in MS groups. Each point represents one sam-
ple’s scores ( = one patient) on the first 2 dimensions (Dim1 and Dim2). Each arrow
shows the loadings on the first 2 principal components. The graph shows top
variables (with a contribution larger than average) contributing toDim1. FHeatmap
of the Spearman correlation coefficients between the proportion of clusters and
antibody levels in aCD20-MS group (Nonparametric Spearman correlation test (r),
two-sided). Box plots (right panel) showing correlated cluster proportion

compared between IgG- (n = 37) and IgG+ (n = 13) groups in aCD20-MS group
(Kruskal-Wallis and Dunn’s multiple comparison test). G Scatter plots showing
correlation between the proportion of clusters and antibody levels in Untreated-
NMOSD groups (Nonparametric Spearman correlation test (r), two-sided). H PCA
for the 18 granulocyte clusters and IgG level in NMOSD groups (as in E). The graph
shows top variables (with a contribution larger than average) contributing to Dim1.
I Heatmap of the correlation between the proportion of clusters and antibody
levels in aCD20-NMOSD group (as in F, Nonparametric Spearman correlation test
(r), two-sided). Box plots showing correlated cluster proportion compared
between IgG- (n = 12) and IgG+ (n = 9) groups in aCD20-MS group (Kruskal-Wallis
and Dunn’s multiple comparison test). Each dot represents the value of each
sample. For all Box plots, boxes extend from the 25th to 75th percentiles. Whisker
plots show the min (smallest) andmax (largest) values. The line in the box denotes
the median. The n numbers (n) are defined as biologically independent samples.
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granulocytes. Most of them were negatively correlated with humoral
vaccination responses in aCD20-treated MS and NMOSD patients as
well as untreated patients, possibly due to their intercorrelation with
the B cell proportion. Furthermore, CD64+ granulocytes were posi-
tively (i.e., in aCD20-NMOSD patients) linked to S-I-specific CD4+ T cell
reactivity.

Interestingly, all granulocyte sub-clusters, which positively cor-
related with anti-S1 IgG levels in aCD20-treated MS and NMOSD
patients, were characterized as HLA-DRlow/+ granulocytes, suggesting
APC-like functions.Consistently, oneof these sub-clusters (i.e., G7)was
also positively linked to S-I-specific CD4+ T cell reactivity. However,
sub-cluster G7 was negatively correlated with CD4+ T cell activation in
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aCD20-treated MS patients, again suggesting disease- or treatment-
mediated differences in granulocytes functions, which are in line with
previously published study on neutrophil alteration in NMOSD
patients7–10. Due to the limited number of NMOSD patients, we were
unable to detect any significant differences in the heterogeneity of
granulocytes in these diseases. Nevertheless, our findings suggest that
potential neutrophils may be involved in mounting an antigen-specific
immune response upon primary and subsequent antigen exposure,
which can be modulated by DMTs. They may play roles in infection
and/or vaccine-specific humoral and cellular responses through their
phagocytic and/or atypical APC activities, although the latter is still a
matter of debate.

Similar to changes in granulocytes, we have detected DMT-
mediated changes in the proportion ofmyeloid cell sub-clusters, some
of which were significantly correlated with both anti-S1 IgG levels and
S-I-specific CD4+ T cell reactivity. In untreated NMOSD patients, two
CD127low myeloid sub-clusters showed opposite associations with S-I-
specific CD4+ T cell reactivity (one sub-cluster had a positive associa-
tion, while the other sub-cluster had a negative association). Interest-
ingly, the associations of these sub-clusterswith anti-S1 IgG levels were
reversed in aCD20-treatedNMOSDpatients. CD127+ monocyte subsets
are known to retain a hypo-inflammatory phenotype during highly
inflammatory conditions as shown in COVID-19 and rheumatoid
arthritis36. A strongly positive correlation between CD14+CD127+ mye-
loid cells (M2, M12) and anti-S1 IgG levels was only found in aCD20-
treated NMOSD patients. In untreated NMOSD patients, M12 was
negatively associated with S-I-specific CD4+ T cell reactivity. Again,
these findings demonstrate differential cellular responses in different
disease and treatment conditions.

In addition to granulocytes and monocytes, we also detected
significantly negative correlations between the proportion of the
CD8lowCD56+CD161+ (N6) NK sub-population and anti-S1 IgG antibody
production in aCD20-treated NMOSD patients as well as a negative
correlation with the S-I-specific CD4+ T cell response in aCD20-
treated MS patients. However, this sub-population showed a positive
association with CD4+ T cell responses in untreated MS patients. We
furthermore detected another small population of NK cells, i.e., the
N7 sub-cluster, which was associated with SI-specific CD4+ T cell
responses in untreated and aCD20-treated MS patients. This NK
cell population expressed CD8, CD95, CD69, CD161, and the che-
moattractant receptor CRTH2, which has been implicated in various
inflammatory diseases and is thought to be involved in immune
cell recruitment and activation37,38. Again, N7 was positively corre-
lated with S-I-specific CD4+ T cell reactivity in untreated MS
patients but negatively in aCD20-treated MS patients. This could
indicate that downstream effects of B cell depletion may indirectly
affect the function of NK cells or their interaction during an immune
response.

Limitations of our study include the different group sizes and
dropouts (i.e., missing data), which may affect statistical testing to
compare study outcomes between groups. However, our main groups
for analysis, untreated and aCD20/FTY-treated MS patients, are simi-
larly sized, enabling comparison between treatment-naïve and treated

patients. Although the limited number of untreated and aCD20-
treated NMOSD patients may impact the statistical power to detect
subtle differences, our findings could serve as a basis for generating
hypothesis for larger-scale studies that can offer more definitive con-
clusions within a broader NMOSD population. Additionally, our study
has yielded valuable insights into the immune response patterns of
innate immune cells in the context of DMTs and vaccination. Under-
standing these patterns can contribute to our understanding of how
these innate immune cell populations may respond to (novel) infec-
tions and vaccines, extending beyond the COVID-19 vaccine and
patients with neuroimmunological diseases. Therefore, investigating
the changes in immune phenotypes of these innate immune cells,
particularly granulocytes, before and after vaccination, could provide
a framework for assessing immune responses in different scenarios.
Another limitation is the absence of long-term follow-up data on
infection rates and infection severity. Consequently, drawing conclu-
sions regarding the clinical impact of the observed immune pheno-
typic changes is constrained. Finally, it is important to note that
multiple other factors can affect both vaccination responses and the
immune cell status, such as comorbidities. However, none of the par-
ticipants in this study had comorbidities related to the immune
system.

In conclusion, our study demonstrates the potential impact of
lymphocyte-targeted DMTs, such as aCD20 antibodies, on the
innate immune system. These effects can either support or inhibit
B cell and T cell reactivity, thereby influencing the response to
(novel) antigens. Importantly, these effects are also modulated by
the underlying disease. Therefore, we suggest considering the
assessment of innate immune status in the clinical monitoring of
neuroimmunological patients to evaluate treatment efficacy or
make decisions regarding therapy and vaccination. However, such
decisions should be tailored to individual factors, such as treat-
ment type, clinical and immunological patient characteristics, and
risk factors that could influence a patient’s susceptibility to
adverse outcomes, treatment response, or vaccine effectiveness. It
is essential to note that determining the ultimate benefit of this
monitoring requires large-scale clinical studies. Additionally, fur-
ther investigations, such as in vitro experiments with isolated
human immune cells or in vivo experiments using animal model,
are necessary to elucidate the roles of NK cells, granulocytes, and
other myeloid cells in humoral and cellular responses to repeated
antigen exposure or vaccination.

Methods
The data analyzed here was collected as part of the CCC study at the
Charité—Universitätsmedizin Berlin, which was approved by the ethics
committee of the Charité–Universitätsmedizin Berlin (Ethikkommis-
sion der Charité–Universitätsmedizin Berlin; registration number EA2/
224/21) in accordance with the Declaration of Helsinki of 1964 and its
later amendments. Patients were recruited via the Charité’s MS out-
patient clinic. All study participants provided informed consent before
any study-related procedures were undertaken and did not receive
compensation.

Fig. 4 | Association of myeloid and NK cell sub-population with anti-S1 IgG
antibody production at T1-T3 inMS and NMOSD groups. A UMAP plots colored
by cluster ID for 1–18 clusters of MNK cell determined using the FlowSOM algo-
rithm. B Phenotypic heatmap depicting the median expression levels of selected
markers per MNK cell cluster as defined in the table. C–E Proportion of the twelve
differentially abundant clusters (mean ± SD) between Untreated-MS (n = 7), aCD20-
MS (n = 15), FTY-MS (n = 9), IFNβ-MS (n = 3) at T0. Each dot represents the value of
each sample. Boxes extend from the 25th to 75th percentiles. Whisker plots show
themin (smallest) andmax (largest) values. The line in the box denotes themedian.
Kruskal-Wallis and Dunn’s multiple comparison test. F–H Proportion of the twelve
clusters as in C–E (mean± SD) between Untreated-NMOSD (n = 2), aCD20-NMOSD

(n = 4), MMF-NMOSD (n = 1) at T0. I, J Heatmap of the Spearman correlation coef-
ficients between the proportion ofMNK cell clusters and antibody levels at T1-T3 in
aCD20-MS group I and aCD20-NMOSD group J. Nonparametric Spearman corre-
lation test (r), two-sided. Box plots showing the proportion of correlated clusters
compared between IgG- and IgG+ groups at T1-T3 in aCD20-MS group I (IgG-, n = 37;
IgG+, n = 13) and aCD20-NMOSD group J (IgG-, n = 12; IgG+, n = 9). Each dot repre-
sents the value of each sample. Boxes extend from the 25th to 75th percentiles.
Whisker plots show the min (smallest) andmax (largest) values. The line in the box
denotes the median. Kruskal-Wallis and Dunn’s multiple comparison test. All n
numbers are defined as biologically independent samples.
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Study design
To investigate the effect of primary and follow-up exposure to a novel
antigen on innate and adaptive immune signature in patients withwell-
defined neuro-immunological diseases including NMOSD and MS, we
recruited a total of 62 patients, including untreated patients and
patients on distinct immunomodulatory treatments (i.e., 39MS and 23

NMOSD) before and after mRNA COVID-19 vaccinations. Please see
Supplementary Table 1 for clinical and demographic characteristics.
The inclusion criteria were: (1) MS diagnosis according to the McDo-
nald criteria of 2017 or NMOSD diagnosis according to Wingerchuk
(2015), (2) stable disease for at least 3 months (no acute relapse ther-
apy, no clinical progressionornew symptoms suggestive of relapse, no
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disease activity on brain/spinal MRI), (3) continuous immunomodula-
tory treatment or no treatment for at least 4 months, and (4) no
medical indications against SARS-CoV-2 vaccinations. The exclusion
criteria included: Previous SARS-CoV-2 infection, and heterologous
vaccination regimes.

Medical histories, blood samples and nasopharyngeal swabs were
collected at four time points, prior to (i.e., baseline; T0) and 1 month
after primary vaccination (i.e., 1st dose; T1), up to 6 months after sec-
ondary vaccination (i.e., 2nd dose; T2) as well as up to 4 months after

tertiary vaccination (i.e., 3rd dose; T3) (Fig. 1A).Whole blood specimens
(including granulocytes) were analyzed by CyTOF using two antibody
panelswith 37markers each (Supplementary Tables 2 and 3). Antibody
panel A (Panel A) elucidated the spectrum of circulating immune cells
and their subsets (i.e., T cells, granulocytes and other myeloid cells
(i.e., monocytes and DCs), NK cells), activity-related markers and
chemokine receptors, whereas antibody panel B (Panel B) was
designed to particularly investigate all major B cell subsets in detail. In
addition, we measured anti-SARS-CoV-2 spike glycoprotein 1 (S1) IgG

Fig. 5 | Changes in CD3+ T cell composition and the correlation between S-I-
specific CD4+ T cell reactivity and defined sub-populations at T1-T3 in MS and
NMOSD patients. A UMAP plots colored by cluster ID for 1–18 clusters of T cell
determined using the FlowSOM algorithm. B Phenotypic heatmap depicting the
median expression levels of selected markers per T cell cluster as defined in the
table. C Proportion of the five differentially abundant clusters (mean ± SD)
between Untreated-MS (n = 7), aCD20-MS (n = 15), FTY-MS (n = 9), IFNβ-MS (n = 3)
at T0. Each dot represents the value of each sample. Boxes extend from the 25th
to 75th percentiles. Whisker plots show the min (smallest) and max (largest)
values. The line in the box denotes the median. Kruskal-Wallis and Dunn’s mul-
tiple comparison test. D Proportion of the five clusters as in C (mean ± SD)
between Untreated-NMOSD (n = 2), aCD20-NMOSD (n = 4), MMF-NMOSD (n = 1)
at T0. E, F The CD4+ T cell reactivity between four timepoints (T0-T3) in different

MS groups E (Untreated-MS group, n = 6, 6, 9 and 7, sequentially; aCD20-MS
group, n = 14, 14, 15 and 4, sequentially; FTY-MS group, n = 6, 7, 9 and 6,
sequentially) and NMOSD groups F (Untreated-NMOSD group, n = 2, 2, 5 and 2,
sequentially; aCD20-NMOSD group, n = 4, 2, 5 and 2, sequentially). Each dot
represents the value of each sample. Boxes extend from the 25th to 75th per-
centiles. Whisker plots show the min (smallest) and max (largest) values. The line
in the box denotes the median. Kruskal-Wallis and Dunn’s multiple comparison
test. G–K Scatter plots showing correlation between the proportion of T cell
cluster and CD4+ S-I Stim.Index at T1-T3 in Untreated-MS group G, aCD20-MS
group H, FTY-MS group I, Untreated-NMOSD group J, and aCD20-NMOSD group
K. The red text denotes the negative correlation. Nonparametric Spearman cor-
relation test (r), two-sided. Black lines and gray shadows represent the best-fitted
smooth line and 95% confidence interval.
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Fig. 6 | Association of granulocyte sub-populations with S-I-specific CD4+ T cell
responses followed primary and booster vaccination (at T1-T3) in MS and
NMOSD groups. A Heatmap of the Spearman correlation coefficients between
granulocyte cluster proportion and CD4+ S-I Stim.Index at T1-T3 in MS and NMOSD
groups. Nonparametric Spearman correlation test (r), two-sided (*p < 0.05,
**p <0.01, ***p <0.001, ****p <0.0001; the exact p-values are shown in B–F.

Correlated clusterswere defined in the table.B–F Scatter plots showing correlation
between the proportion of granulocyte cluster and CD4+ S-I Stim.Index at T1-T3 in
Untreated-MS group B, aCD20-MS group C, FTY-MS group D, Untreated-NMOSD
group E, and aCD20-NMOSD group F. The red text represents the negative corre-
lation. Nonparametric Spearmancorrelation test (r), two-sided. Black lines and gray
shadows represent the best-fitted smooth line and 95% confidence interval.
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Fig. 7 | Association of myeloid and NK cell sub-populations with S-I-specific
CD4+ T cell responses followed primary and booster vaccination (at T1-T3) in
MS and NMOSD groups. A Heatmap of the Spearman correlation coefficients
between MNK cell cluster proportion and CD4+ S-I Stim.Index at T1-T3 in MS and
NMOSDgroups. Nonparametric Spearman correlation test (r), two-sided (*p <0.05,
**p <0.01, ***p <0.001, ****p <0.0001; the exact p-values are shown in B–E).

Correlated clusterswere defined in the table.B–E Scatter plots showing correlation
between the proportion of MNK cell cluster and CD4+ S-I Stim.Index at T1-T3 in
Untreated-MS group B, aCD20-MS group C, FTY-MS group D, and Untreated-
NMOSD group E. The red text represents the negative correlation. Nonparametric
Spearman correlation test (r), two-sided. Black lines and gray shadows represent
the best-fitted smooth line and 95% confidence interval.
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and ex vivo spike-specific CD4+ T cell responses Acute SARS-CoV-2
infections were ruled out by PCR testing. The number of patients of
each studied group is included in everyfigure. Not all participantswere
included in the study at T0. Missing samples were due to participant
unavailability or, in case of T3, due to SAR-CoV-2 infection, which was
the case for one aCD20-treated MS and one aCD20-treated NMOSD
patient.

Anti-SARS-CoV-2-S1-antibody testing
Anti-SARS-CoV-2 S1 IgG was measured using a commercially available
ELISA kit (Euroimmun, Cat# EI2606-9601 G) according to manu-
facturers’ instructions16.

Ex vivo T cell stimulations
Freshly isolated PBMC were cultivated at 5×106 PBMC in RPMI 1640
medium (Gibco) supplemented with 10% heat inactivated AB serum
(Pan Biotech), 100U/mL penicillin (Biochrom), 0.1mg/mL streptomy-
cin (Biochrom). Stimulations with peptide pool covering the aa 1-643
of SARS-CoV-2 spike glycoprotein were conducted as described
before39, and were published in our previous study16. Briefly, PepMix
SARS-CoV-2 spike glycoprotein (JPT) peptide pool (at a concentration
of 1μg/ml per peptide) in the presence of 1μg/ml purified anti-CD28
antibody (clone CD28.2, BD Biosciences). Incubationwasperformed at
37 °C, 5%CO2 for 16 hwith 10μg/ml brefeldin A (Sigma-Aldrich) added
after 2 h. Stimulation was stopped by incubation in 2mM EDTA for
5min. The “Stim.Index” defines the percentage of CD40L+4-1BB+ CD4+

T cells among stimulated PBMCs divided by the percentage of these
cells among unstimulated PBMCs.

CyTOF analysis
Sample processing of CyTOF-based profiling. Whole blood
(heparin) was collected from patients with MS and NMOSD at four
different timepoints was fixed in SmartTube Proteomic Stabilizer as
described in the user manual and stored at −80 °C until CyTOF
analysis.

Intracellular barcoding for mass cytometry. After fixation with pro-
teomic stabilizer, whole blood samples were thawed in Thaw/Lyse
buffer and subsequently stained with premade combinations of six
different palladium isotopes: 102Pd, 104Pd, 105Pd, 106Pd, 108Pd and 110Pd
(Cell-ID 20-plex Pd Barcoding Kit, Fluidigm). This multiplexing kit
applies a 6-choose-3 barcoding scheme that results in 20 different
combinations of three Pd isotopes. After 30min staining (at room
temperature), individual samples were washed twice with cell staining
buffer (0.5% bovine serum albumin in PBS, containing 2mMEDTA). All
samples were pooled together, washed, and further stained with
antibodies.

Antibodies. Anti-human antibodies (Supplementary Table 2 for Panel
A & Supplementary Table 3 for Panel B) were purchased either pre-
conjugated tometal isotopes (Fluidigm) or from commercial suppliers
in purified form and conjugated in house using the MaxPar X8 kit
(Fluidigm) according to the manufacturer’s protocol.

Surface and intracellular staining. After cell barcoding, washing, and
pelleting, the combined samples were re-suspended in 90μl of anti-
body cocktail against surface markers and incubated for 30min at
4 °C. Then, cells were washed twice with cell staining buffer, and
incubated overnight in 2% methanol-free formaldehyde solution (FA).
For intracellular staining, the stained (non-stimulated) cells were sub-
sequently washed once with staining buffer and once with permeabi-
lization buffer (eBioscience). The samples were then stained with
100μl of the antibody cocktails against intracellular molecules (Sup-
plementary Tables 2 and 3) in permeabilization buffer for 30min at
room temperature. Cells were subsequently washed twice with

staining buffer, then re-suspended in 1ml iridium intercalator solution
(Fluidigm) and incubated for 30min at room temperature. Next, the
samples were washed twice with cell staining buffer. Cells were pel-
leted and kept at 4 °C until CyTOF measurement.

Mass cytometry data processing and analysis. As described
previously11,40, Boolean gating was used for debarcoding. Nucleated
single intact cells weremanually gated according to the signals of DNA
intercalators 191Ir/193Ir and event length. For de-barcoding, Boolean
gating was used to deconvolute individual samples according to the
barcode combination. All de-barcoded samples were then exported as
individual FCS files for further analysis. Codes used for CyTOF data
analysis in this study are previously published by Crowell H et al. 2022
and available on https://github.com [https://github.com/HelenaLC/
CATALYST]. Each FCS file was cleaned and compensated for signal
spillover using R package CATALYST 41, transformed with arcsinh
transformation (scale factor 5) and batch correction was implemented
with a quantile normalizationmethod tominimize batch effects42 prior
to data analysis. Prior to clustering analyses, CD19+ B cells,
cPARP-CD66b+ granulocytes, cPARP-CD3+ T cells and
cPARP-CD3-CD66b-CD14-/+ MNK cells were pre-gated using FlowJo
(Supplementary Figs. 1, 5 and 6). For further clustering analysis we
used previously described scripts and workflows43. Only samples with
>50 cells were considered for the downstream data analysis. For
unsupervised cell population identification, we performed cell clus-
tering with the FlowSOM44 and ConsensusClusterPlus45 packages using
selected markers in each panel (Supplementary Tables 4 and 5). In the
Panel A, we firstly identified major cell types using all markers from
CD45+ live cells, then tookmixedpopulations (cluster 3, 17, and 18) out,
and finally identified 18 meta-clusters on the expression of 15 selected
markers, i.e., FceR1a, CCR4, CD11c, CD68, HLA-DR, CD64, CD14, CD33,
CD3, CD4, CD8, CD66b, CD16, CD56, CD19. For T cell clustering, sub-
clusters were first identified based on the expression of CD3, CCR7,
CD4, CD8, CD226, CD69, TIGIT, CRTH2, ICOS, HLADR, CD127, CCR4,
CTLA4, then six clusters with CD3- (cluster 6, 9, 12, 15, 16 and 18) were
excluded, and the remaining cells were re-clustered again with 18
meta-clusters. The granulocyte compartment was clustered based on
the expression of 14 markers, including FceR1a, CD45, CCR4, HLA-DR,
CD64, CD33, CD95, CD66b, CD16, CD69, CXCR4, IL1beta, CD161, and
CD14. We used 24 markers, including CD11c, CD47, CCR4, HLADR,
CD68, CD14, CD64, CD33, CD95, CD16, CD4, CD69, TIGIT, CD141,
CD206, OPN, CD127, IL-1B, CCR7, CD161, CD56, CD226, CD8, and
CRTH2, to identify 18 meta clusters of MNK cells. Then took mixed
population 12 out, finally confirmed 18 meta clusters. We clustered B
cells excluding eight 0-cell samples with 18 meta-clusters using 26
markers in the Panel B, including CD20, IgM, CXCR3, CCR4, CD45,
CD49d, HLA-DR, CD19, CD1c, CD38, IgA, CD138, IgD, IgGK, IgGL,
CD62L, CD24, CXCR4, CHI3L1, CD25, CD123, CD45RO, CD27,
Ki67, CD11c, Tbet. We next removed cluster 16 and 17
(CD11chiHLADRhiCD123 + ) out and re-clustered again with 18 meta-
clusters. The number of metaclusters used for further analysis was
identified based on the delta area plots (which asses the “natural”
number of clusters that best fits the complexity of the data) together
with visual inspection on the phenotypic heatmap with the aim to
select a cluster number with consistent phenotypes that would also
allow to explore small populations. For dimensionality-reduction
visualization we generated UMAP representations using all markers
as input and down-sampled to a maximum of 1000 cells per sample.

Data analysis. Statistical analysis was performed using GraphPad
Prism (version 8.0.2). Continuous variables were expressed as mean
and standard deviation with or without range. Owing to the limited
sample sizes, Kruskal-Wallis test followed by Dunn’s correction for
multiple comparisons test was used to analyze cluster abundance
across different MS groups. Based on IgG status, patients were divided
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into two groups: “IgG-” and “IgG + ”. “IgG-”wasdefined as an anti-S1 IgG
level below the cut-off of 1.1 optical density ratio for a positive result,
while “IgG + ” was defined as anti-S1 IgG level above this cut-off. Sig-
nificant differences in cluster abundance between IgG status were
calculated using Mann–Whitney’s U-test. Spearman’s correlation
coefficients were used to evaluate the correlation between cluster
abundance and anti-S1 IgG level/CD4+ S-I StimIndex. P <0.05 was
considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CyTOF data generated in this study have been deposited in the
FlowRepository database under accession code FR-FCM-Z7ZZ [http://
flowrepository.org/id/FR-FCM-Z7ZZ]. Source data are provided with
this paper as SourceDatafile. Sourcedata areprovidedwith thispaper.
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