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The thalamus acts as an interface between the periphery and the cortex, with nearly 
every sensory modality processing information in the thalamocortical circuit. 
Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, 
the key thalamic nuclei responsible for innocuous thermosensation remains under 
debate. Thermosensory information is first transduced by thermoreceptors located 
in the skin and then processed in the spinal cord. Temperature information is then 
transmitted to the brain through multiple spinal projection pathways including the 
spinothalamic tract and the spinoparabrachial tract. While there are fundamental 
studies of thermal transduction via thermosensitive channels in primary sensory 
afferents, thermal representation in the spinal projection neurons, and encoding 
of temperature in the primary cortical targets, comparatively little is known about 
the intermediate stage of processing in the thalamus. Multiple thalamic nuclei 
have been implicated in thermal encoding, each with a corresponding cortical 
target, but without a consensus on the role of each pathway. Here, we review 
a combination of anatomy, physiology, and behavioral studies across multiple 
animal models to characterize the thalamic representation of temperature in two 
proposed thermosensory information streams.
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1. Introduction

The somatosensory system is a complex network of sensory receptors and neural pathways 
that enable us to perceive and respond to stimuli from the external environment. 
Somatosensation refers to the collective experience of these sensory modalities, including touch, 
temperature, itch, proprioception, and pain. Although touch has been extensively studied, the 
same cannot be said for temperature, particularly in the context of innocuous stimuli. The ability 
to perceive changes in temperature is crucial for maintaining homeostasis, detecting potential 
danger, and responding appropriately to environmental stimuli by serving as necessary 
information used during active haptic exploration. Hence, investigating the neural mechanisms 
underlying non-painful thermal stimulation is critical for understanding the broader context of 
somatosensation. In this article, we focus on the neural pathways implicated in thermosensation 
and highlight the relevance of two parallel thalamic nuclei and their cortical targets in 
thermal perception.

Thermal information is transduced by Aδ and C primary afferent fibers innervating the skin 
that terminate primarily in laminae I and II of the ipsilateral dorsal horn of the spinal cord for 
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sensations arising on the body surface or the spinal trigeminal nucleus 
for sensations on the face (Light et al., 1979; Light and Perl, 1979a,b; 
Cervero et al., 1984; Cervero and Connell, 1984; Maxwell and Rethlyi, 
1987). Lamina I  spinal cord neurons are driven by nociceptive, 
thermal, and itch stimuli [mouse: (Chisholm et al., 2021); cat: (Craig 
and Kniffki, 1985; Craig and Hunsley, 1991; Andrew and Craig, 2001; 
Craig and Dostrovsky, 2001); primate: (Kumazawa and Perl, 1978), rat: 
(Zhang and Giesler, 2005)]. Spinothalamic projection neurons 
originating in the superficial laminae of the spinal cord target multiple 
thalamic nuclei in the mouse (Davidson et al., 2010), the rat (Lund 
and Webster, 1967; Giesler et al., 1979; Granum, 1986; Ma et al., 1986; 
Burstein et al., 1990; Iwata et al., 1992; Gauriau and Bernard, 2004a), 
the cat (Boivie, 1971; Carstens and Trevino, 1978; Jones et al., 1987; 
Craig et al., 1989; Stevens et al., 1989; Katter et al., 1991; Craig, 2003a; 
Klop et al., 2005), and the primate (Boivie, 1979; Willis et al., 1979; 
Hayes and Rustioni, 1980; Apkarian and Hodge, 1989a,b; Gingold 
et al., 1991; Craig, 2004), in addition to several other non-thalamic 
targets (Kuner and Kuner, 2021) including the lateral parabrachial 
nucleus of the brainstem (Light et al., 1993; Bester et al., 2000).

The lateral parabrachial nucleus is responsive to cutaneous 
thermal inputs (Nakamura, 2011), receives collateral projections from 
spinothalamic neurons (Hylden et al., 1989; Li et al., 2006; Al-Khater 
and Todd, 2009), has distinct subregions for cold and warm activated 
neurons (Nakamura and Morrison, 2008, 2010; Geerling et al., 2016), 
and projects to the thermoregulatory center of the preoptic area of the 
hypothalamus (Nakamura and Morrison, 2008, 2010) as well as the 
central amygdaloid nucleus (Yahiro et al., 2023). Inactivation of lateral 
parabrachial neurons eliminates autonomic thermoregulatory 
responses, such as skin cooling-evoked brown fat and shivering 
thermogenesis and skin warming-evoked cutaneous vasodilation 
(Kobayashi and Osaka, 2003; Nakamura and Morrison, 2008, 2010). 
Further, lesions of the lateral parabrachial nucleus (Yahiro et al., 2023), 
but not the thalamus (Yahiro et  al., 2017), can lead to drastic 
impairments on thermoregulatory behavioral assays. Therefore, while 
the thalamus is important for sensory perception (Wolff et al., 2021), 
the spinoparabrachial pathway is considered critical for 
thermoregulatory behavior independent of the thalamic 
representation of temperature, and therefore is not the focus of this 
perspective (for a review of the thermoregulatory pathway, see 
Nakamura, 2011; Tan and Knight, 2018).

While there are notable differences in the spinothalamic tract 
across species (Hodge and Apkarian, 1990), the two major thalamic 
subdivisions targeted by spinothalamic information traveling to cortex 
are the medial and the lateral thalamus (Craig, 2004). The lamina I—
medial thalamus pathway, or the limbic pathway, sends input to the 
submedial nucleus to the thalamus [multi-species: (Craig and Burton, 
1981); rat: (Yoshida et  al., 1991; Iwata et  al., 1992; Gauriau and 
Bernard, 2004a), cat:(Craig and Dostrovsky, 1991), primate: (Craig, 
2004; Craig and Zhang, 2006)] which then projects to the anterior 
cingulate cortex (Xue et al., 2022). The lamina I—medial thalamus 
pathway is associated with pain processing and emotion (Vertes et al., 

2015; Bliss et al., 2016), but has not been implicated in innocuous 
sensing. Rather, there is evidence that the submedial nucleus of the 
thalamus is exclusively driven by nociceptive stimuli (Dostrovsky and 
Guilbaud, 1988), and therefore is not the focus of this perspective on 
innocuous thermal perception (for a review of thalamocortical 
involvement in pain, see Albe-Fessar et al., 1985; Yen and Lu, 2013; 
Groh et al., 2017).

The lamina I—lateral thalamus pathway, or the sensorimotor 
pathway, is associated with nociceptive and thermal perception in 
rodents (Milenkovic et al., 2014; Ziegler et al., 2023), cats (Craig et al., 
2001), and primates (Craig and Blomqvist, 2002). Within the lamina 
I—lateral thalamus pathway, there are two distinct subdivisions 
traveling through anterior and posterior somatosensory thalamic 
nuclei [rodent: (Lund and Webster, 1967; Ma et al., 1986; Zhang and 
Giesler, 2005), cat: (Boivie, 1971; Mantyh, 1983), non-human primate: 
(Pearson and Haines, 1980; Apkarian and Hodge, 1989c), human: 
(Hong et al., 2011)]. Although the anterior and the posterior thalamic 
nuclei are characterized by distinct thermal representations and 
cortical targets, the relevance for one pathway over the other for 
innocuous thermal sensation remains under debate (Craig et al., 1994; 
Willis et al., 2002; Montes et al., 2005). Here, we propose that the 
anterior and posterior thalamic thermosensory streams represent two 
parallel processing pathways for distinct features of thermosensation.

2. Anterior thermosensory stream

The anterior thermosensory stream is characterized by the ventral 
somatosensory thalamic nuclei targeted by spinothalamic neurons. 
Across species, lamina I  spinothalamic tract neurons send axon 
collaterals to the ventral posterolateral (VPL) and ventral 
posteromedial (VPM) nuclei as well as to the ventral posterior inferior 
(VPI) nucleus in primates (Willis et  al., 2001). These ventral 
somatosensory thalamic nuclei are characterized by their robust 
somatotopic map (Emmers, 1965) and axonal projections to primary 
(Bernardo and Woolsey, 1987; Shi and Apkarian, 1995) and secondary 
(Krubitzer and Kaas, 1992) somatosensory cortex for VPL/VPM and 
VPI, respectively. Therefore, the anterior thermosensory stream is 
defined as lamina I  spinothalamic neurons projecting to ventral 
somatosensory thalamus and then on to somatosensory cortex.

While traditionally viewed as mechanosensory nuclei, ventral 
somatosensory thalamus encodes pain (Kenshalo et al., 1980; Casey 
and Morrow, 1983; Chung et al., 1986; Apkarian and Shi, 1994; Lenz 
et al., 1994), temperature (Bushnell et al., 1993), and proprioception 
(Francis et al., 2008). Discriminative mechanosensory information 
reaches somatosensory ventral thalamus via the dorsal column nuclei 
(Turecek et al., 2022) while temperature and nociceptive information 
arrives via the lamina I spinothalamic tract (Hodge and Apkarian, 
1990; Willis et al., 2001). The density of the spinothalamic innervation 
of ventral somatosensory thalamic nuclei is less than that seen for 
posterior somatosensory thalamus (Al-Khater et al., 2008) which has 
led to the hypothesis that ventral thalamus is not critical for 
thermosensation (Craig et al., 1994). However, there is significant 
evidence that this pathway is also involved in thermosensation beyond 
mechanosensation (Willis et  al., 2002). First, thermally evoked 
responses have been recorded at each stage of the anterior 
thermosensory pathway: in VPL-projecting spinothalamic neurons 
(Chung et  al., 1979; Ferrington et  al., 1987; Zhang et  al., 2006; 

Abbreviations: Vc, Ventral caudal; VPL, Ventral posterolateral nucleus; VP, Ventral 

posterior nucleus; VPI, Ventral margin of the ventral tier nuclei; VB, Ventrobasal 

complex; PoT, Posterior triangular nucleus; VMb, Basal part of the ventral medial 

nucleus; VMpo, Posterior part of the ventral medial nucleus; S1, Primary 

somatosensory cortex; pIC, Posterior insular cortex.
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Davidson et al., 2008), in ventral somatosensory thalamus (Kenshalo 
et al., 1980; Bushnell et al., 1993; Lenz et al., 1993a; Apkarian and Shi, 
1994; Lenz and Dougherty, 1998; Lee et al., 1999), and downstream in 
primary somatosensory cortex in mice (Milenkovic et  al., 2014; 
Vestergaard et al., 2023) and humans (Guest et al., 2007). Second, 
human microstimulation studies have elicited cool percepts when the 
stimulation electrode is located within the ventral caudal thalamus 
(Lenz et  al., 1993b; Ohara and Lenz, 2003). Finally, in monkeys, 
inactivation of ventral thalamus impaired behavioral performance on 
both thermosensory and nociceptive tasks, further supporting a role 
for ventral somatosensory thalamic nuclei in thermal perception 
(Bushnell et al., 1993). Taken together, this suggests that the anterior 
thermosensory stream is relevant for thermosensory encoding 
and perception.

3. Posterior thermosensory stream

The posterior thermosensory stream is defined by the posterior 
somatosensory thalamic nuclei targeted by spinothalamic neurons 
and their cortical projection target. Identification of this nucleus has 
required considerable effort across species. In primates, the posterior 
thalamic nucleus that receives the majority of spinothalamic tract 
inputs is the posterior part of the ventral medial nucleus, or the VMpo 
(located posteromedial to the VPL/VPm; previously considered part 
of PO; see Willis et al., 2002), as identified through both anterograde 
tracing from superficial spinal cord (Craig, 2004) and retrograde 
tracing from VMpo (Craig and Zhang, 2006) (for anatomical location 
of VMPo in humans, see Figure  1 from Montes et  al., 2005; for 
anatomical location of VMPo in non-human primates, from Craig 
et al., 1994). Lamina I spinothalamic neurons targeting the posterior 
thalamic nuclei are responsive to thermal stimuli (Gauriau and 
Bernard, 2004b) and electrophysiology recordings from VMpo in 
primates have identified thermally responsive neurons (Craig et al., 
1994, 1999). Anterograde tracing from VMpo has identified dorsal 
posterior insular cortex as the primary projection target (Craig, 2014) 
and posterior insular cortex has been identified as a thermally 
responsive cortical region in human fMRI studies (Craig et al., 2000). 
Therefore, the posterior thermosensory stream is defined as Lamina 
I spinothalamic tract neurons projecting to posterior somatosensory 
thalamus and then onto posterior insular cortex.

The functional homolog of the primate VMpo has been identified 
in other species by the dense Lamina I  spinal tract innervation, 
nociceptive and thermosensory response properties, and axonal 
projections to posterior insular cortex (Craig, 2014). In cats, the 
ventral aspect of VMb has been described as the VMpo equivalent 
because this nucleus receives input from lamina I  spinothalamic 
neurons (Craig and Dostrovsky, 2001), is involved in thermosensory 
behavior (Norrsell and Craig, 1999), and projects to insular cortex 
(Clasca et al., 1997). In rodents, it was originally believed that the 
VMpo—insular cortex circuit did not exist (Craig, 2009), but this view 
has shifted given recent findings depicting a robust thermal 
representation in mouse posterior insular cortex (pIC) (Vestergaard 
et al., 2023). In rats, there was initially evidence for VPMpc as the 
candidate nucleus equivalent to cat VMb (Cliffer et al., 1991; Iwata 
et al., 1992; Jasmin et al., 2004), but PoT has emerged as the primary 
candidate (Gauriau and Bernard, 2004a). Similar to VMPo in 
primates, the PoT nucleus is located posteromedial to the VPL at the 

caudal end of the PO nucleus (Figure 1). PoT receives the highest 
proportion of spinothalmic input (Al-Khater et  al., 2008), has 
thermosensitive/nociceptive neurons, and projects to a posterior 
cortical field we now associate as posterior insular cortex (Gauriau 
and Bernard, 2004b). Similar to rats, mouse PoT receives 
spinothalamic input (Davidson et  al., 2010) and thalamocortical 
projections target posterior insular cortex without sending any 
projections to primary somatosensory cortex (Bokiniec et al., 2023). 
Therefore, we propose that the rodent functional homolog to VMpo 
is the PoT nucleus.

The human homolog to VMpo has been identified using 
cytoarchitecture characteristics of non-human primate VMpo 
(Blomqvist, 2000). Microstimulation in this region, which is defined 
as posterior and inferior to the core somatosensory nucleus in human 
electrophysiology experiments, has evoked thermosensory and 
nociceptive percepts in humans (Davis et  al., 1999). Further, 
nociceptive-specific units (Davis et al., 1996; Dostrovsky, 2000) as well 
as cool-responsive units (Davis et al., 1999) have been recorded in this 
region in humans as well. Localized lesions exist in this thalamic area 
that is believed to be VMpo (Craig, 2014) in patients experiencing 
thermanesthesia and thalamic pain (Sprenger et al., 2012). However, 
it is important to note that this does not appear to be the sole thalamic 
representation as there are patients with thalamic lesions that do not 
include VMpo that have still led to abnormal cold sensation and pain 
(Montes et al., 2005; Kim et al., 2007). There have also been recordings 
and stimulations in human thalamus that are located much more 
lateral than VMpo that are cool-responsive (Lenz et al., 1993a; Lenz 
and Dougherty, 1998), supporting the idea that there are at least two 
streams for discriminative thermosensory information. Further, 
retrograde anatomical tracing from thermosensitive cortical regions 
of the mouse have identified an anterior–posterior distribution in the 
thalamocortical projection neurons to S1 and pIC, respectively 
(Figure 2). Therefore, the posterior thermosensory stream is a key 
pathway for thermal encoding, but not the exclusive pathway 
for thermosensation.

4. The encoding of innocuous 
temperature in the anterior and 
posterior thermosensory streams

The existence of two parallel streams of thermosensory 
information suggests distinct roles of each thalamic nucleus in thermal 
encoding. In the context of temperature, the putative function of 
distinct representations have been considered in the frameworks of 
the sensory and the hedonic aspect of the stimulus (Sewards and 
Sewards, 2002) as well as exteroception and interoception (Craig, 
2002). Here, we  first consider the distinctions in the sensory 
representation itself and then expand on the proposed functional roles 
of these two parallel streams. While there are multiple stimulus 
dimensions that could differ, the most salient appears to be  the 
representation of warm and cool in each pathway.

4.1. Functional encoding of warm and cool

Upon discovery of discrete cold and warm spots in the skin 
(Blix, 1882), cool and warm encoding have been explored almost as 
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two separate entities with the majority of studies reporting on the 
representation of cool stimuli. Historically, electrophysiological 
recordings investigating cooling sensation were targeting the 
ventral basal complex (VB), or the anterior stream as we describe 
here. Cool-sensitive neurons were identified within VB in response 
to cooling of the tongue (Poulos and Benjamin, 1968; Auen et al., 
1980) or limb (Burton et al., 1970; Schingnitz and Werner, 1980). 
In human studies, cool-evoked neural responses were also identified 
in ventral somatosensory thalamus (Lenz and Dougherty, 1998; Lee 
et  al., 1999). Cool-evoked thalamic responses showed either 
transient or sustained response dynamics (Burton et  al., 1970). 
Some VB neurons showed high sensitivity to cool with step-like 
tuning functions, while others had a more graded response across 
increasing stimulus intensities (Sakata et al., 1989). Responses in 
VB to warm stimulation of the limb or tongue were incredibly rare, 
with some studies reporting no warming cells (Poulos and 
Benjamin, 1968). Responses to warming have also been uncommon 
relative to cooling at the spinal cord (Kenshalo et  al., 1979; 
Ferrington et al., 1987; Dado et al., 1994). The notable exception to 
this lack of warm stimulus encoding in the thalamus was found in 
response to scrotal stimulation (Hellon and Misra, 1973; Jahns, 
1975; Schingnitz and Werner, 1980). While warming the scrotum 
could elicit a strong evoked response in VB, this response required 
cortical involvement (Hellon and Taylor, 1982) and was later 
described as a non-specific activation (Kanosue et  al., 1985). 
Therefore, warm-evoked sensory responses in VB remain elusive. 
Downstream, in somatosensory cortex, there is a similar lack of 

warm representation. In human EEG, cooling the glabrous skin of 
the hand elicited an evoked response over somatosensory cortex, 
while no evoked potential of any form was measured following 
rapid warming of the hand (Duclaux et al., 1974). This is consistent 
with recent imaging studies from somatosensory cortex in mice 
showing a robust cool response (Milenkovic et  al., 2014), but a 
minimal warm response (Vestergaard et al., 2023).

However, the absence of warm encoding in the anterior 
thermosensory stream sets up an obvious concern – why is warm not 
represented here? At the periphery, cool-responsive neurons greatly 
outnumber the warm-responsive neurons (McGlone and Reilly, 2010). 
Therefore, the sparse encoding of warm in the anterior thermosensory 
stream could simply be predicted from the distribution of peripheral 
receptors and would suggest that warm is not well represented in whole 
organisms. However, warm is encoded robustly in the hypothalamus, 
independent of the thalamocortical circuit (Nakamura, 2011; Tan et al., 
2016), demonstrating that warm can be represented in the central 
nervous system. While behavioral sensitivity to warm is lower than to 
cold (Paricio-Montesinos et al., 2020), humans are fully capable of 
detecting both transient warm and cool stimulation (Stevens and 
Choo, 1998) suggesting a discriminative representation of warm must 
exist in the somatosensory pathway. Alternatively, it is also possible that 
the cold representation seen in the anterior thermosensory stream is 
mediated exclusively by slowly adapting mechanoreceptors with 
thermal sensitivity (Burton et al., 1972) via the dorsal column nuclei 
(Abraira and Ginty, 2013). While this could underlie some of the 
thermotactile-responsive neurons in the anterior thermosensory 

FIGURE 1

Visualization of horizontal (A) and coronal (B) sections from the Allen Mouse Brain Common Coordinate Framework (Wang et al., 2020). (A) Horizontal 
sections arranged from dorsal to ventral (left to right) depict thalamic nuclei outlined in black and key thalamic nuclei in color. (B) Coronal sections 
arranged from anterior to posterior (left to right) depict thalamic nuclei outlined in black and key thalamic nuclei in color.
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stream, it would not account for the cool-selective units that have been 
recorded throughout the nucleus. Another possibility is that warm 
encoding in the anterior stream could be mediated via suppression 
rather than excitation. Warming stimulation can elicit suppressed 
responses in cool-responsive primary sensory afferents (Burton et al., 

1970; Paricio-Montesinos et  al., 2020). Warm-evoked suppression 
could be difficult to identify in anesthetized recordings because the 
spontaneous firing rate is artificially low. This must be investigated 
further to identify whether a robust warm-evoked suppression exists 
in the anterior thermosensory stream. Overall, the evidence suggests 

FIGURE 2

Functionally targeted retrograde tracers injected into forepaw primary somatosensory cortex (fS1) and forepaw posterior insular cortex (pIC) reveal 
thalamic populations. (A) Population injection sites and functional responses of fS1 (n  =  10 mice). Left plots show 80% contours of the widefield 
thermal response to cool stimuli (blue) and fluorescence of the tracer (green) (n  =  10 mice, 5 retrograde and 5 anterograde injections) aligned to peak 
temperature response in fS1. Image shows outlines of all injection sites localized on a coronal brain slice (ABA Plate: 576987753) from the Allen Brain 
Atlas. Left plots, Same as for right plots, but for fpIC and including response to 8  kHz sound stimulation (gray). (ABA Plate: 576990141). Scale bars: 
500  μm. (B) Representative example brain slices of inputs to fS1 (green) or fpIC (magenta) from selected thalamic subregions. The full list of 
abbreviations is shown in Supplementary Table 1 of Bokiniec et al. (2023). Scale bars: 250  μm. (C) Left: Representative micrograph of a coronal brain 
section showing the VPL nucleus with CTB positive cells projecting to fS1 (i) or fpIC (ii), and one identified cell (iii - white, highlighted by arrowhead) 
that projects to both fS1 (green) and fpIC (magenta). Right: Percentage of dual labeled cells projecting to fS1 and fpIC in and thalamic nuclei (mean ± 
SEM, n  =  5 mice). (D) Representation of reconstructed VPL, PO, and PoT inputs to fS1 (green) or fpIC (magenta) (n  =  5 mice). Left, Plotted as a horizontal 
view (rostrocaudal vs. mediolateral). Right shows coronal sections highlighting (i) a rostral region with input to fS1 only, (ii) an intermediate rostrocaudal 
region with input to both fS1 and fpIC, and (iii) a caudal region with inputs to fpIC only. Reproduced from Bokiniec et al. (2023).
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that the anterior stream is primarily involved in cool encoding with 
minimal impact on the discriminative encoding of warm.

The investigation of the posterior thermosensory stream is far 
more recent, which has resulted in even fewer investigations of 
thermosensation in posterior thalamus than ventral thalamus. 
However, there are electrophysiological recordings that have 
measured innocuous thermosensory responses in posterior 
thalamus (Craig et al., 1994) in addition to other modalities such as 
touch, itch, and pain (Lipshetz et al., 2018), further confirming its 
involvement in somatosensory processing. Spinothalamic Lamina 
I terminations in macaque VMPo display a coherent topographic 
map as assessed using anterograde (Craig, 2004) and retrograde 
(Craig and Zhang, 2006) tracing techniques suggesting this 
thalamic region has somatotopy. Additionally, anterograde tracing 
from the VMPo has also suggested a somatotopic map in the 
thalamocortical projections (Craig, 2014) to cortex. 
Microstimulation studies in humans found that while the cool 
percepts could be evoked in both the core region of somatosensory 
thalamus (anterior stream) and the posterior region of 
somatosensory thalamus (posterior stream), warm percepts were 
evoked more frequently in the posterior region (Ohara and Lenz, 
2003). Microstimulation in insular cortex has also elicited 
non-painful warming percept in humans (Ostrowsky et al., 2000) 
and recordings in posterior insular cortex of mice have also shown 
a robust warm representation (Vestergaard et  al., 2023). While 
further research is needed to better understand the neural 
mechanisms underlying the processing of warm stimuli and its 
representation in the brain, this suggests that the posterior stream 
is involved in both cool and warm thermal representation.

4.2. Proposed roles for the anterior and 
posterior thermosensory streams

Parallel pathways for processing sensory information are the rule 
rather than the exception. In the visual cortical pathway, the ventral 
stream is believed to underlie visual discrimination while the dorsal 
pathway is associated with spatial vision and visually guided behaviors 
(Ungerleider and Mishkin, 1982). The ventral and dorsal visual 
streams are colloquially known as the “what” and “where” pathways 
for vision. Similarly, in the auditory circuits, the ventral pathway is 
associated with sound recognition while the dorsal pathway is 
associated with sound localization and speech production (Wang 
et al., 2008). As with vision, these pathways are also referred to as the 
“what” and “where” pathways for audition.

While these parallel cortical pathways are not considered entirely 
independent, the identification of two pathways that underlie sensory 
discrimination and action guidance has led to a shift in the perspective 
for visual and auditory processing. A similar search for guiding 
principles in somatosensory processing is underway. Here, we outline 
the major proposed roles of the distinct thermosensory pathways in 
somatosensation, with a particular focus on thermosensation.

4.2.1. Sensory discrimination and sensory 
localization

While these auditory and visual pathways are cortico-cortical 
circuits that likely vary critically from thalamocortical pathways, it is 
tempting to try to draw direct parallels between the visual and 

auditory themes of sensing-for-discrimination and sensing-for-action 
in the “what” and “where” cortical pathways, respectively, to the 
proposed thermosensory information streams.

Posterior insular cortex, or the cortical target of the posterior 
thermosensory pathway, encodes a thermal representation of 
both warm and cool stimuli (Vestergaard et  al., 2023) that is 
correlated with the perceived temperature rather than the valence 
of the thermosensation (Craig et al., 2000). This representation 
of temperature would lead to a more discriminable characteristic 
(Craig, 2011) than that seen for somatosensory cortex where a 
warm representation is largely absent (Vestergaard et al., 2023) 
and therefore could be  compatible with a “what” stream of 
information for thermal encoding (Dijkerman and De 
Haan, 2007).

In contrast, the somatosensory cortex, or the cortical target of the 
anterior thermosensory pathway, is highly interconnected with 
regions involved in sensorimotor processing including motor cortex, 
and contains a precise somatotopic map of the body surface 
(Krubitzer and Kaas, 1990). A thermal stimulus is typically provided 
in concert with a tactile stimulus when interacting with objects or 
surfaces. Therefore, the more restricted thermal representation here 
combined with the robust activation of somatosensory cortex by the 
thermotactile stimulus could provide spatial localization to 
be primarily associated with the “where” pathway.

Similar to the visual and auditory pathways, these parallel 
pathways would not contain completely independent information. For 
example, cool information would be discriminable in the “where” 
pathway (anterior stream) and spatial information could be decoded 
from the somatotopic maps of temperature in posterior insular cortex 
(Vestergaard et al., 2023) in the “what” pathway (posterior stream). Yet 
the same hypothesis would not be  drawn for tactile information. 
Somatosensory cortex is considered requisite for discriminative tactile 
information and spatial localization, making it critical for both the 
“what” and the “where” touch pathway (Diamond et  al., 2008). 
However, as discussed below, it is entirely possible that touch and 
temperature should not necessarily be  considered comparable 
sensations with identical neural pathways.

4.2.2. Interoception and exteroception
As described thus far, somatosensation is the compilation of 

multiple submodalities including touch, itch, proprioception, 
temperature, and pain that sense exteroceptive stimuli, or stimuli 
that are external to the body. However, it has been proposed that 
temperature and pain have been categorically misclassified as 
exteroceptive instead of interoceptive, or relating to stimuli that 
are internal to the body (Craig, 2002). In this view, interoceptive 
explicitly includes both visceral sensation and homeostatic 
sensory capacity (Ceunen et al., 2016). Therefore, the posterior 
thermosensory stream could be responsible for the interoceptive 
representation of the body state (Craig, 2003b) including 
thermosensory encoding.

As such, thermosensation is described as a homeostatic emotion 
because the valence of the thermal stimulus is dependent on the 
homeostatic state (Craig, 2007). Practically speaking, this would 
be equivalent to the pleasant feeling of a cool breeze on a warm sunny 
day compared to the unpleasant feeling of the same cool breeze during 
a frigid winter day. Therefore, the thermal representation in the 
posterior insular cortex, or the cortical target of the posterior 
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thermosensory pathway, is referred to as both the primary 
thermosensory cortex and the limbic sensory cortex. This is because 
the posterior insular cortex is highly interconnected with regions 
involved in valence and homeostasis including the amygdala, 
hypothalamus, orbitofrontal cortex, and parabrachial nucleus (Yasui 
et al., 1991; Gehrlach et al., 2020; Bokiniec et al., 2023). In a positron 
emission tomography (PET) study, orbitofrontal cortex and anterior 
insular cortex thermal-evoked responses were correlated with 
subjective thermal experience (i.e., valence) while posterior insular 
cortex was correlated with objective thermal stimulation (i.e., applied 
temperature) (Craig et al., 2000). Therefore, it has been proposed that 
the sensory representation in posterior insular cortex is the limbic 
sensory substrate for subjective/homeostatic feelings and emotions 
(Craig, 2002).

Importantly, this view essentially excludes the role of the anterior 
thermosensory stream in thermal encoding and highlights posterior 
insular cortex as the key structure for interoception. While posterior 
insular cortex is tightly interconnected with limbic sensory structures 
and likely is involved in valence encoding (Gogolla, 2017), it is not 
necessarily required for homeostatic thermoregulation. As described 
above, the spinoparabrachial tract is crucial for thermoregulation 
(Yahiro et  al., 2017), independent of the thalamic representation 
which presumably drives the cortical representation in the posterior 
insular. This would suggest that posterior insular cortex could 
constitute the primary discriminative thermal representation, but 
does not clearly delineate whether thermosensation should 
be  classified as exclusively interoceptive. In comparison, tactile 
encoding would be considered both interoceptive and exteroceptive. 
Interoceptive tactile signaling could be  stomach distension when 
feeling ‘full’ after eating while exteroceptive tactile signaling could 
be the deformation of the skin when grasping an object. Exteroception 
is inherently important for somatosensation as it would include direct 
interactions with the external environment. The importance of 
particular regions of the body, such as the hand and mouth, for 
exteroception can be visualized in the innervation density of the 
primary sensory afferents in the skin, as measured anatomically and 
by perceptual acuity. Both mechanoreceptors and thermally 
responsive fibers densely innervate skin used for actively sensing the 
environment, such as the hands or the lips, relative to other body 
segments that may provide more critical measures of homeostatic 
state or body temperature, such as the abdomen (Stevens and Choo, 
1998; Corniani and Saal, 2020). Taken together, we would propose 
that thermosensation is involved in both interoception and 
exteroception and that it is unique from touch in that it has a clear 
autonomic function in thermal homeostasis.

4.2.3. Valence and discriminative stimulus 
attributes

The definition of somatosensory encoding has also been 
considered in the framework of discriminative sensory features and 
hedonic, or valence, sensory features. While this view has been 
discussed in the context of pain, and particularly whether pain should 
be  treated as a separate submodality of somatosensation or as a 
negative valence signal associated with other modalities such as 
touch, it has parallels to temperature sensing (Sewards and Sewards, 
2002). Similar to the natural valence of thermal encoding described 
above, tactile encoding has a similar separation between sensory 
discrimination and sensory valence. For touch, a specific class of 

mechanosensitive fibers has been proposed to mediate affective, or 
rewarding touch properties, as opposed to sensory discriminative 
properties (McGlone et al., 2014). Within thermal encoding, human 
subjects can differentiate between thermal stimuli regardless of 
homeostatic body temperature while unpleasantness varied with 
body temperatures, suggesting that valence and sensory features 
could be represented by the activity of two neuronal populations 
(Mower, 1976). It has been proposed that the hedonic and 
discriminative sensory representations can both exist within the 
ventrobasal and posterior complex of the somatosensory thalamus, 
but the cortical encoding in primates contains only sensory 
representations in somatosensory cortex and has both sensory and 
hedonic representations in the insular cortex (Sewards and Sewards, 
2002). In this view, the anterior thermosensory stream would 
be primarily driven by discriminative sensory features, while the 
posterior thermosensory stream would be primarily driven by the 
valence of the thermal stimulation.

However, the anterior thermosensory stream does not contain 
the full thermosensory representation and therefore would not be the 
ideal candidate region for thermal discriminative features. Further, 
we would actually delineate valence into two subcategories. The first 
classification of valence would be attributed only to the stimulus 
qualities. In touch, for example, this could be defined as a positive 
valence associated with a gentle stroke using silk compared to the 
negative valence associated with a hard stroke using sandpaper. The 
second classification of valence would be attributed to the integration 
of the stimulus qualities with the internal state. In touch, this could 
be  described as the positive emotional response generated when 
tickled while happy compared to the negative response generated 
when tickled while crying. In this consideration, the first classification 
of valence based on stimulus properties could exist within each 
pathway. However, aforementioned human studies found that activity 
in posterior insular cortex does not correlate with valence, but only 
with stimulus intensity (Craig et  al., 2000), suggesting that the 
posterior thermosensory pathway is not necessarily representing the 
first classification of valence. However, consistent with the theory of 
interoception (Craig, 2002), the second classification of valence 
would likely be  developed in downstream structures from the 
posterior thermosensory stream. The combination of the reduced 
sensory representation in the anterior pathway and the evidence 
against valence representation in either pathway suggests there is 
insufficient evidence to predict that thermal encoding in these two 
thermosensory pathways is split well into these two categories of 
valence and discriminative features.

4.2.4. Thermotactile sensing and temperature 
discrimination

Instead, we propose a synthesis of these theories to suggest that 
thermal pathways are actually characterized by two distinct 
functional roles, both of which impact thermosensation. These two 
functional roles are thermotactile sensing and isolated temperature 
sensation (Figure 3). Somatosensory cortex has been implicated as 
a key structure in active sensing, or haptic exploration. The anterior 
thermosensory pathway has a restricted thermal encoding paired 
with robust tactile encoding. We  propose that the thermal 
representation in this pathway is primarily involved in 
thermotactile behaviors. Given that mammalian species are 
homeotherms, the environmental temperature is usually lower 
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than that of the body. Therefore, the statistics of the natural 
thermosensory environment are heavily cold biased, which could 
explain the limited sensory representation in the anterior 
thermosensory stream.

In contrast, the posterior thermosensory pathway contains the 
relevant information for both warm and cool encoding to have 
discriminative thermosensory capabilities. In the cortical target of 
this pathway, touch and temperature are represented in distinct 
subpopulations (Vestergaard et  al., 2023) which would further 
enable precise thermosensory encoding. All evidence suggests that 
the posterior thermosensory pathway is crucial for temperature 
discrimination, but extensive studies into the thalamic nucleus 
responsible for this pathway will be  required to elucidate its 
classification within the thalamic hierarchy. This would suggest that 
posterior thalamus and posterior insular cortex could encode both 
interoceptive and exteroceptive thermosensory information while 
providing discriminative thermal information to both the anterior 
thermosensory stream and the limbic thermosensory pathway. 
Taken together, we  believe this framework could provide a 
functional segregation between the pathways while remaining 
consistent with prior proposed models.

5. Discussion

The relevant pathways for thermosensory processing in the central 
nervous system remain an area of active debate. Here we propose a 
synthesis of research across model organisms to describe two pathways 
for innocuous thermal perception: the anterior and the posterior 
thermosensory streams. The anterior thermosensory pathway 
transmits thermosensory information from the superficial laminae of 
the spinal cord to the ventral nuclei of the lateral thalamus and 
ultimately somatosensory cortex. The posterior thermosensory 
pathway transmits thermosensory information from the superficial 
laminae of the spinal cord to the posterior nuclei of the lateral thalamus 
and ultimately posterior insular cortex. While there is an extensive 
body of work on somatosensory encoding in the ventral somatosensory 
thalamic nuclei, there is a paucity of data in the posterior somatosensory 
thalamic nuclei. Anatomical tracing has shown that the thalamic 
neurons of the anterior and posterior streams are completely 
non-overlapping (Bokiniec et al., 2023), suggesting parallel information 
processing in the thalamocortical circuit, but comparative studies 
investigating thermal encoding properties across these thermal 
pathways will be required to support, or disclaim, the hypothetical 

FIGURE 3

Parallel processing in ventral and posterior thermosensory streams. Thermal information is encoded in two distinct thalamocortical pathways defined 
as the ventral (blue) and posterior (yellow) thermosensory streams. Thalamic nuclei associated with each stream for limb stimulation are indicated for, 
from bottom to top: humans, non-human primates, cats, and rodents.
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frameworks presented here. While it has been proposed that the 
anterior and posterior thermosensory streams are designated for 
sensory-discriminative functions (Vestergaard et  al., 2023), 
interoception (Craig, 2002), or hedonic identity (Sewards and Sewards, 
2002), the one organizing principle that remains evident is that 
temperature is not touch. It is a distinct modality that requires further 
exploration and future work is required to carefully disentangle the role 
of these two thalamic pathways on thermal encoding.
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