ChemBioChem

Supporting Information

Fluorescent Tools for the Imaging of Dopamine D₂-Like Receptors

Martin Nagl, Denise Mönnich, Niklas Rosier, Hannes Schihada, Alexei Sirbu, Nergis Konar, Irene Reyes-Resina, Gemma Navarro, Rafael Franco, Peter Kolb, Paolo Annibale, and Steffen Pockes*

Contents

1.	Chemical purity and stability	S3
2.	Dopamine-induced G_{o1} activation	S5
3.	NMR spectra	S6
4.	Structures of the fluorescent ligands 16, 17, and 20	S22
5.	Binding pose of spiperone bound to the D_2R	S23
6.	References	S24

1. Chemical purity and stability

Figure S1. RP-HPLC analysis (purity control) of compound 16 (>99%, 254nm).

Figure S2. RP-HPLC analysis (purity control) of compound 17 (>99%, 254nm).

Figure S3. RP-HPLC analysis (purity control) of compound 20 (>99%, 254nm).

Figure S4. RP-HPLC analysis (stability control) of **20** after incubation in water/DMSO 1:1 at rt for up to 24 h. Compound **20** showed no decomposition.

2. Dopamine-induced Go1 activation

Figure S5. Concentration–response curves (CRCs) for G_{o1} activation of dopamine in HEK293A cells transiently expressing the G_{o1} BRET sensor along with the wild-type D_2R , D_3R or D_4R . Graphs represent the means of three independent experiments each performed in duplicate. Data were analyzed by nonlinear regression and were best fitted to sigmoidal concentration-response curves.

3. NMR spectra

Figure S6. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 2.

Figure S9. ¹³C NMR spectrum (101 MHz, DMSO- d_6) of compound 3.

Figure S12. ¹H NMR spectrum (300 MHz, DMSO-d₆) of compound 5.

Figure S13. ¹³C NMR spectrum (75 MHz, DMSO-d₆) of compound 5.

S10

Figure S16. ¹H NMR spectrum (400 MHz, DMSO-d₆) of compound 7.

Figure S17. ¹³C NMR spectrum (101 MHz, DMSO-d₆) of compound **7**.

Figure S18. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 8.

0 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S19.** ¹³C NMR spectrum (75 MHz, CDCl₃) of compound **8**.

Figure S22. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **10**.

Figure S23. ¹³C NMR spectrum (75 MHz CDCl₃) of compound **10**.

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S29.** ¹³C NMR spectrum (101 MHz, CDCl₃) of compound **13**.

S18

Figure 32. ¹H NMR spectrum (400 MHz, D₂O) of compound 15.

Figure S37. ¹³C NMR spectrum (101 MHz, CD₃OD) of compound **19**.

4. Structures of the fluorescent ligands 16, 17, and 20

Figure S38. Structure of compound 16.

Figure S39. Structure of compound 17.

Figure S40. Structure of compound 20.

5. Binding pose of spiperone bound to the D_2R

Figure S41. Binding pose of spiperone bound to the D_2R based on the cryo-EM structure 7DFP^[1] (side view, **A**; top view, **B**).

6. References

 D. Im, A. Inoue, T. Fujiwara, T. Nakane, Y. Yamanaka, T. Uemura, C. Mori, Y. Shiimura, K. T. Kimura, H. Asada, N. Nomura, T. Tanaka, A. Yamashita, E. Nango, K. Tono, F. M. N. Kadji, J. Aoki, S. Iwata, T. Shimamura, *Nat Commun* **2020**, *11*, 6442.