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Metabolite interactions in the bacterial Calvin cycle
and implications for flux regulation
Emil Sporre1,5, Jan Karlsen1,5, Karen Schriever 2, Johannes Asplund-Samuelsson1, Markus Janasch1,4,

Linnéa Strandberg1, Anna Karlsson1, David Kotol 1, Luise Zeckey1, Ilaria Piazza3, Per-Olof Syrén2,

Fredrik Edfors1 & Elton P. Hudson 1✉

Metabolite-level regulation of enzyme activity is important for microbes to cope with

environmental shifts. Knowledge of such regulations can also guide strain engineering for

biotechnology. Here we apply limited proteolysis-small molecule mapping (LiP-SMap) to

identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria

and two lithoautotrophic bacteria that fix CO2 using the Calvin cycle. Clustering analysis of

the hundreds of detected interactions shows that some metabolites interact in a species-

specific manner. We estimate that approximately 35% of interacting metabolites affect

enzyme activity in vitro, and the effect is often minor. Using LiP-SMap data as a guide, we find

that the Calvin cycle intermediate glyceraldehyde-3-phosphate enhances activity of fructose-

1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) from Synechocystis sp. PCC 6803 and

Cupriavidus necator in reducing conditions, suggesting a convergent feed-forward activation of

the cycle. In oxidizing conditions, glyceraldehyde-3-phosphate inhibits Synechocystis F/

SBPase by promoting enzyme aggregation. In contrast, the glycolytic intermediate glucose-6-

phosphate activates F/SBPase from Cupriavidus necator but not F/SBPase from Synechocystis.

Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously

appreciated.
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Metabolite-protein interactions, such as allosteric inhibi-
tion or activation of enzymes, can act as feedback
mechanisms for adapting metabolic flux to changing

conditions1,2, and can also be targets for metabolic engineering3.
Several interaction proteomics techniques have been developed
that can detect metabolite-protein interactions4. For example,
limited proteolysis-coupled mass spectrometry (LiP-MS) detects
changes in a protein’s susceptibility to digestion by proteinase K
which may occur when a protein undergoes conformational
change or binds to effectors. In LiP-SMap (limited proteolysis-
small molecule mapping), interactions between proteins and an
added metabolite are revealed by comparison of peptides released
during partial digestion of proteins in the absence and presence of
the metabolite. LiP-SMap previously revealed hundreds of
metabolite-protein interactions in yeast and E. coli extracts, and
in many cases, the altered peptides were near enzyme active sites5.

An unexplored application area for interaction proteomics is
the Calvin cycle, present in diverse bacteria, eukaryotic algae, and
plants. Redox regulation of enzyme activity in the plant Calvin
cycle and the surrounding network has been studied6–8 and some
metabolite regulation of key enzymes are incorporated into
models of photosynthesis9–11. In contrast, post-translational
regulation of the Calvin cycle in bacteria is less characterized12.
The bacterial Calvin cycle is of biotechnological interest as cya-
nobacteria and chemoautotrophic bacteria have been modified to
produce biochemicals from carbon dioxide using sunlight, elec-
tricity, or hydrogen as energy sources13–16. The Calvin cycle is
susceptible to instability at branch points where intermediates are
drained, and the kinetic parameters of cycle enzymes and
branching enzymes are constrained17,18. Modulation of enzyme
kinetic parameters (KM, Ki, kcat, Hill coefficient), such as by
allosteric or competitive effectors, could affect the rate of light-
mediated activation/deactivation or cycle stability. For example, it
was recently shown that phosphoketolase in cyanobacteria is
inhibited by ATP and that this regulation serves a biological
function: phosphoketolase enhances cell fitness by depleting sugar
phosphate intermediates of the Calvin cycle in the dark when
ATP levels are reduced19.

The Calvin cycle is present in all cyanobacteria and in
approximately 7% of non-cyanobacterial genomes20. Among
cyanobacteria, Calvin cycle enzyme sequences have significant
homology, though potential metabolite-level regulation may be
different. Comparisons of the transcriptomic response to changes
in inorganic carbon supply suggest that the cyanobacterium
Synechocystis sp. PCC 6803 responds primarily through bio-
chemical regulation of enzyme fluxes, while Synechococcus elon-
gatus PCC 7942 responds through transcription regulation of
enzymes21–23. Recent in vitro characterization of enzymes from
the oxidative pentose phosphate pathway of Synechocystis showed
that several were unexpectedly inhibited by TCA-cycle
metabolites24,25. In chemolithoautotrophs, the Calvin cycle is
frequently acquired through horizontal gene transfer and may
provide a growth advantage in environments poor in organic
substrates due to improved cofactor recycling or in environments
with mixed or fluctuating carbon sources26–28. Conservation of
metabolite-level regulation in the Calvin cycle across bacterial
families would imply core design principles for its operation,
while differences may indicate adaptations specific to a certain
microbial lifestyle or evolutionary trajectory29.

Here, we applied the LiP-SMap technique to uncover new
regulatory metabolite interactions with central carbon metabo-
lism enzymes in four bacteria strains containing the Calvin cycle,
Synechocystis sp. PCC 6803, Synechococcus PCC 7942, Cupriavi-
dus necator (formerly Ralstonia eutropha), and Hydrogenophaga
pseudoflava. Synechocystis is a model for studying photosynthesis,
particularly because it can also metabolize glucose30.

Synechococcus is an obligate photoautotroph and a model for the
circadian rhythm31. Cupriavidus necator and Hydrogenophaga
pseudoflava are chemoautotrophic betaproteobacteria in the order
Burkholderiales and were chosen as non-photosynthetic Calvin
cycle harboring bacteria32–35. All four strains are potential
starting points for developing microbes to convert carbon dioxide
into chemicals. LiP-SMap revealed species-specific interaction
patterns for several tested metabolites, such as glyceraldehyde-3-
phosphate (GAP), glucose-6-phosphate (G6P) and glyoxylate,
which indicates that enzyme regulation by these metabolites may
differ between autotrophic organisms. Complementary in vitro
assays showed that GAP increases the catalytic activity of the
enzyme fructose-1,6/sedoheptuolse 1,7-bisphosphatase (F/
SBPase) in both Synechocystis and Cupriavidus necator F/SBPase
in reducing conditions, suggesting a conserved feed-forward
activation mechanism in the Calvin cycle. In contrast, G6P sti-
mulated F/SBPase from Cupriavidus but not F/SBPase from
Synechocystis.

Results
Assessment of LiP-SMap method and data. The LiP-SMap
protocol developed by Piazza et al. and previously applied to E.
coli was applied to four autotrophic bacteria here, with some
modifications (Fig. 1)5. Cells were grown photoautotrophically
(Synechocystis and Synechococcus), on H2 and CO2 (Hydro-
genophaga) or on formate (Cupriavidus) to ensure expression of
the Calvin cycle enzymes. Cultures were harvested during stable
exponential growth and lysed. The proteomes from cell lysates
were extracted and filtered to remove endogenous metabolites,
which reduced metabolite amounts by >90% and resuspended in
a buffer containing 1 mM MgCl2. The treatment metabolite was
added to four aliquots of the proteome extract, and buffer was
added to another four aliquots, which served as negative controls.
Proteome extracts were then digested partially by proteinase K,
followed by tryptic digestion with a mixture of the endopeptidases
trypsin and LysC. Peptides were subsequently quantified using
liquid chromatography-mass spectrometry. Proteins with at least
one significantly altered peptide were assigned as metabolite-
interacting proteins.

To assess the capability of LiP-SMap to detect changes in
protein structure, we first tested the effect of reducing and
oxidizing agents on Synechocystis cell extracts, using added
dithiothreitol (DTT) and 5,5′-dithiobis-2-nitrobenzoic acid
(DTNB), respectively. The addition of DTT to 1 mM resulted
in altered peptides in 66 proteins, while the addition of DTNB to
50 µM altered peptides from 244 proteins, including known
redox-sensitive enzymes phosphoribulokinase, F/SBPase, and
Rubisco (Supplementary Fig. S1, Supplementary Data S1). A
recent study identified 611 redox-sensitive proteins in
Synechocystis36, and 84% of the DTNB-affected proteins and
25% of the DTT-affected proteins were in this group. Since
Synechocystis proteome extracts were sensitive to both DTT and
DTNB, the proteins may be partially oxidized in the cell at the
time of harvesting. However, peptide oxidation can occur at many
steps throughout the proteomics workflow37, which complicates
estimates of the extent of reduction during a given cultivation
condition.

Between 8000 and 15,000 peptides were detected in each LiP-
SMap experiment, resulting in 5 peptides detected per protein on
average (Supplementary Fig. S2, Supplementary Data S2–S5).
Maximum protein counts were 1896 for Synechocystis, 1682 for
Synechococcus, 2032 for Cupriavidus, and 1752 for Hydrogeno-
phaga. The peptide coverage of Calvin cycle enzymes was
generally high, averaging 14 peptides per enzyme (minimum 4,
maximum 37), with a sequence coverage of approximately 50%
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(Fig. 1). As expected, higher peptide coverage was observed from
metabolite-interacting proteins than from non-interacting pro-
teins (Supplementary Fig. S3). To gauge the technical reprodu-
cibility of LiP-SMap, we compared the results from two
consecutive LiP-SMap experiments on the same Synechococcus
lysate treated with 10 mM glyoxylate, a metabolite that affected a
moderate number of peptides. Out of 155 peptides significantly
affected (q < 0.01) in at least one experiment, 48 were mutual
(31%). A 35–65% overlap of significant peptides among replicates
has been reported previously for MS-based proteomics38. While
the overlap in significant peptides was moderate, the log2FC of
peptides was correlated across the two glyoxylate treatments, with
r= 0.88 for significant peptides using a q < 0.01 cutoff, r= 0.71
for peptides using a q < 0.05 cutoff, and r= 0.49 for all peptides
(Supplementary Fig. S4). To summarize, many peptides are
affected similarly in independent metabolite treatments, but high
variances in LiP-SMap data can result in their exclusion from
overlap calculations.

Interactions of metabolites with Calvin cycle and surrounding
enzymes. A panel of metabolites was screened for interactions
with proteome extracts from Synechocystis, Synechococcus,
Cupriavidus, and Hydrogenophaga. These bacteria use the Calvin
cycle to fix CO2 but differ in terms of phylogeny, energy source,

glycolytic pathways, and natural habitat. Metabolites were chosen
based on their potential to act as a regulatory signal, such as
metabolites located at end-points or branch-points of metabolic
pathways or as representatives of energy and redox status. For
each metabolite, we tested two concentrations, typically 1 mM
and 10 mM (Supplementary Tables S1 and S2). The high meta-
bolite concentrations were intended to mimic spikes that occur
during environmental shifts and perturbations, which may
require rapid regulation of enzyme activity39–42. There were more
detected interactions at the high concentrations than at the low
concentrations. Typically, >90% of interactions from the low-
concentration treatment were also observed in the high-
concentration treatment (Supplementary Fig. S5). The log2FC
and significance scores for all detected peptides for each tested
metabolite and bacterial strain are provided in Supplementary
Data S2–S5.

To compare metabolite-protein interactions between species,
we extracted a list of all proteins affected by any metabolite and
grouped them according to strain and KEGG orthology groups
(KOGs) (Supplementary Fig. S6, Supplementary Data S6).
Principal component analysis (PCA) was used to cluster and
compare metabolite-KOG interaction patterns between the
species. Differences in interaction partners between species were
observed at the high metabolite concentrations, as evidenced by

Fig. 1 Lip-SMap on extracted proteomes of photosynthetic and chemoautotrophic bacteria. a Workflow of Lip-SMap based on Piazza et al.5. Blue ticks
represent digestion by trypsin/LysC, and red ticks represent digestion by proteinase K. Peptides cut by proteinase K are not detected, and differences in
such digestion cause differentially abundant peptides. b Peptide coverage of Calvin cycle enzymes. LiP-SMap-detected peptides from Calvin cycle enzymes
of Synechocystis and Cupriavidus are colored in light gray. Regions of proteins with no peptide coverage are colored in dark gray. Significantly altered
peptides when extracts were treated with GAP and acetyl-CoA are colored in red or blue, respectively. Peptides that are significantly altered for both
metabolites are colored in purple. For high-concentration tests, 5 mM GAP or 10 mM acetyl-CoA was added. For low-concentration tests, 0.5 mM GAP or
1 mM acetyl-CoA was added.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05318-8 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:947 | https://doi.org/10.1038/s42003-023-05318-8 |www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


separation among species on PCA plots for each metabolite
(Fig. 2). For example, in the case of glyceraldehyde-3-phosphate
(GAP) and acetyl-CoA, metabolites with more than 200 KOG
interactions in all four species, interactions in the photoauto-
trophs clustered apart from those in the chemoautotrophs.
Glucose-6-phosphate (G6P), an entry metabolite of the pentose
phosphate and the Entner-Doudoroff (ED) pathway, showed a
high number of interactions in Cupriavidus that clustered apart
from those in other species. In contrast, some metabolite-KOG
interactions were similar in all species, such as metabolites in
lower glycolysis and the tricarboxylic acid cycle. As fewer
interactions were detected at the low metabolite concentrations,
there was a weaker separation of the species in the PCA analysis
(Supplementary Fig. S7).

Interactions with acetyl-CoA, ATP, citrate, GTP, and NADPH
were widespread in all four microbes. These metabolites have
Mg2+ chelating properties43,44 and may sequester Mg2+ from
proteins in extracts. Indeed, the number of ATP interactions in
Synechocystis proteome extracts was reduced when Mg2+ in the
LiP-SMap buffer was increased from 1mM to 3 mM, indicating
that Mg2+ chelation is a main contributor to the extensive
interactions of ATP (Supplementary Fig. S8, Supplementary
Data S7). Recent studies showed that citrate, as well as other
metabolites of the TCA cycle, inhibit several enzymes of the
pentose phosphate pathway and Calvin cycle in
Synechocystis24,25,45. Comparison of LiP-SMap data showed

moderate overlap with these reported enzyme regulations. For
example, of four reported inhibitors of glucose-6-phosphate
dehydrogenase, two were also LiP-SMap hits (citrate and
NADPH), and of two reported inhibitors of
6-phosphogluconate dehydrogenase, one was a LiP-SMap hit
(citrate). In contrast, L-phenylalanine is an example metabolite
that showed few but specific interactions. In Synechocystis, only
three proteins interacted with L-phenylalanine (q < 0.05): two
subunits of phenylalanine-tRNA ligase (PheTS) and acetolactate
synthase (IlvH, sll0065). The enzyme 3-deoxy-D-arabino-heptu-
losonate-7-phosphate-synthase (DAHPS), a key step of the
shikimate pathway that is known to be allosterically inhibited
by aromatic amino acids, had an interaction with L-phenylalanine
near the significance cutoff (sll0934, q= 0.07)46,47. This short list
of interactors shows the potential accuracy of LiP-SMap, even
though interactors may be missed due to low peptide coverage.

Next, we examined interactions of metabolites with enzymes in
the Calvin cycle and pathways that siphon carbon out of the cycle
among the four bacteria (Fig. 3, Supplementary Fig. S9). Calvin
cycle enzymes in these bacteria are phylogenetically diverse,
though the cyanobacteria enzymes are more closely related to
each other than to the chemoautotroph orthologs (Supplementary
Data S8). As previously reported for E. coli, LiP-SMap revealed
many more interactions than previously known. Some metabo-
lites interacted more with the Calvin cycle enzymes of certain
species. For instance, the photorespiratory intermediate

Fig. 2 Similarity of ortholog interaction patterns, high added metabolite concentration. Principal components were calculated from the presence or
absence of interaction with each of 477 orthologs (“Methods”). All data points shown here are from the same principal component analysis but split per
organism (a) or metabolite (b) to reduce overplotting. Percentages indicate the fraction of the total variance captured by the principal components.
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glyoxylate showed extensive interactions in Synechocystis, even at
low concentrations (Supplementary Fig. S9). Calvin cycle
enzymes from Cupriavidus were particularly sensitive to inter-
mediates of the pentose phosphate and ED pathways. In
summary, while there were some interactions observed in all
species, primarily acetyl-CoA, ATP and GAP, most metabolites
showed species-specific interactions with Calvin cycle enzymes.
The overlap between Synechocystis and Synechococcus was only
modest, despite the high homology among their enzyme
sequences.

Validation of metabolite interactions and effect on enzyme
activity. An interaction detected by LiP-SMap in a proteome
extract does not necessarily mean that the metabolite interacts
directly with the protein or that protein function is affected. To
test if metabolite-enzyme interactions identified by LiP-SMap
tended to affect the catalytic activity of enzymes, we purified F/
SBPase and transketolase from Synechocystis and Cupriavidus and
assayed the enzymes in vitro in the presence of selected meta-
bolites that showed LiP-SMap interactions. F/SBPase catalyzes
two irreversible steps in the bacterial Calvin cycle and was shown
to have a significant effect on the rate of CO2 fixation in cya-
nobacteria in some conditions17,48–51. The F/SBPase reactions are

far from equilibrium, and such enzymes are more likely to be
post-translationally regulated52. While the transketolase step of
the Calvin cycle operates reversibly and close to equilibrium42,
some studies have predicted that transketolase activity could also
have significant control over CO2 fixation as well as flux out of
the cycle53.

Synechocystis F/SBPase (syn-F/SBPase) and Cupriavidus F/
SBPase (cn-F/SBPase) activity on the substrate fructose-1,6-
bisphosphate was screened using Malachite Green (MG) detec-
tion of released Pi. Enzyme thermal stability was also assessed
(Table 1, Supplementary Table S3). The addition of GAP, which
showed interaction with the F/SBPase from all four microbes in
the LiP-SMap data, stimulated both syn-F/SBPase and cn-F/
SBPase activity by 50–70% (Fig. 4). This stimulation was only
observed at low substrate concentrations, indicating that GAP
reduces enzyme KM. In contrast, the GAP isomer dihydroxya-
cetone phosphate did not have an effect on enzyme activity
(Supplementary Fig. S10). GAP also caused a small thermal shift
of both syn-F/SBPase and cn-F/SBPase (Supplementary Fig. S11),
suggesting that LiP-SMap and enzyme kinetics effects are due
to a conformational change mediated by GAP. The addition
of NADPH inhibited enzyme activity of both syn-F/SBPase
and cn-F/SBPase, though an effect on Tm was only observed for

Fig. 3 Interactions of Calvin cycle enzymes and selected central carbon metabolism enzymes with metabolites, high added metabolite concentration.
Interactions between metabolites (columns) at high concentration and enzymes (rows) identified by E.C. number are shown for each organism by tiles
filled with the corresponding color. A blank tile indicates that the interaction was not detected while missing protein data is indicated by a symbol. A cross
indicates that the particular metabolite was not tested, a circle indicates that the protein was not detected, and a square indicates that there was no such
enzyme in the corresponding genome. See Supplementary Fig. S9 for a plot of interactions with added metabolite at low concentrations.
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cn-F/SBPase (Supplementary Figs. S12 and 13). The similar
kinetic effects of NADPH and GAP on both F/SBPase enzymes
suggest evolutionary convergence, as syn-F/SBPase (class II) and
cn-F/SBPase (class I) have a similar monomeric fold but little
sequence similarity54,55. In contrast to GAP and NADPH, which
affected both enzymes, G6P stimulated the cn-F/SBPase up to
100% but had no effect on the syn-F/SBPase (Supplementary
Fig. S14). The strong effect of G6P effect on the cn-F/SBPase is in
agreement with LiP-SMap data, where G6P showed interaction
with cn-F/SBPase at both high and low concentrations. The
addition of AMP, a known allosteric effector of syn-F/SBPase,
completely abolished the activity of the syn-F/SBPase but had a
weaker effect on cn-F/SBPase.

We also compared interactions detected from LiP-SMap on
proteome extracts to LiP-SMap on purified protein, using
recombinant syn-F/SBPase. For the purified syn-F/SBPase, we
detected approximately 40 peptides and protein coverage was
>90%. The addition of GAP and NADPH resulted in 4 and 6
significantly altered peptides (q < 0.05), respectively, more than
were found in the proteome extract LiP-Smap (2 for GAP and 3
for NADPH). Altered peptides from the purified enzyme included
those altered in the proteome extract LiP-SMap. This agreement
indicates that LiP-SMap hits for these metabolites in proteome
extracts were not due to the enzymatic conversion of the
metabolite by endogenous enzymes (Supplementary Fig. S15).

The syn-F/SBPase is redox regulated, which manifests in vitro
as a stimulation of enzyme activity and a change in oligomeric
state when the reducing agent DTT is added55. Since GAP was
the only metabolite tested that stimulated syn-F/SBPase activity,
we were interested in probing whether a reducing environment
and GAP stimulation were synergistic. In contrast to the
stimulating effect in reducing conditions, the addition of GAP
reduced syn-F/SBPase activity in the absence of DTT (Supple-
mentary Fig. S16). In the nanoDSF datasets used to calculate
melting temperature, we noticed a peak shoulder representing a
secondary syn-F/SBPase population when DTT was omitted from
the buffer (Supplementary Fig. S16). This population disappeared
with increasing DTT, and visible fractions of this shoulder
correlated with a strong decrease in activity. suggesting that it
may represent the non-active dimeric state of syn-F/SBPase
reported previously55. Moreover, the fraction of this shoulder in
the absence of DTT increased when pre-incubating the sample at
30° C for different durations, which may either indicate
aggregation or the dissociation of the active enzyme tetramer

into the inactive state over time. The addition of GAP during pre-
incubation increased the abundance of the peak shoulder.
Considering that GAP contains a reactive aldehyde group and
showed interactions with many proteins in Lip-SMap, an
unspecific effect, such as inducing protein aggregation in
oxidative conditions, appears plausible, explaining why GAP
reduces enzyme activity in the absence of DTT. The addition of
GAP in the presence of DTT did not cause a peak shift in the light
scattering data, indicating that the stimulating effect of GAP in
the presence of DTT likely operates by a different, more specific
mechanism. To exclude the possibility that GAP affected the
enzyme assays by interacting with Malachite Green or other
components, we also measured the enzyme reaction product
fructose-6-phosphate from some syn-F/SBPase reactions via LC-
MS. The observed trends, namely GAP stimulation with DTT and
inhibition in the absence of DTT, were similar to those observed
in the Malachite Green assays, though variation among replicates
resulted in nonsignificant differences for GAP activation
(Supplementary Fig. S17).

The transketolases from Synechocystis and Cupriavidus (syn-
TKT and cn-TKT) were also purified and screened for enzyme
activity in vitro in the presence of metabolites that showed a LiP-
SMap interaction in any of the four species. The most prominent
effects on transketolase kinetics were observed from added AMP
and dihydroxyacetone phosphate, which specifically reduced the
activity of syn-TKT and cn-TKT, respectively (Supplementary
Figs. S18–20). While ATP and ADP inhibition of transketolases
has been reported56, inhibition by AMP has not. Fewer than half
of the TKT-interacting metabolites detected by LiP-SMap altered
TKT catalytic activity in vitro (5/13 for syn-TKT and 3/10 for cn-
TKT), and only a few affected kinetic parameters by more than
20% or significantly affected melting temperature in thermal shift
assays (Supplementary Table S4, Supplementary Data S9).

A benefit of LiP-SMap is that it provides peptide-level
information on where metabolites interact with a protein. For
syn-FBPase, both GAP and NADPH affected peptides originating
from near the active site, a region distinct from the known AMP
allosteric site (Fig. 5). To confirm that GAP and NADPH
regulation was separate from AMP regulation, we created a single
amino acid exchange variant (R194H) of a residue located in a β-
sheet that connects the substrate-binding site to the AMP-binding
site. This mutant lost AMP sensitivity but retained sensitivity to
both GAP activation and NADPH inhibition (Supplementary
Fig. S21).

Table 1 Effect of LiP-SMap metabolites on F/SBPase activity and thermal stability in vitro.

Effector (mM) LiP-SMap interaction Kinetics change Tm change

syn-F/SBPase
Acetyl-CoA (2) Yes Not significant Not significant
AMP (0.25) Noa Inhibit Increase
Citrate (5) Yes Inhibit Decrease
GAP, +DTT (0.5) Not tested Stimulate Increase
GAP, −DTT (0.5) Yes Inhibit Not significant
NADPH (3) Yes Inhibit Not significant
G6P (2) No Not significant Not tested

cn-F/SBPase
AMP (0.25) No Inhibit Increase
GAP, +DTT (0.5) Not tested Stimulate Not significant
GAP, −DTT (0.5) Yes Not tested Not significant
NADPH (3) Yes Inhibit Increase
G6P (2) Yes Stimulate Not significant

Changes in kinetic parameters were determined by enzyme kinetic assays. The kinetic effect of a metabolite was considered significant for p > 0.05 (comparing kinetic parameters) and a maximum
change in rate >20%. Changes in melting temperature (Tm) of more than 2 °C were considered significant.
aInteraction with AMP q= 0.056.
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Predicted effects of enzyme-metabolite interactions on flux
control in Synechocystis. We next evaluated the effects of the
regulatory interactions of GAP and NADPH on F/SBPase on flux
control in the Calvin cycle and metabolic stability, using in silico
ensemble modeling17 (Fig. 6). Two Calvin cycle models were
considered, a Base model with no F/SBPase regulations, and an F/
SBPase model, which was the same as the Base model but with
NADPH inhibition and GAP activation added to the F/SBPase
rate equation. For each model variant, a large set of possible
metabolic states was generated from randomly sampled meta-
bolite concentrations and enzyme kinetic parameters (Vmax, KM,
Ki, Ka), each satisfying the same steady-state flux distribution.
The two resulting model ensembles (~3 million models each)
were then assessed for system stability, which refers to the ability
of the system to dynamically return to its metabolic state upon an
infinitesimal small perturbation of the metabolite concentrations.
The addition of regulation on F/SBPase did not alter stability

significantly, with a median stability over all parameter sets of
91% and 89% for the Base and F/SBPase models, respectively.
Furthermore, the added F/SBPase regulation did not significantly
alter the metabolite concentrations at which the system tends to
be more or less robust.

The fully parameterized ensemble of kinetic models enables the
quantification of flux control using metabolic control analysis,
resulting in flux control coefficients for each reaction. In the Base
model, the reactions supplying ATP and NADPH (e.g., light
reactions in photosynthetic microbes) and supply of phosphate
had positive FCCs over many other reactions, emphasizing their
importance in autotrophic metabolism (Supplementary Figs. S22
and 23 for all FCCs). While Rubisco showed positive flux control
only over reactions downstream of the Calvin cycle, F/SBPase,
phosphoglycerate kinase, glyceraldehyde phosphate dehydrogen-
ase and phosphoribulokinase had flux control over many cycle
reactions. The F/SBPase model variant generated FCCs are

Fig. 4 Effect of selected LiP metabolites on the activity of F/SBPase from Synechocystis and Cupriavidus. a Overview of bacterial Calvin cycle with
reactions catalyzed by F/SBPase colored in yellow. b Initial rates of syn-F/SBPase and cn-F/SBPase were measured at different substrate concentrations in
the presence of selected metabolites (yellow) or absence of added metabolites (green and purple for syn-F/SBPase and cn-F/SBPase, respectively). Lines
represent data fit to the Hill rate equation. The concentration of added metabolite is indicated in parenthesis. See Supplementary Table S3 for kinetic data
in the presence of additional metabolites.
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similar to the Base model but with some distinctions. Most
prominently, the flux control exerted by F/SBPase over other
reactions increased, signifying higher sensitivity of these reactions
to F/SBPase reaction flux. The added regulations amplify the role
of F/SBPase role in controlling CO2 fixation, as other reactions
have reduced flux control coefficients. Flux control exerted by
ATP and NADPH supply was also reduced in the F/SBPase
model, rendering the system with added regulation less sensitive
and thereby more stable toward potential perturbations in ATP
and NADPH supply. The changes in control coefficients in the F/
SBPase model are a result of both the direct effects of GAP and
NADPH on F/SBPase, as well as the response of the whole system
and the interactions between all participating entities.

Discussion
The chemoproteomic workflow LiP-SMap was applied to reveal
metabolite-level regulation of enzymes within the Calvin cycle
and central carbon metabolism in four autotrophic bacteria. We
found that some tested metabolites interacted extensively in all

organisms, such as ATP, GTP, GAP, acetyl-CoA and citrate. The
extent of interactions at low added metabolite concentrations
(0.5–1 mM) was significantly less than at high concentrations
(5–10 mM). Metabolite control of enzyme activity is therefore
more likely when metabolite levels spike, such as during envir-
onmental shifts or if synthetic metabolic pathways are installed57.
In general, the LiP-SMap technique detects many interactions
that alter proteinase K access but do not significantly alter protein
conformation, as fewer than half of the LiP interacting metabo-
lites for F/SPBase and transketolase showed an effect on thermal
stability or enzyme activity.

Among the validated interactor metabolites was the Calvin
cycle intermediate GAP, which interacted with many proteins in
all four species. Clustering analysis showed that a subset of GAP
interactions in the photoautotrophs were different compared to
those in the chemoautotrophs. GAP intersects several central
metabolic pathways in bacteria58, and different utilization of these
pathways between species may require specific regulation by
GAP. The feed-forward activation of F/SBPase by GAP revealed
here could work to prevent excessive GAP accumulation and

Fig. 5 Structure of Synechocystis F/SBPase showing peptide coverage and affected peptides from LiP-SMap. a Structure of F/SBPase as a homotetramer
from Protein Databank reference 3RPL55. The substrate fructose-1,6-bisphosphate is shown in blue sticks and active site Mg2+ ions as red spheres. The
allosteric inhibitor AMP binds at the central interface of the tetramer and is shown as yellow sticks. b Monomer of F/SBPase colored according to different
structural elements, showing interaction with fructose-1,6-bisphosphate and AMP molecules. c Uppler left panel shows a monomer of F/SBPase with
peptides detected by LC-MS as colored ribbons. Peptides that were not detected are gray ribbons. Right panels outline which peptides were affected by the
indicated metabolite.
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increase Calvin cycle flux in response to up-shifts in energy or
CO2 levels in the growth environment. Feed-forward regulation
in central metabolism is known in glycolysis and gluconeogenesis,
as pyruvate kinase in eukaryotes and bacteria is stimulated by the
glycolysis intermediate fructose bisphosphate59,60 and the type I
FBPase in E. coli is stimulated by the gluconeogenesis substrate
phosphoenolpyruvate2,61. In photosynthetic microbes, intracel-
lular levels of GAP, DHAP, fructose bisphosphate and sedo-
heptulose bisphosphate oscillate with light40–42,62,63. In the
absence of DTT, GAP inhibits Synechocystis F/SBPase in a
mechanism that involves aggregation into an inactive state. In the
cellular context, this inactivation, in addition to disulfide for-
mation and AMP inhibition, could work to prevent a futile cycle
forming between phosphofructokinase and F/SBPase, though
phosphofructokinase flux in the dark in Synechocystis is likely
minimal63,64.

Rapid post-translational regulation of glycogen metabolism
appears to be an important feature of photoautotrophic
metabolism65,66. ADP-glucose pyrophosphorylase, which cata-
lyzes the first committed step in starch synthesis, interacted with
more metabolites in Synechocystis (7 metabolites) and Synecho-
coccus (7) compared to the chemoautotrophs Cupriavidus (1) and
Hydrogenophaga (5). As Cupriavidus lacks ADP-glucose pyr-
ophosphorylase, UDP-glucose pyrophosphorylase was
compared67. The photorespiration metabolite glyoxylate inter-
acted with ADP-glucose pyrophosphorylase and phosphogluco-
mutase in both cyanobacteria strains, which suggests that elevated
levels of glyoxylate in response to inorganic carbon limitation
may participate in the associated activation of glycogen
degradation68,69, though we did not test this. Phosphoglycolate,
also a photorespiratory metabolite, may serve as a general carbon
status indicator in cyanobacteria and trigger transcriptional
expression of carbon uptake70. In Synechocystis, phosphoglycolate
interacted with multiple ribosomal subunits, as well as hiberna-
tion and elongation factors, suggesting a direct effect on protein
translation. Other interactions were among enzymes in nucleic
acid synthesis (PyrE, PyrH, Slr1616 and Slr1619), a phosphate
transporter (PtsS), and ATPase subunits AtpA and AtpB. In
Arabidopsis, phosphoglycolate negatively affected the activities of
the Calvin cycle enzymes SBPase and triosephosphate
isomerase71. SBPase is not present in bacteria, and triosepho-
sphate isomerase was not among the affected proteins in our

study. However, phosphoglycolate did interact with Calvin cycle
enzymes transaldolase and fructose bisphosphate aldolase.

The enrichment of interactions of G6P and 2-dehydro-3-
deoxy-D-gluconate-6-phosphate with Cupriavidus proteins may
be related to the preferred usage of the ED pathway for sugar
catabolism in this microbe72, as these ED intermediates may
signal sugar availability. In Cupriavidus, the Calvin cycle operates
simultaneously and parallel to the ED pathway; G6P derived from
glucose does not enter the cycle27,28. Stimulation of cn-F/SBPase
by G6P could accelerate re-assimilation of CO2 emitted during
glycolysis. In E. coli, where EMP glycolysis and gluconeogenesis
cannot operate simultaneously due to overlap, the FBPase was
found to be inhibited by G6P, a regulation that effectively turns
off gluconeogenesis during growth on glucose73. In Synechocystis,
G6P derived from glucose enters the Calvin cycle instead via
phosphoglucose isomerase, and fluxes through EMP or ED gly-
colysis pathways are small74. In this case, regulation of syn-F/
SBPase activity by G6P may not be beneficial for cell fitness.

Interactions detected by LiP-SMap are not always direct but
can arise from secondary effects of metabolite addition, such as
Mg2+ chelation. Metabolite chelation of Mg2+ ions likely explains
the high number of interactions observed for ATP, GTP, and
citrate. The extensive interactions detected for GAP could be due
to its reactivity as an aldehyde75 or via spontaneous degradation
into methylglyoxal, which reacts with lysine, arginine, and
cysteine residues on proteins76,77. Even though such secondary
effects can be confounding, they may still be relevant for meta-
bolism in vivo. For example, excessive accumulation of citrate and
ATP, which could occur during nitrogen depletion, may inacti-
vate ribosomes and anabolic processes that depend on Mg2+,
which is particularly relevant for enzymes of photosynthesis78,79.

Previously, inference of allosteric or metabolite-level regulation
in microbial metabolism has been done through analysis of time-
resolved metabolite and proteomics datasets2,39, fitting of multi-
omics steady-state data25,80, or through coelution of proteins and
metabolites from a chromatography column81,82. By quantifying
individual peptides, the LiP-SMap method can provide insight
into which area of the protein is affected by a metabolite, which
provides an extra level of information compared to inference
methods. However, the method is also limited by the somewhat
sporadic nature of peptide detection from complex mixtures by
MS; even replicate tests performed in parallel do not fully overlap

Fig. 6 Addition of regulation on F/SBPase activity alters flux control in the Synechocystis Calvin cycle. a Schematic overview of the modeled
Synechocystis metabolic network showing all included biochemical regulations. Interactions identified from LiP-SMap and verified as modulating F/SBPase
are in bold. Red text indicates inhibition of activity, and green text indicates stimulation of activity. AMP inhibition was omitted from the model. b Median
flux control coefficients and median absolute deviation (MAD) over the entire model ensembles for both model variants. The Base model variant included
no added regulation to F/SBPase, and the F/SBPase model variant included GAP and NADPH regulation.
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with respect to which peptides are detected38. As a result, even
some known metabolite regulators will not be detected by LiP-
SMap. The high variability in peptide coverage and in peptide
quantification likely contributes to the low overlap in significant
interactions among central carbon enzymes of Synechocystis and
Synechococcus, even though these enzymes have high sequence
homology. While PCA analysis of all interactions showed the
cyanobacteria clustered together for some metabolites, the species
discrimination axis had a weight of only 6%. Therefore, LiP-SMap
may work best in tandem with other interaction-proteomics
techniques, such as thermal proteome profiling, which relies on
the quantification of proteins, not individual peptides83. LiP-
SMap would benefit from a more accurate peptide quantification
and a wider peptide coverage for improved specificity and sen-
sitivity, respectively.

Methods
Cultivations and harvest. Cupriavidus necator strain DSMZ 428
was grown in Ralstonia Minimal Media (RMM) with 100 mM
HEPES pH 7.5 under chemostat conditions in a Photon Systems
Instruments Multi-Cultivator MC-1000 OD. Each reactor tube
was set up to a volume of 55 mL, OD600 0.05 and 3.5 g/L fructose.
Once growth ceased, an inlet feed of 0.01–0.05 mL/min of 8 g/L
formic acid in RMM with 100 mM HEPES pH 7.5 was initiated.
Cultivations were kept running until a stable OD600 had been
observed for at least 5 doubling times.

Hydrogenophaga pseudoflava strain DSMZ 1084 was grown at
30 °C and 200 RPM in sealed flasks of ~135 mL containing
~25 mL DSMZ media 133 and ~110 mL of gas (70% H2, 15% CO2

and 15% O2) at 1 bar overpressure. Cultivations were started from
overnight pre-cultures grown on 1.5 g/L acetate and harvested
during exponential growth at OD600 ~ 1.0.

Synechocystis sp. PCC 6803 (gift from Klaas Hellingwerf,
University Amsterdam) and Synechococcus elongatus PCC 7942
(from Pasteur Culture Collection, France) were grown in BG-11
media at 1% CO2 and a light intensity of ~70 µmol/s·m2 in
500 mL flasks containing 100 mL liquid until an OD730 of ~1.0.

For each microbe, four biological replicate cultivations were
performed, and immediately before harvest, the replicates were
pooled. Cells were harvested by centrifugation and washed three
times with cold lysis buffer before being resuspended in a small
amount of lysis buffer, snap-frozen in liquid nitrogen, and stored
as aliquots at −80 °C. The cyanobacteria were exposed to light at
~400 µmol·s−1·m−2 for 5 min prior to snap-freezing in liquid N2.

Proteome extraction. Frozen aliquots were thawed on ice and
lysed mechanically through bead beating by a FastPrep-24 5G
lysis machine over six cycles of 45 s at 6.5 m/s with 30 s on ice
between cycles. The lysate was spun down, and the supernatant
was run through a Zeba Spin Desalting Column (size exclusion
chromatography). Protein concentration in the desalted lysate
was evaluated using a Bradford assay. The samples were kept at
4 °C throughout the procedure.

Limited proteolysis. For every experiment, three sample groups
were created, one with no added metabolite and two with dif-
ferent concentrations of metabolite specified in Supplementary
Table S1. Each sample group was prepared as four technical
replicates with 1 µg/µL extracted protein. For limited proteolysis
on purified syn-F/SBPase, the purified enzyme was reconstituted
to a final concentration of 0.1 µg/uL in lysis buffer. Proteinase K
was simultaneously added to all samples at a 1:100 protease to
protein ratio and incubated at 25 °C for exactly 10 min before
immediate denaturation. All sample groups originated from the

same cell extract, were treated in parallel with the same reagent
aliquots and run on the LC-MS on the same plate.

Complete digestion. The protein mix was incubated at 96 °C for
3 min prior to treatment with 5% sodium deoxycholate and
10 mM DTT and another 10 min at 96 °C after. The samples were
then alkylated by 10 mM iodoacetamide at RT for 30 min in the
dark, after which proteases LysC and trypsin were applied at a
1:100 protease to protein ratio and incubated at 37 °C and 400
RPM in a thermocycler for 3 and 16 h, respectively. Digestion was
halted by the addition of formic acid to reduce pH below 2, which
caused sodium deoxycholate to precipitate. Samples were then
centrifuged at 14,000 × g for 10 min, after which the supernatant
was removed and stored at −20 °C.

Peptide purification. Pipette tips packed with six layers of C18
matrix discs (20–200 µL; Empore SPE Discs) were activated with
acetonitrile and equilibrated with 0.1% formic acid prior to being
loaded with thawed peptide mixes. The matrix was then washed
twice with one loading volume of 0.1% formic acid before being
eluted with a mixture of 4:1 ratio of acetonitrile to 0.1% formic
acid. The eluate was stored at −20 °C until analysis by LC-MS.

LC-MS analysis. Analysis was performed on a Q-exactive HF
Hybrid Quadrupole-Orbitrap Mass Spectrometer coupled with an
UltiMate 3000 RSLCnano System with an EASY-Spray ion
source. In this, 2 μL of each sample was loaded onto a C18
Acclaim PepMap 100 trap column (75 μm× 2 cm, 3 μm, 100 Å)
with a flow rate of 7 μL per min, using 3% acetonitrile, 0.1%
formic acid and 96.9% water as solvent. The samples were then
separated on ES802 EASY-Spray PepMap RSLC C18 Column
(75 μm× 25 cm, 2 μm, 100 Å) with a flow rate of 3.6 μL per
minute for 40 min using a linear gradient from 1% to 32% with
95% acetonitrile, 0.1% formic acid and 4.9% water as secondary
solvent.

For proteome samples, MS analysis was performed using one
full scan (resolution 30,000 at 200 m/z, mass range 300–1200 m/z)
followed by 30 MS2 DIA scans (resolution 30,000 at 200 m/z,
mass range 350–1000 m/z) with an isolation window of 10 m/z.
The maximum injection times for the MS1 and MS2 were 105 ms
and 55ms, respectively, and the automatic gain control was set to
3·106 and 1·106, respectively. For purified protein samples, the full
scan (resolution 60,000 at 200 m/z, mass range 300–1200 m/z)
was followed by 10 MS2 DDA scans for the 10 most abundant
peptides (resolution 60,000 at 200 m/z with an isolation window
of 2 m/z). For MS1, the maximum injection time was set to
205 ms and the automatic gain control to 1·106. For MS2, the
settings were 105 ms and 2·105, respectively. Precursor ion
fragmentation was performed with high-energy collision-induced
dissociation at an NCE of 26 for all samples.

Prosit intensity prediction model “Prosit_2020_intensity_hcd”
was used to generate a predicted peptide library from a FASTA
file of UniProt proteome sets (Cupriavidus necator:
UP000008210, Synechocystis sp. PCC 6803: UP000001425,
Synechococcus elongatus sp. PCC 7942: UP000002717, Hydro-
genophaga pseudoflava: UP000293912). The data was then
searched using the EncyclopeDIA version 1.2.2 search engine.
Spectra for purified proteins were deconvoluted using MaxQuant
v. 2.0.3.0, using Oxidation (M) and Acetyl (Protein N-term) as
variable modifications and Carbamidomethyl (C) as a fixed
modification. A maximum of two missed cleavages were allowed,
and the false discovery rate was set to 1%.

Data analysis. Peptides detected in at least three replicates in
every sample group were tested for differential peptide abundance
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using the MSstats package (version 4.4.1) in R (version 4.3.1.). For
every peptide in each metabolite concentration comparison
MSstats estimated fold changes and p-values adjusted for multiple
hypothesis testing (Benjamini-Hochberg method) with a sig-
nificance threshold of 0.01. A protein was considered to interact
with a metabolite supplied at low or high concentration if at least
one peptide showed significant change.

Ortholog annotations. In order to compare metabolite-protein
interaction patterns between organisms, it was necessary to
determine orthologous genes. Ortholog labels from the eggNOG
database were downloaded from UniProt (https://www.uniprot.
org/) on 14 June 2021 for each protein in the four organisms.
Version 5.0 of eggNOG was used except for proteins Q31NB2
(ENOG4108VFZ), Q31RK3 (ENOG4105KVS), and Q31RK2
(ENOG4105HKE) in Synechococcus, which were annotated with
eggNOG version 4.1. Only the 481 orthologs found in all
organisms were considered. The number of interacting proteins
was counted for each ortholog and metabolite concentration in
each organism. Furthermore, ortholog counts were summarized
into the 20 functional categories, each represented by a single
letter, e.g., “A” for “RNA processing and modification.”

Principal component analysis of interactions with orthologs. The
metabolite-protein interaction patterns of orthologs were com-
pared between metabolites and organisms using R. The interac-
tion per ortholog was first classified binarily so that the
interaction was 1 (one) if there was at least one interaction for the
ortholog in a particular combination of organism, metabolite, and
concentration. Otherwise, the interaction was classified as 0
(zero). Orthologs without interactions were filtered out. A matrix
with rows representing organism and metabolite, and columns
containing the binary interaction classification of each ortholog,
was subjected to principal component analysis (PCA; function
prcomp). The first two principal components were then plotted in
order to visualize how similar different organisms and metabo-
lites were in terms of interaction with the full set of orthologous
genes. The PCA was performed separately for low and high
metabolite concentrations.

Clustered heatmap of interactions with orthologs. The metabolite-
protein interaction patterns of orthologs, summarized per
ortholog functional category, were further inspected through
visualization with a heatmap with clustered rows and columns.
The ortholog interaction counts were normalized to indicate the
fraction of interacting orthologs within each combination of
functional category, organism, metabolite, and concentration.
These fractions were then used to calculate Euclidean distance
(function vegdist from library vegan) followed by clustering
(ward.D2 method in function hclust), which determined the order
of functional categories (heatmap rows), and metabolites and
concentrations (heatmap columns). Organisms contributed both
to row and column clustering. Finally, the ortholog interaction
fractions were plotted as heatmaps, using row and column orders
as described, with dendrograms clarifying the clustering (function
ggtree from library ggtree).

Phylogenetic analysis. Sequences for Calvin cycle KEGG orthologs
(KO) in module M00165, supplemented with transaldolase
(K00616 and K13810), triose-phosphate isomerase (K01803), and
ribulose-phosphate epimerase (K01783), were downloaded from
UniProt on 14 October 2021. Each set of KO sequences was
reduced in number with cd-hit version 4.8.184,85 by selecting the
highest percent identity setting between 50% (-c 0.5) and 100%
(-c 1) in 5% steps, which resulted in fewer than 1000 repre-
sentative sequences. For each KO set, we added any missing

corresponding protein sequences in the four organisms studied
here. Sequences were aligned using mafft version 7.453 at default
settings86. The alignments were then used to construct phyloge-
netic trees with FastTree version 2.1.11 Double precision at
default settings87. NCBI taxonomy data downloaded on 8 Octo-
ber 2021 was used to identify organism groups. Trees were
plotted using phytools and ggtree in R in order to visualize the
phylogenetic distribution of sequences and metabolite interac-
tions for the four organisms under study.

Cloning and transformation. The glpX (slr2094) gene from
Synechocystis sp. PCC 6803 and the fpb3 (cbbFp) gene from C.
necator were codon optimized for expression in E. coli and syn-
thesized by Twist Biosciences. The genes were cloned into pET-
28a(+) using Gibson assembly. The products were verified by
sequencing and transformed into E. coli BL21 by heat shock.

The tktA gene from Synechocystis sp. PCC 6803 and the cbbTP
gene from C. necator were PCR amplified from the isolated gen-
omes using the primer pairs tktAF+tktAR and cbbTpF+cbbTpR,
respectively. The backbone pET-28a(+) was linearized using the
primer pair pETF+peTR after which the constructs were
assembled through Gibson assembly. The products were verified
by sequencing and transformed into E. coli BL21 by heat shock.

tktAF: 5′-CCATTTGCTGTCCACCAGACAGTGAGGAGTTT
TAAGCTTGG-3′

tktAR: 5′-CCGCGCGGCAGCCATATGAACATTATGGTCG
TTGCTACCC-3′

cbbTpF: 5′-CCATTTGCTGTCCACCAGATCAAGCGTCCTC
CAGCAG-3′

cbbTpR: 5′-CCGCGCGGCAGCCATATGGAGATGAACGCA
CCCGAACG-3′

pETF: 5′-CATATGGCTGCCGCGCGG-3′
pETR: 5′-CTGGTGGACAGCAAATGGGTCG-3′

Production and purification of recombinant F/SBPase and
TKT enzymes. The recombinant E. coli BL21 strains were culti-
vated in 2YT media at 37 °C and 200 RPM until OD 0.4–0.6, after
which overexpression of the enzyme from the pET-28a(+) plas-
mid was induced by the addition IPTG to 0.5 mM. The E. coli
strains harboring the syn-tktA, syn-glpX, and cn-fbp3 were
incubated at 37 °C for 8 h after induction, while E. coli strain
harboring the cn-cbbTP gene was incubated at 18 °C for 24 h after
induction. Cells were then harvested by centrifugation at 4 °C,
and cell pellets were stored at −20 °C. Frozen pellets were
resuspended in 3–5 mL of B-PERTM Complete Bacterial Protein
Extraction Reagent (ThermoFisher Scientific) and incubated on a
rocking table for ~30 min before centrifugation at 4000 × g. The
soluble fraction was loaded onto a HisTrap Fast Flow Cytiva
column (1 mL) using an ÄKTA start protein purification system
and washed with 15 column volumes of wash buffer (50 mM Tris-
HCl, 500 mM NaCl, 20 mM imidazole, pH 7.5) prior to elution
with a stepwise gradient of elution buffer (50 mM Tris-HCl,
500 mM NaCl, 300 mM imidazole, pH 7.5). Fractions containing
protein were combined, and the buffer was exchanged to storage
buffer 50 mM Tris-HCl, pH 7.5 (TKT), pH 8.0 (F/SBPase) using a
PD-10 Cytiva desalting column. The purified protein was quan-
tified by Bradford assay and stored at −80 °C in aliquots.

In vitro kinetic assays of transketolase with metabolite effec-
tors. Transketolase was characterized following a previously
published protocol88. The conversion of D-ribose-5-phosphate
and L-erythrulose to sedoheptulose-7-phosphate and glycolalde-
hyde was measured through the consumption of NADH by
alcohol dehydrogenase when reducing glycolaldehyde to ethylene
glycol. Relative comparisons of enzyme kinetics were made as
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calculated from 8 different substrate concentrations (0 mM,
0.1 mM, 0.2 mM, 0.5 mM, 0.75 mM, 1 mM, 2 mM and 4mM)
with and without 1 mM added metabolite. The tested metabolites
were 2-oxoglutarate, 2-phosphogluconate, ATP, AMP, G6P,
citrate, glyoxylate, malate, NADP and dihydroxyacetone phos-
phate (Supplementary Data S9). The reaction mix contained
100 mM glycylglycine buffer pH 7.5, 5 mMMgCl, 2 mM thiamine
pyrophosphate, 0.5 mM NADH, 100 mM L-erythrulose, 10 U
alcohol dehydrogenase, 2.8 µg/mL transketolase, and D-ribose-5-
phosphate to a final volume of 100 µL. Absorption was measured
at 340 nm twice per minute over 30 min, starting immediately
after the addition of D-ribose-5-phosphate.

In vitro kinetic assays of F/SBPase with metabolite effectors. In
vitro enzyme activity assays were conducted to validate the
kinetic effect of F/SBPase metabolite interactions detected by LiP-
SMap. To determine metabolite-induced changes in enzyme
kinetic parameters, initial rates were measured at eight different
substrate concentrations (0, 30, 55, 80, 110, 150, 220, 300 µM) in
the presence and absence of a metabolite (+M and -M). Tested
metabolites were GAP, NADPH, AMP, acetyl-CoA, and citrate at
0.5 mM, 3 mM, 0.25 mM, 2 mM, and 5 mM, respectively (Sup-
plementary Data S9). The conversion rate of fructose-1-6-
bisphosphate to fructose-6-phosphate was determined from the
accumulation of inorganic phosphate over time, using a Mala-
chite Green (MG) assay adapted from a previously published
protocol89. MG dye stock (1.55 g/L Malachite Green oxalate salt,
3 M H2SO4) was used to prepare a fresh phosphate colorimetric
development solution prior to each experiment (400 µL MG dye
stock, 125 µL ammonium molybdate (60 mM), 10 µL Tween-20
(11% v/v)). The development solution was filtered through a
0.2 µm syringe filter and kept in the dark. Development plates
were prepared by mixing 36 µL development solution with 100 µL
reaction buffer (50 mM Tris-Hcl, 15 mM MgCl2, 10 mM DTT)
lacking DTT. Enzyme solutions for +M and -M conditions were
prepared in separate 8-tube PCR strips (VWR #732-1521 or low-
protein binding) by mixing 25 µL reaction buffer (+M/-M) with
25 µL purified enzyme constituted in -M reaction buffer. The two
strips were pre-incubated at 30 °C for 12 min in a thermocycler
together with two additional PCR strips, which contained sub-
strate at eight different concentrations in -M reaction buffer.
Reactions were initiated by quickly mixing 50 µL substrate with
the enzyme mixture in one of the reaction strips using a multi-
pipette ([F/SBPase]Final= 0.42 ng/µL). A sample of 20 µL was
immediately transferred to a development plate before incubating
the reaction strip at 30 °C, which quenches the reaction. The
initiation procedure was repeated for the second reaction strip
with a 2-min delay. Samples were collected after 10, 20, and
30 min. Each sampling event was followed by an addition of
7.5 µL sodium citrate (34% w/v) to stabilize the color of the
development solution. Triplicate series of phosphate standards
(0–100 µM) was added to the development plate as a reference.
The plate was incubated for 20 min in the dark before measuring
the absorbance at 620 nm in a plate reader. The experiment was
replicated at least twice. To quantify the amount of phosphate,
the background absorbance measured at time zero was first
subtracted from raw absorbance measurements. Phosphate
standard series were then used to convert absorbances to phos-
phate concentrations. Outliers and phosphate concentrations that
were lower than 10 µM (sensitivity threshold) or that exceeded
60% substrate conversions (10-min time points were always kept)
were removed. Reaction rates were calculated as the change in
phosphate concentration over time using linear regression.

In addition, one experiment was conducted where 75 µL
reaction mixture (endpoint measurement rather than rate

measurement) was transferred to an equal volume of methanol
and analyzed on a TSQ Altis Triple Quad mass spectrometer
coupled to a Vanquish UHPLC with a HESI ion source. Then,
10 μL of the sample was loaded onto an Accucore-150-amide-
HILIC column (50 mm × 2.1 mm, 2.6 µm) with a flow rate of
0.4 mL per min. The samples were separated for 5 min using a
linear gradient from 90% to 0% acetonitrile with 10 mM
ammonium carbonate and 0.2% ammonium hydroxide in water
as a secondary solvent. The mass spectrometer was run in
negative mode with a voltage of 2500 V and searched for the
transitions indicated in Supplementary Table S5.

Thermal shift assay and scattering experiments. Thermal
unfolding of proteins was measured in the absence and presence
of metabolites by nano differential scanning fluorimetry (F350/
F330) using a Prometheus NT.48 (NanoTemper) at 95% excita-
tion power over a temperature gradient from 20 °C to 95 °C at an
increase of 1 °C per minute. Transketolase samples were prepared
in 50 mM Tris-HCl pH 7.5 with 5 mM MgCl2, 2 mM TPP,
200 ng/µL enzyme and 1 mM of metabolite. In addition, samples
with and without 2 mM TPP and 10 mM DTT were also run to
assay the effect of the cofactor and reductive power on protein
stability. F/SBPase samples were prepared in 50 mM Tris-HCl pH
8 with 200 ng/µL enzyme, 15 mM MgCl2, 10 mM DTT and
varying concentrations of metabolite (Table 1). The effect of
acetyl-CoA, GAP and citrate (2, 0.5, and 5 mM, respectively) on
syn-F/SBPase was analyzed at different MgCl2 concentrations to
test whether Tm changes were caused by magnesium chelation.
Tm changes greater than 2 °C were considered significant.

Scattering data were recorded simultaneously with fluorescence
measurements for each dataset. For the analysis of protein states,
the first derivative of scattering data was used. syn-F/SBPase
samples (final assay concentration of 150 ng/uL) were prepared as
described above in the absence and presence of 10 mM DTT and
0.5 mM GAP, respectively. The protein was pre-incubated with
the respective buffers for different durations, as indicated. All pre-
incubated samples were analyzed in the same run.

Kinetic metabolic model
Model structure. The kinetic model for Synechocystis central
carbon metabolism was based on a previous model17. The final
model contained 29 reactions connecting 36 metabolites (22
internal). Sink reactions were formulated as irreversible
Michaelis-Menten-type equations. Phosphate supply followed
mass action kinetics. Two model variants were created: One base
model, including only the regulatory interactions in the previous
version17, and one model with interactions on F/SBPase (GAP
and NADPH).

Metabolite concentrations and flux distribution. Due to the
uncertainty associated with published metabolomics datasets,
potential thermodynamically feasible metabolite concentrations
describing the metabolic state were randomly sampled as per-
formed previously17. Metabolite concentration ranges identified
via NET analysis29 were used as constraints for the sampling,
resulting in ~3000 feasible metabolite concentration sets covering
the entire thermodynamically allowable solution space. The
steady-state flux distribution was obtained using a genome-scale
metabolic model of Synechocystis as described in Janasch et al.17.
All flux simulations were performed in Matlab R2020b using the
Gurobi Optimizer version 9.1.1. Maximizing autotrophic growth
was set as the objective function. Fluxes were manually curated to
adjust the genome-scale flux distribution to the small-scale kinetic
model structure and transformed into mM/min by multiplying
with the cellular density of 434.78 g/L for E. coli90.
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Parameter sampling. Rate equations were generally parameterized
around the corresponding metabolite concentrations by sampling
the range of 0.1x to 10x metabolite concentration in logarithmic
space for KM values. Inhibition constants Ki and activation con-
stant Ka for the regulations identified by LiP-SMap were sampled
in a narrower range of 0.5x to 2x around the metabolite con-
centrations used for the enzyme assays. For the activation of F/
SBPase by GAP, Km could maximally be reduced by 75%. Hill
coefficients for F/SBPase were sampled between 1 and 1.5. Vmax

values were calculated back from metabolite concentrations,
sampled kinetic constants and the steady-state flux distribution.
For each of the 3151 fMCSs, 1000 parameter sets were generated,
resulting in an ensemble of ~3 million kinetic steady-state models
to be analyzed for stability and metabolic control.

Metabolic control analysis. The dynamic behavior of the models
was analyzed by linearizing them around their steady state as
performed previously by forming the Jacobian matrix y17,91,92.
The stability of each model in the ensemble was evaluated by
calculating the eigenvalues of the Jacobian matrix, where positive
eigenvalues cause instability. Flux control coefficients were cal-
culated for all stable parameter sets based on elasticities and
concentration control coefficients as described previously17. The
models and all code required to perform the kinetic modeling
analysis are available at https://github.com/MJanasch/KX_
Kinetics.

Statistics and reproducibility. Interaction proteomics was done
in technical quadruplicates. For each experiment, plots visualizing
principal component analysis, quantile-quantile analysis, p-value
distribution, intensity distribution and peptide count per sample
were generated and inspected to ensure quality of data. Obvious
outliers were removed, and experiments with very abnormal
statistics were re-done. Transketolase and F/SBPase assays were
done in technical triplicates, and kinetic parameters were calcu-
lated by fitting reaction rates and substrate concentrations to the
Hill equation using non-linear regression. A parameter change
was considered statistically significant if p < 0.05 (Student’s t-test,
two-sided) and the effect size (difference of the mean) exceeded
20%. Obvious outliers were removed. Light scattering assays and
melting temperature assays were done in technical triplicates.
Obvious outliers were removed.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE93 partner repository with the dataset identifier PXD044412.
Source data for all graphs and plots in the article can be found in Supplementary Data S9.
Supplementary Data S1–S9 are available at Figshare (https://figshare.com/articles/
dataset/Supplemental_Datasets/23939604). General data and quality assessment
statistics, visualizations and ortholog analysis were generated by the pipeline available at
https://github.com/Asplund-Samuelsson/lipsmap, implemented in R version 4.1.1 with
Tidyverse version 1.3.1.

Code availability
The code for initial proteomics analysis, transketolase kinetic assays, F/SBPase assays,
melting temperature assays and light scattering assays are available at https://github.com/
emilsporre/lipsmap-comp, implemented in R version 4.3.1 with Tidyverse version 1.3.2.
The models and all code required to perform the kinetic modeling analysis are available
at https://github.com/MJanasch/KX_Kinetics. The code used for the meta-analysis of
LiP-SMap data is available at https://github.com/Asplund-Samuelsson/lipsmap.
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