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1 Comparison to other Tools

We qualitatively compare PEDL+ to the PPA-extraction tools INDRA (Gyori
et al., 2017) and PPAXE (Castillo-Lara and Abril, 2018), as well as to the text-
mining subset of the protein-protein-interaction database STRING (Szklarczyk
et al., 2021) in Table SM1. We estimate the speed by taking 100 random protein
pairs from the interaction database SignaLink (Csabai et al., 2022) and measure
the speed of each tool in extracting PPAs for all of them. INDRA comes with
multiple extraction models and we use REACH (Valenzuela-Escárcega et al.,
2018) because it’s endorsed by INDRA’s authors1 and we found its installation
relatively straight-forward. As INDRA does not natively support extracting
PPAs for protein pairs of interest, we implemented a workflow similar to PEDL+
using only INDRA functions in a small Python script. For PPAXE, we use the
provided web interface2. PPAXE requires the user to provide the ids of PubMed
articles (PMIDs) from which it should extract PPAs. Because PPAXE does not
have a lookup capability for these PMIDs, we use INDRA to find all PubMed
articles in which at least one of the 100 protein pairs occurs together.

2 Details on the RE Models

The PPA model that we use for PEDL+ differs in a few aspects from the model
that we described in Weber et al. (2020). First, we updated the training data
by adding more distantly supervised data and by removing one directly super-
vised dataset to improve the consistency of the annotations. Specifically, in
addition to PID, the training data now includes PPAs derived from the Path-
wayCommons representations of Panther (Mi and Thomas, 2009)3 and Net-

1https://indra-db.readthedocs.io/en/latest/
2https://compgen.bio.ub.edu/PPaxe/
3https://www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.panther.

hgnc.txt.gz
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Speed (s / pair)
(approx.)

Filter
by MeSH

PMID
Lookup

Evidence
Spans

RE Model Interface

STRING < 0.1 ✗ ✗ ✗ co-occurrence Web / File
PPAXE 991.8 ✗ ✗ ✓ random forest Web / Python / CLI
INDRA (Reach) 398.1 ✓ ✓ ✓ multiple (no DL / PLM) Python
PEDL+ (local) 1.5 ✓ ✓ ✓ PLM CLI / Python

Table SM 1: Comparison of different text mining tools for PPA extraction.
Speed is measured in seconds per protein pair estimated on a sample of 100
random related protein pairs. Filter by MeSH means whether the tool allows
to filter results based on the MeSH terms of the articles in which the PPA
was found. PMID lookup refers to the ability to find the PubMed articles
in which two proteins occur together. Evidence span denotes the tools that
provide the text snippet supporting the PPA for quick verification by a user.
The following abbreviations are used: deep learning (‘DL’), PLM (‘pre-trained
language model’), web interface (‘Web’), Python library (‘Python’), command-
line interface (‘CLI’).

path (Kandasamy et al., 2010)4. From all used databases we include the two ad-
ditional PPA types interacts-with, which represents physical protein-protein
interactions observed in high-throughput experiments, and catalysis-precedes,
which is annotated when the head protein controls a reaction with a product
that is used as substrate in another reaction controlled by the tail protein5. For
the directly supervised data, we removed the BioNLP Epigenetics dataset, be-
cause its annotation guidelines are very different from those of the other datasets
which led to the inclusion of many false negative annotations when combining
all. Additionally, we made the MyGeneInfo-based normalization more lenient
by introducing support for non-SwissProt proteins and for protein mentions that
are mapped to more than one uniprot id, which allows mapping a larger fraction
of gene mentions to uniprot ids. As we only include PPAs for proteins which
can be resolved to uniprot, we obtain more PPAs per dataset, and thus, in the
end, we have more directly supervised PPAs than in the dataset described in
Weber et al. (2020). See Table 2, for statistics on the updated dataset.

We additionally introduced some minor modifications to the model archi-
tecture described in (Weber et al., 2020). First, we use the concatenation of
the final-layer embeddings of the entity start markers <e1> and <e2> instead
of [CLS] to represent a text span for subsequent classification, because Bal-
dini Soares et al. (2019) suggest that this can lead to more accurate extractions.
Also, we use LogSumExp instead of maximum to aggregate the scores from the
score matrix to form the evidence prediction to benefit from better gradient
flow.

For CPAs, we retrain a model on the DrugProt shared task data (Miranda

4https://www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.netpath.

hgnc.txt.gz
5https://www.pathwaycommons.org/pc2/formats (accessed 2022/09/22) and https:

//www.biopax.org/owldoc/Level3/classes/MolecularInteraction___1004444555.html (ac-
cessed 2022/09/22)
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Direct 412 196 334 107 918 0 0 1967
Distant 2646 6954 20732 1276 17718 2357 1353 53036

Pairs Spans (Avg.)
pos. neg. pos. neg.

Direct 1563 4689 17.7 5
Distant 42768 531557 36.7 3.8

Table SM 2: ‘Pairs’ is the total number of protein pairs with at least one PPA
(pos.) and without any PPA (neg.). ‘Spans’ states the average number of
text spans per protein pair for pairs with at least one PPA (pos.) and with-
out any PPA (neg.). Abbreviations: ‘expr.’ - controls-expression-of, ‘phosph.’
- controls-phosphorylation-of, ‘state’ - controls-state-change-of, ‘transport’ -
controls-transport-of, ‘interacts’ - interacts-with, ‘catalysis’ - catalysis-precedes

et al., 2021) that is based on the single-model baseline without entity descrip-
tions in Weber et al. (2022). Unfortunately, the licensing of RoBERTa-large-
PM-M3-Voc (the strongest base model in our evaluation in Weber et al. (2022))
prohibits commercial use. Thus we replace it with LinkBert-base (Yasunaga
et al., 2022) because of its strong performance in BioNLP tasks. We fine-tune
it for 3 epochs on the training portion of DrugProt and obtain an F1 score of
78.7% on the development set, which is comparable with the best single-model
configuration reported in Weber et al. (2022).

3 Evaluation Projects

In the first project, two curators sought to develop models based on ordinary dif-
ferential equations and Boolean logic that describe the role of cellular senescence
in B-cell lymphoma. We provide the gene sets and results for both projects as
supplementary files. For this, they used PEDL+ to connect a recently proposed
transcriptomic signature for cellular senescence in diffuse large B-cell lymphoma
patients (Reimann et al., 2021) to inhouse models of B-cell development based
on the models of Roy et al. (2019) and Thobe et al. (2021). Here, we used the
MeSH filter Lymphoma, B-Cell.

In the second project, a third curator developed a Boolean model for the
intrinsic pathway of apoptotic regulation with a specific focus on the role of the
BCL-2 family. They used PEDL+ to extract PPAs in two ways; (1) among
15 different members of the BCL-2 family and (2) between these BCL-2 family
members and a list of putative upstream regulators of apoptosis based on the
models of Roy et al. (2019) and thobePatientSpecificModelingDiffuse2021. In
this project, we provided the annotator with results without any MeSH filter
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and, additionally, results for (1) filtered by the MeSH term Lymphoma, B-Cell.

4 Error Analysis

The results of the error analysis can be found in Figure SM 1. The most fre-
quently cited reasons for incorrect PPA extractions were that PEDL erroneously
extracted a PPA from a sentence that does not state it and that it assigned the
wrong type for a PPA. For the unhelpful PPAs, the results are inconclusive
because annotators provided only 16 annotations in total and the numbers are
close together. Cited reasons were that articles discussed the PPA in the context
of a disease that is irrelevant to the curation context, that the extracted PPA is
known to be an indirect interaction, that the article did not provide sufficient
biochemical evidence for the PPA, and that the PPA is only true in specific
contexts, e.g. when a protein is mutated or a drug is administered.
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Figure SM 1: Results of the error analysis for incorrect (top) and unhelpful
(bottom) PPAs. Incorrect: ‘No PPA’ means that the article does not confirm
the PPA, ‘Type’ that the article states a PPA for the correct protein pair, but
the wrong type of PPA was extracted. ‘Normalization’ refers to cases in which
the PPA was correctly extracted but PubTator Central assigned at least one
wrong gene id for the pair. ‘Negation’ describes cases in which the two proteins
and the PPA type are correct, but the existence of the PPA is explicitly negated
in the article. ‘Direction’ means that the head and tail of the PPA should be
inversed. Unhelpful: ‘Indirect’ means that the interaction is indirect but the
curator was interested only in direct interactions, ‘insufficient evidence’ means
that there was not enough biochemical evidence to support the plausibility of
the PPA, ‘wrong disease’ refers to cases in which the PPA was specific to a
disease that is irrelevant to the curation context and ‘context missing‘ to cases
where the PPA is only valid in certain contexts such as when the protein is
mutated or a drug is administered.
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