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SUMMARY
Neuroblastoma is a pediatric solid tumor characterized by strong clinical heterogeneity. Although clinical
risk-defining genomic alterations exist in neuroblastomas, the mutational processes involved in their gener-
ation remain largely unclear. By examining the topography and mutational signatures derived from all variant
classes, we identified co-occurringmutational footprints, whichwe termedmutational scenarios.We demon-
strate that clinical neuroblastoma heterogeneity is associated with differences in the mutational processes
driving these scenarios, linking risk-defining pathognomonic variants to distinct molecular processes.
Whereas high-risk MYCN-amplified neuroblastomas were characterized by signs of replication slippage
and stress, homologous recombination-associated signatures defined high-risk non-MYCN-amplified pa-
tients. Non-high-risk neuroblastomas were marked by footprints of chromosome mis-segregation and
TOP1 mutational activity. Furthermore, analysis of subclonal mutations uncovered differential activity of
these processes through neuroblastoma evolution. Thus, clinical heterogeneity of neuroblastoma patients
can be linked to differences in the mutational processes that are active in their tumors.
INTRODUCTION

The presence of somatic mutations is a hallmark of cancer ge-

nomes.1 Diverse types of somatic mutations are a result of

different endogenous and/or exogenous mutational pro-

cesses, including replication errors, exposure to DNA-

damaging agents, expression of developmentally restricted

recombinases,2 and errors in DNA-repair mechanisms.3 These

processes imprint characteristic mutational patterns in the

genome, termed mutational signatures.4 Recent analyses in

multiple cancer types have extracted signatures associated

with single-nucleotide variants (SNVs),5,6 small insertions

and deletions (indels),6 copy-number alterations (CNAs),7,8
C
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and structural variants (SVs).9 Some signatures are linked to

known biological processes active in cancer, whereas others

have yet-unknown etiologies.5,6,10 In contrast with mutational

signatures derived from SNVs and indels, those derived from

CNAs and SVs remain difficult to classify, and their etiologies

remain largely unknown. Various complex SV classes have

recently been defined on the basis of their topography, e.g.,

circular extrachromosomal DNA11 (ecDNA), chromothripsis,12

chromoplexy,13 templated insertion chains (TICs),14 breakage-

fusion-bridge cycles15 (BFBs), complex non-cyclic ampli-

cons16 (CnCs), tyfona, rigma, and pyrgo,17 among others.

Even though the study of mutational signatures and structural

variant patterns has advanced in recent years, it remains
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Figure 1. Cohort characteristics and analysis strategy

Top: description of the distribution (in percentage) of the 150 neuroblastoma samples from the discovery (n = 114; see also Figure S1) and validation (n = 36)

cohorts, within sex groups (female, male, and unknown), risk groups (HRMNA,HR non-MNA, and non-HR: low-risk; low-risk stage 4S; intermediate-risk), and age

at diagnosis groups (<1 year old, 1–5 years old, and >5 years old). Middle: summary of the sequencing datasets available for our analysis. WGSmatched tumor-

normal pairs. Bottom: description of the main steps carried out in our study, starting with the variant discovery and themutational signatures analysis, followed by

validation of the signatures and subclonal SNV-based signatures extraction, characterization of the complex rearrangements present in our samples, unsu-

pervised clustering, and definition of the three clinically relevant neuroblastoma mutational scenarios presented in this work.
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largely unclear how different mutational processes and variant

topographies are mechanistically linked.

Neuroblastoma is a pediatric solid tumor characterized by

strong clinical heterogeneity.18–20 Patients can be classified

into different disease risk groups depending on their clinical, ge-

netic, and molecular characteristics, namely low-, intermediate-

or high-risk groups, with the latter presenting poor prognosis

despite intensive therapy and surgery.21 Cytogenetic and

genomic studies have identified many neuroblastoma risk-

group-specific alterations19,22–26 such as ecDNA and segmental

chromosomal gains/losses in high-risk patients or whole chro-

mosomal aberrations in low-risk patients.27–29 Complex rear-

rangements involving oncogene amplicons are particularly

frequent in neuroblastoma.30,31 Recent studies have linked

ecDNA to other complex variants such as chromothripsis and

BFBs32,33 and have identified circular recombination as a poten-

tial means of ecDNA evolution in neuroblastomas.33 What

causes these pathognomonic alterations remains largely un-

known. We hypothesized that co-occurrence analyses of muta-

tional signatures derived from independent variant types may

identify new principles of neuroblastoma mutagenesis that
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explain the differences in variant patterns observed across clin-

ical risk groups.

RESULTS

SNV-based mutational signatures differ between
neuroblastoma risk groups
To explore the link between different mutational patterns from in-

dependent variant types in neuroblastoma, we analyzed two

publicly available, previously published cohorts of whole ge-

nomes from 103 matched tumor-normal pairs as well as 11 un-

published whole genomes, which were all derived from neuro-

blastoma patients treated according to the same clinical

protocol. All sex, age, and disease stages were represented in

this dataset (Figures 1 and S1). Pathognomonic chromosomal

and driver gene alterations were identified at a comparable fre-

quency in our cohort as described in other neuroblastoma co-

horts26,30,34 (Figure S1A). Recurrently mutated genes were com-

parable to those found in other cohorts (Figure S1A), evidencing

that this cohort was representative for clinically heterogeneous

neuroblastomas.
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Figure 2. Distribution and correlation of SNV-, indel-, SV-, and CNA-associated signatures in neuroblastoma clinical risk groups

(A) Exposure (in percentage) of the four SNV-associated signatures (SBSs) identified in our neuroblastoma discovery cohort by clinical risk group (n = 114). Each

color displays a different signature: SBS3, SBS5, SBS18, and SBS40 (see also Figures S2A–S2C). Columns are ordered by neuroblastoma clinical risk classi-

fication.

(B) Exposure (in percentage) of the six indel signatures (ID; insertions and deletions <50 bp) identified in our cohort by clinical risk group. Each color displays a

different signature: ID1, ID2, ID4, ID6, ID8, and ID9 (see also Figures S2D–S2F). Columns are ordered by neuroblastoma clinical risk classification.

(C) Exposure (in percentage) of the eight CNA signatures (CX; gains, losses, amplifications, and homozygous deletions) extracted in our cohort by clinical risk

group. Each color displays a different signature: CX1, CX2, CX3, CX5, CX7, CX11, CX14, and CX15 (see also Figures S2G and S2H). Columns are ordered by

neuroblastoma clinical risk classification.

(D) Exposure (in percentage) of the six SV signatures (SV; deletions, duplications, translocations, and inversions) identified in our cohort by clinical risk group.

Each color displays a different signature: SV1–SV6. SV2, and SV3 correspond to reference signatures R6b and R6a, respectively (see also Figures S3A–S3D).

Columns are ordered by neuroblastoma clinical risk classification.

(E) Heatmap depicting the positive (red) and negative (blue) correlations between the signatures associated with different types of mutations (SNV, indel, SV, and

CNA). Colors display the Spearman correlation coefficient. Only significant correlations are included (p < 0.05, false discovery rate [FDR] correction).

(F) Activity trajectories of the four SNV-associated signatures (SBSs) per cancer cell fraction by clinical risk group in the validation cohort (n = 36). Thick lines

correspond to average exposure for all samples. Thin lines correspond to per-sample exposure (see also Figure S4).
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To provide a comprehensive overview of the mutational pro-

cesses involved in neuroblastoma, we first analyzed the SNV

trinucleotide context (Figures 2A, 2E, and S2A–S2C; Tables

S1, S2, and S3). We recurrently identified four SNV-based signa-

tures6 (SBSs) in this cohort, indicating that associatedmutational

processes are active in neuroblastoma. In line with previous re-

ports,35 SBS3 and SBS18, signatures experimentally linked to

defective homologous recombination repair (HRR) and reactive
oxygen species (ROS),36,37 respectively, were recurrently identi-

fied in this cohort (Figures 2A, S2A, and S2B). Whereas SBS18

was predominantly observed in high-risk MYCN-amplified pa-

tients (p < 1.9 3 10�4), SBS3 was observed to a significantly

lower degree in this risk group (p < 5.4 3 10�5), displaying a

negative correlation with signature SBS18, and was more prev-

alent in high-risk non-MYCN-amplified patients. Similarly,

SBS40 and SBS5, clock-like signatures associated with patient
Cell Genomics 3, 100402, October 11, 2023 3
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age,10,38 were highly anti-correlated with SBS18 in this cohort.

Clock-like signature SBS5 was inversely associated with clinical

risk andmost prevalent in non-high-risk patients (p < 3.33 10�4).

Thus, SNV-based mutational signatures attributed to defective

HRR and ROS are prevalent and differentially active across neu-

roblastoma risk groups and serve as the basis for co-occurrence

analyses to link mutational etiologies across variant types.

Mutational processes change during high-risk
neuroblastoma evolution
We and others recently described that some complex rearrange-

ments occur at different times throughout neuroblastoma devel-

opment.39,40 To link mutational processes driving SNVs to such

complex rearrangement types as well as other variant types,

we determined the timing of mutational processes during

neuroblastoma evolution. To do so, we performed ultra-deep

sequencing at an average coverage of 2003 in an independent

cohort of 36 neuroblastomas also derived from patients at the

time of diagnosis (Figure 1). We validated 69.6% of the signa-

tures extracted in the discovery cohort (SNV-, indel-, CNA-,

and SV-based; n = 114). The frequency of the mutational signa-

tures across risk groups was significantly linearly correlated be-

tween both cohorts (r2 = 0.61, p = 4.4 3 10�5; Figures S3E and

S3F; Tables S2 and S3). Thus, the signatures identified in this

study are robustly and reproducibly detectable in independent

neuroblastoma cohorts. Next, we reconstructed the evolutionary

trajectories of mutational processes based on the density of mu-

tation frequencies and changes in mutational signature activities

(Figures 2F and S5; Table S4). Through the reconstruction of

changes in signature activity across different cancer cell frac-

tions (CCFs), this approach enables the inference of mutational

evolution in tumors.41 Signatures SBS18 and SBS3 were

predominantly found at higher CCFs in high-risk patients

(p < 3.14 3 10�2 and p < 2.7 3 10�4, respectively), whereas

SBS5 activity was dominant in their subclones. This indicates

that mutations resulting from ROS or HRR deficiency are more

frequent in early high-risk neuroblastoma development, while

cell-intrinsic mutational processes accumulate over time and

occur later in neuroblastoma evolution. Non-high-risk patients,

on the other hand, did not show any changes in mutational tra-

jectories, exhibiting a predominance of SBS5-associated muta-

tions across CCFs (p < 4.8 3 10�3), i.e., a stable frequency of

mutagenic processes throughout tumor evolution. This indicates

that mutational processes involved in neuroblastoma initiation

and progression are distinct and differ between risk groups.

While non-high-risk neuroblastomas are characterized by

continuous exposure to cell-intrinsic mutational processes,

mutational processes in high-risk neuroblastomas seem to

switch between early and late stages of tumor evolution.

Indel-based signatures confirm differences in
mutational processes active in neuroblastoma risk
groups
Co-occurrence analyses of mutational signatures from indepen-

dent variant types that are experimentally linked tomolecular eti-

ologies such as SNVs and indels are crucial to determining the

mutational processes active in a tumor.3,5,6 Based on the inser-

tion and deletion lengths and genomic context, including repet-
4 Cell Genomics 3, 100402, October 11, 2023
itive sequences and microhomology, we identified six indel-

based signatures6 (IDs) in neuroblastoma genomes (Figures

2B, 2E, and S2D–S2F; Tables S1 and S3). ID1 and ID2, both

characterized by 1 bp insertions and deletions at long thymine

homopolymers attributed to replication slippage and found in

most cancer entities,6 were also recurrently identified in neuro-

blastoma genomes. These signatures were significantly more

frequent in patients with higher clinical risk, particularly in high-

risk MYCN-amplified patients (p < 2 3 10�4). ID1 and ID2 corre-

lated positively with SNV signature SBS18, which indicates co-

occurrence of DNA damage by ROS and replication slippage in

MYCN-amplified neuroblastomas. ID6, characterized by larger

deletions (>5 bp) with larger microhomology, was also recur-

rently observed in our cohort. In agreement with their common

etiology associated with defective HRR, ID6 followed the same

prevalence distribution as SBS3, corroborating the predomi-

nance of defective HRR in high-risk non-MYCN-amplified neuro-

blastomas (p < 1.8 3 10�2). ID4, a signature enriched for dele-

tions (>1 bp) at repeats and microhomology, recently

associated experimentally with TOP1 mutational activity in can-

cer and healthy cells,42 on the other hand was significantly more

prevalent in non-high-risk patients (p < 1.68 3 10�3). ID4 dis-

played an association with SBS5 and high anti-correlation with

all the other indel signatures, notably with the ones related to

SBS3 (ID6, ID8, ID9) or SBS18 (ID1, ID2). This is in line with pre-

vious works in other cancer entities describing ID4 as mutually

exclusive with signatures ID1 and ID26 and points to functional

impairment of topoisomerase 1 as a source of mutagenesis in

non-high-risk neuroblastoma. The co-occurrence of SNV-based

and indel-based signatures associated with the samemutational

processes further supports that distinct mutational processes

contribute to mutagenesis in different neuroblastoma risk

groups.

High-risk MYCN-amplified neuroblastoma genomes are
defined by replication-stress-related CNA patterns
Whereas the mutational processes involved in SNV and indel

generation have been extensively explored, less is known about

the origin of CNAs and SVs. Recent reports suggest that CNA

patterns can be grouped into signatures, offering more insights

into molecular processes involved in their generation.7,8 As neu-

roblastomas from different risk groups are known to harbor

different CNA patterns,19,22,23,26–29 we reasoned that co-occur-

rence analysis of CNA signatures with SNV and indel signatures

may uncover processes linked to CNA genesis in neuroblas-

toma. Thus, we evaluated the presence of recently established

CNA-associated signatures8 (CXs) in our cohort (Figures 2C,

2E, S2G, and S2H; Tables S1 and S3). CX1 was the most active

CNA signature found in this cohort (Figure 2C). CX1 together with

CX14, both associated with chromosomal arm changes poten-

tially caused by chromosome mis-segregation, were most prev-

alent in non-high-risk patients (p < 9.13 10�4), in line with previ-

ous works associating whole-chromosome alterations with

lower clinical risk.43 CX3, linked to defective HRR, was most

frequent in high-risk non-MYCN-amplified patients (p < 2.1 3

10�2), further corroborating the role of deficient HRR as

a risk-group-defining mutational process in neuroblastoma.

CX11, a signature attributed to replication-stress-mediated focal
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Figure 3. Co-occurrence of mutational signatures, complex rearrangements, and cancer-related gene alterations in neuroblastoma

(A) Heatmap showing the correlations between mutated neuroblastoma driver genes and DNA-damage-repair genes and all the mutational signatures and

complex rearrangement types identified in our cohort (n = 114). Below are rows showing the correlation between HRD probability score, mutations in HRR genes,

and the mutational signature exposures and complex rearrangements identified in our cohort. In both heatmaps, colors display the Spearman correlation co-

efficient. Only significant correlations are included (p < 0.05, FDR correction).

(legend continued on next page)
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amplifications, and SBS18 significantly co-occurred in high-risk

neuroblastomas, raising the possibility that ROS-induced repli-

cation stress may contribute to the generation of focal amplifica-

tions in these tumors. CX5, CX7, andCX11weremost frequent in

high-risk MYCN-amplified patients (p < 4.4 3 10�3). Notably,

CX5 and CX11, both attributed to replication stress, were signif-

icantly associated with the presence of indel-based signatures

ID1 and ID2, which result from replication slippage. This further

highlights replication-stress-associated mutational processes

as contributors to mutagenesis in high-risk neuroblastomas.

Thus, co-occurrence analyses of CNA, SNV, and indel signa-

tures revealed that whereas focal amplifications typically found

in MYCN-driven neuroblastomas are linked to signs of replica-

tion stress and slippage, CNAs in high-risk non-MYCN-amplified

neuroblastomas are associated with defective HRR, and chro-

mosome mis-segregation patterns are a general feature of all

neuroblastomas across risk groups.
De novo structural variant signature analysis identifies
neuroblastoma-specific patterns
We and others have shown that complex SVs are prevalent in

neuroblastomas.30,33 The mechanisms involved in their genera-

tion, however, are currently largely unknown. Co-occurrence an-

alyses with mutational signatures from other variant types facili-

tate the investigation of etiologies associated with distinct

SV patterns. To this end, we performed de novo discovery of

SV signatures9 (SVs) based on the type, size, and clustering of

SVs (Figures 2D, 2E, and S3A–S3D; Tables S1, S2, and S3).

Comparing the SV signatureswe extracted to SV signatures iden-

tified in other tumor entities,9 we determined that three signatures

were specific to this cohort (SV1, SV4, andSV5),whereas twoSV-

based signatures (SV2 and SV3, corresponding to R6a and R6b)

had already been identified in other cancer types. SV1, definedby

simple deletions smaller than 1 kb, was predominantly detected

in non-high-risk patients (p < 3.33 10�2) and showed a negative

correlation with all the other SV-based signatures. It was posi-

tively correlated with SBS5, a clock-like signature, suggesting it

may have similar origins. SV2/R6a and SV3/R6b, characterized

by clustered intrachromosomal rearrangements around 1–10

Mb and larger than 10 Mb, respectively, were linked to the pres-

ence of focal oncogene amplifications (Figures 3A and 3B). This is

in line with results from previous reports in other tumor entities9

and indicates that these signatures could represent footprints

of the molecular processes involved in the generation of high-

level oncogene amplification. Consequently, these signatures

were highly prevalent in high-risk MYCN-amplified neuroblas-

tomas (p < 2.5 3 10�2), which contain focal amplifications.

SV3/R6b was also correlated with the exposure of replication
(B) Heatmap depicting the correlations between the signatures associated with

arrangement classes identified in our cohort (n = 114).

(C) Box plot comparing the distribution of HRDprobability scores across neuroblas

patient. To assess whether there are differences between risk groups, we used t

(D) Frequency of patients with mutated HRR genes across the three neuroblasto

(E) Box plot comparing the distribution of HRR mutated genes across neuroblast

patient. To assess whether there are differences between risk groups, we used t

Pairwise comparisons were done using the non-parametric Wilcoxon rank-sum te

the discovery cohort (n = 114).
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slippage signature (Figure 2E), suggesting a role of thismutational

process in the generation of complex amplicons in neuroblas-

toma, as previously proposed in other tumor entities.44–46

Notably, the overall frequency of clustered SV-based signatures

(SV2/R6a, SV3/R6b, and SV4) was correlated with clinical risk.

Thus, distinct complex SV patterns prevalent in high-risk neuro-

blastomas can be categorized using SV-based mutational signa-

tures and significantly co-occur with signatures based on other

variant types, raising the possibility that similar mutagenic pro-

cesses contribute to their generation.
Complex structural rearrangement topography is linked
to distinct mutational processes across neuroblastoma
risk groups
Recent reports have reclassified complex rearrangements topo-

graphically, considering both CNA- and SV-associated fea-

tures.14,17,47 Even though a subset of these rearrangement

patterns has been observed in some neuroblastomas, e.g.,

ecDNA and chromothripsis,30,48 their prevalence across neuro-

blastoma risk groups and their co-occurrence with mutational

signatures has not yet been determined. To examine the topog-

raphy of complex rearrangements in neuroblastoma, we used

three state-of-the-art complementary algorithms, enabling the

identification and reconstruction of nine complex variant clas-

ses: (1) chromothripsis; (2) BFBs; (3) ecDNA; (4) CnCs; (5) chro-

moplexy; (6) TICs; (7) rigma, a cluster of simple deletions; (8)

pyrgo, a cluster of tandem duplications (Figure 4); and (9) unclas-

sified regions with high SV density, termed clustered rearrange-

ments. The fraction of SVs assigned to complex variant patterns

corresponded to 69.41% and differed between risk groups

(p < 2.393 10�9; Figures 4A and S5D), suggesting that structural

variation in high-risk neuroblastomas is predominantly complex.

In line with previous observations,30 ecDNA was the most

frequently observed SV pattern in neuroblastomas, detectable

in 31.65% of the patients (Figures 4B and 4C; Table S6). The pre-

dominance of ecDNA defined high-risk MYCN-amplified pa-

tients (Figures 4D, S5A, and S5E–S5N; p < 1.3 3 10�7), in line

with the fact that MYCN amplifications most often occur in the

form of ecDNA.30,49 MYCN amplifications detected in whole-

genome sequencing (WGS) were confirmed cytogenetically

using fluorescence in situ hybridization (FISH) and classified as

either ecDNA or homogenously staining regions (Table S5). A

subset of ecDNA-harboring neuroblastomas also contained in-

stances of chromothripsis and/or BFBs, in line with previous re-

ports showing that these processes can contribute to ecDNA

generation and evolution.32,33 Most ecDNAs, however, did not

co-occur with any other complex rearrangement (Figure 4B),

suggesting that they are a result of other processes. Simple
different variant types (SNV, indel, SV, and CNA) and the nine complex re-

toma risk groups (HRMNA, HR non-MNA, and non-HR). Each dot represents a

he non-parametric Kruskal-Wallis test (p value in the upper-left corner).

ma risk groups.

oma risk groups (HR MNA, HR non-MNA, and non-HR). Each dot represents a

he non-parametric Kruskal-Wallis test (p value in the upper-left corner).

st. Significance: *p < 0.1, **p < 0.05, ***p < 0.01. All analyses were performed in
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Figure 4. Co-occurrence and distribution of complex rearrangements in neuroblastoma

(A) Top: frequency of SVs involved in each complex rearrangement type, in percentage. Bottom: pie chart showing the percentage of SVs involved in complex and

simple events in our cohort.

(B) Upset plot depicting the co-occurrence of the different types of complex SV patterns within patients. The number of patients with each combination of re-

arrangements is shown in the top histogram (colors display the risk group for each patient).

(C) Pie chart showing the frequency in percentage of each complex rearrangement type in the whole neuroblastoma cohort.

(D) Relative frequency in percentage of the nine different complex rearrangement types identified in our cohort by clinical risk group (HRMNA, HR non-MNA, and

non-HR).

All analyses were performed in the discovery cohort (n = 114). See also Figure S5.
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DNA circularization due to replication slippage can lead to

ecDNA generation,44 which would be consistent with our co-

occurrence analyses results (Figure 3B). High-risk non-MYCN-

amplified patients, on the other hand, exhibited a high variety

of mostly linear chromosomal complex rearrangements

(Figures 4B, 4D, S9A, and S9E–S9N), including unclassified clus-

tered rearrangements. Through manual reconstruction of these

unclassified events, we identified two complex SV patterns of

local n-jumps14 named duplication-inverted-triplication-duplica-

tion (Dup-Trp-Dup) and duplications linked by inverted segments

(Dup-invDup) (Figure S5O), which had not been previously

described in neuroblastoma.

Exploring the potential etiologies of complex SV patterns, we

found that signatures characterized by clustered SVs (SV2/

R6a, SV3/R6b, and SV4) were correlated with the presence of
complex amplicon topography such as chromothripsis, BFBs,

and ecDNA (Figure 3B). Furthermore, SV5, characterized by sim-

ple deletions and duplications along with non-clustered translo-

cations, was linked to TICs, based on its SV pattern composition

and the significant co-occurrence with this complex rearrange-

ment pattern (Figures 3B and S3C). SV5 was correlated with sig-

natures of HRR deficiency, suggesting its role in the generation

of TICs.

Complex SVs did not occur uniformly throughout the genome

(Figures 5 and S5C). Known neuroblastoma-related genes such

as MYCN, TERT, ODC1, CDK4, and MDM2 were recurrently

affected by different classes of complex rearrangements

including ecDNA, chromothripsis, and CnCs. Thus, topographi-

cally distinct complex variant patterns are more common in neu-

roblastoma than previously anticipated and recurrently occur at
Cell Genomics 3, 100402, October 11, 2023 7
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Figure 5. Genomic distribution of topographically defined complex rearrangement patterns in neuroblastoma

(A) Density plot showing the number of regions affected by complex rearrangements per chromosome across the whole human genome. Each row/color cor-

responds to a different type of rearrangement.

(B) Frequency of patients with complex rearrangements affecting neuroblastoma driver genes or DNA-damage-repair genes. Each column and color corre-

sponds to a different type of rearrangement.

All analyses were performed in the discovery cohort (n = 114). See also Figure S5.
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sites of cancer-related loci, suggesting their functional onco-

genic importance.

Risk-group-defining mutational scenarios emerge
through integration of mutational signatures and
complex rearrangement patterns in neuroblastoma
We hypothesized that the co-occurrence of complex variant pat-

terns and mutational signatures from independent variant types

with similar molecular etiologies may be linked to the clinical het-

erogeneity observed in patients suffering from neuroblastoma.

Unsupervised clustering based only on the frequency of the

different types of mutational signatures (SNV-, indel-, CNA-, and

SV-based) and complex rearrangement patterns grouped tumors

into three different clusters, which we termed mutational sce-

narios (Figures 6A–6C and Table S7). In line with our hypothesis,

mutational scenarios exhibited concordance of more than 80%

with neuroblastoma risk group classification. Mutational scenario

#1 was enriched in high-risk MYCN-amplified neuroblastomas

and was defined by footprints of DNA damage by ROS (SBS18),

replication slippage (ID1/ID2), replication stress (CX5/CX11), and

SV-based signature SV3/R6b, association with clustered SVs,

and focal oncogene amplification in the form of ecDNA. This nom-

inates replication-associated mutagenesis as the underlying

mechanism of variants occurring in this risk group, e.g., ecDNA

(Figures 6A–6C). The second mutational scenario (scenario #2)

was characterized by signs of impaired HRR (SBS3/ID6/CX3)

and single base deletions (ID9). It was associatedwith a higher va-

riety of linear chromosomal complex rearrangements such as

CnCs, and TICs (SV5). This mutational scenario was enriched in

high-risk non-MYCN-amplified neuroblastomas, suggesting that

the high number of CNAs and SVs found in this risk group might

be caused by the portrayed HRR deficiency, which is in line with

recent reports in other cancer types.50 Supporting these findings,

non-MYCN-amplified patients showed an enrichment in muta-

tions affecting genes from the HRR pathway such as BRIP1 and

RAD51C (Figures 3D and 3E; p = 2.26 3 10�4). Interestingly, the

presence of ecDNA was nearly mutually exclusive, with defective

homologous recombination-associated signatures defining sce-

nario #2 (Figures 3A and 3B). Consistently, ecDNA-harboring,

MYCN-amplified neuroblastomas exhibited the lowest HRDetect

probability scores, an alternative measure of HRR activity,51

across our cohort, with a median score of 1% and no patient

with a score >70% (Figures 3A, 3C, and 3E; Table S8). Scenario

#3 was linked to high prevalence of clock-like mutations (SBS5),

topoisomerase-associated mutational activity (ID4), small simple

deletions (SV1), and signs of chromosome mis-segregation

(CX1/CX14). This mutational scenario was enriched in non-high-

risk neuroblastomas. Concordance between mutational sce-

narios and clinical risk groups was also reflected by overall sur-

vival rates (e.g., non-high-risk and scenario #3 patients;

Figures 6D and 6E; p = 8.73 10�4 and p < 13 10�4, respectively,

by log-rank test). Thus, clinical neuroblastoma heterogeneity is

significantly associated with risk-group-defining mutational foot-

prints, which not only offers new insights into the etiology of dis-

ease group-defining genomic variants but also raises the possibil-

ity that differences in mutational processes during malignant

transformation and tumor progression may contribute to inter-tu-

mor phenotypic and clinical differences.
DISCUSSION

This study analyzed neuroblastoma genomes from clinically

heterogeneous patients and classified the mutational processes

and genomic rearrangement patterns based on all genomic

variant classes. This led to the identification of three distinct

mutational scenarios defined by the co-occurrence of muta-

tional signatures and complex rearrangement patterns associ-

ated with similar mutational processes independent of variant

classes. Scenario #1 was driven by DNA damage caused by

ROS, replication slippage, and stress and was enriched in

high-risk MYCN-amplified, ecDNA-harboring patients with low

overall survival. Scenario #2 was driven by HRR-associated sig-

natures and characterized by linear, chromosomal, complex re-

arrangements, frequently observed in high-risk non-MYCN-

amplified patients with low survival. Scenario #3 was character-

ized by footprints of chromosome mis-segregation, topoisomer-

ase activity, and high presence of clock-like signature SBS5,

and was enriched in non-high-risk patients exhibiting good

prognosis. Our findings demonstrate that clinical neuroblas-

toma heterogeneity is associated with differences in mutational

footprints across genomic variant classes, offering a new

perspective on the mutational processes contributing to neuro-

blastoma genesis and evolution.

Even though the identified mutational scenarios are linked to

specific mutational processes,36,37,52–56 what causes these

processes to be active in neuroblastoma currently remains

unknown. Some molecular features in neuroblastomas can

activate mutational processes. For example, MYCN can induce

ROS, replication stress, and fork stalling.57,58 Thus, high MYCN

expression in neuroblastomas harboring MYCN amplifica-

tions may explain increased footprints of ROS, replication slip-

page, and stress observed in mutational scenario #1, which

was enriched in MYCN-amplified neuroblastomas. Recent re-

ports suggest that the presence of ecDNA itself may cause

high replication stress in cancer cells,59 indicating that some

of the complex variants observed may themselves fuel muta-

tional activity.

Deficiencies in HRR can cause the generation of simple and

complex SVs,60 such as BFBs and chromothripsis.61 For

example, mutations in BRCA1/2 resulting in HRR deficiency

are associated with high prevalence of certain SVs, termed

BRCAness.62 Although BRCA1/2 mutations are not frequent in

neuroblastoma,63 we identified mutational signatures related to

HRR deficiency in high-risk non-MYCN-amplified patients.

These tumors were alsomarked by higher homologous recombi-

nation deficiency (HRD) probability scores (HRDetect) and higher

prevalence of mutated HRR genes, including the ones in the

PROfound clinical trial.64 Thus, alterations other than BRCA1/2

mutations may cause the apparent HRR deficiency in neuroblas-

tomas. In line with our work, recent pediatric pan-cancer studies

also observed signatures associated with HRR deficiency in

neuroblastoma.10 The high prevalence of these footprints in

high-risk compared to non-high-risk patients indicates that

HRR deficiency may not only represent a mere feature of these

tumors but could also contribute to their aggressive clinical

behavior, similar to what was observed in HRR-deficient pancre-

atic cancers and gliomas.65 This may be especially relevant for
Cell Genomics 3, 100402, October 11, 2023 9
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Figure 6. Characterization and definition of mutational scenarios linked to clinical heterogeneity

(A) Unsupervised clustering analysis (hkmeans method; k = 3) obtaining three mutational scenarios from the scaled mutational signatures exposure and complex

rearrangements. All mutational signatures from different variant types and complex rearrangements detected in our cohort are included in the analysis. Color

scale indicates frequency.

(B) Summary of the defining features for each of the three mutational scenarios/clusters. Color gradation corresponds to clustering distance.

(C) Summary of the three mutational scenarios described in our neuroblastoma cohort, including different characteristic features such as mutational signatures,

complex rearrangements, mutational processes, and risk classification correspondence associated with each of them. CRs, complex rearrangements.

(D) Univariate Cox proportional hazardsmodel. Forest plot shows the proportional risk of the threemutational scenarios and the three neuroblastoma risk groups.

(E) Kaplan-Meier survival curves showing the clinical impact of the three mutational scenarios and the three neuroblastoma risk groups. (p = 0.00087 and

p < 0.0001, respectively by log-rank test). Colors on Kaplan-Meier plot display each condition.

All analyses were performed in the discovery cohort (n = 114).
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future clinical trial designs, as HRR deficiency is associated with

altered response to certain chemotherapeutic agents66 as well

as increased sensitivity to pharmacological PARP (poly(ADP-

ribose) polymerase) trapping.67 Thus, the identification of muta-

tional patterns associated with HRR deficiency in high-risk neu-

roblastomasmay have important implications for neuroblastoma

risk and therapy stratification.

Changes in mutational process activities can inform the

causes of tumor evolution.68,69 Our study revealed that in high-

risk neuroblastomas ROS and HRR deficiency predominantly
10 Cell Genomics 3, 100402, October 11, 2023
contribute to mutagenesis in early tumor development, while

replication-associated mutations are accumulated throughout

evolution. This indicates that the difference between high-risk

and non-high-risk neuroblastomas may already be determined

by the mutagenic processes involved in their early development

and/or the initial transformation of their non-cancerous cell of

origin.

We also provide a complete catalog of recently described

complex variant patterns17 in neuroblastoma, including chro-

mothripsis, BFBs, ecDNA, CnCs, chromoplexy, TICs, rigma,
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pyrgo, Dup-Trp-Dup, and Dup-invDup, and reveal their

distinct co-occurrence patterns with mutational signatures,

indicating differences in the mutagenic processes active

during their generation. Moreover, we linked de novo

signature SV5 with TICs, suggesting that recently topograph-

ically defined variant types can be reflected by novel SV

signatures.

Extrachromosomal DNA is one of the most prevalent

genomic alterations in cancer.70 We and others recently

demonstrated that it not only serves as a vehicle for oncogene

amplification30 but is also the most recurrent site of complex

structural rearrangements.16,30,31 Indeed, footprints of BFBs,

chromothripsis, and kataegis on ecDNA in other cancer entities

nominated these processes as mechanisms of ecDNA genera-

tion.32,33 In contrast, we only observed signs of BFBs and chro-

mothripsis on ecDNA in a subset of cases and did not observe

footprints indicative of APOBEC3-driven kataegis to the same

extent as observed elsewhere.71 Based on our most recent ob-

servations in single neuroblastoma cells72 and consistent with

our mutational signature co-occurrence analyses, we propose

that other processes such as replication slippage may create

structurally simpler ecDNA in neuroblastomas in which BFBs

and chromothripsis were not detected. Such simple ecDNAs

may then evolve and gain in complexity through further muta-

genesis. For example, recently described ecDNA reintegration

and circular recombination may contribute to ecDNA evolution

and result in similarly complex structures as those created

through BFBs or chromothripsis.30,33 The relative contributions

of these different mechanisms in the structural shaping of

ecDNA are still largely unresolved. Combined detection of the

mutational scenarios defined in this study with longitudinal sin-

gle-cell sequencing may facilitate the investigation of these

open questions.

In summary, our study provides a comprehensive classifica-

tion of active mutational processes in neuroblastoma, offering

new insights into the origin of genomic alterations involved in

neuroblastoma genesis and progression. The three mutational

scenarios presented here not only refine our understanding of

neuroblastoma’s clinical heterogeneity but may also improve

our understanding of how mutational processes contribute

to the generation of different variant classes in cancer in

general.

Limitations of the study
While the unsupervised clustering of neuroblastoma patients

in the three mutational scenarios was in high concordance

(>80%) with the clinical risk group classification, we encoun-

tered some patients who were considered as outliers. These

patients, although clinically classified in a specific risk group,

showed genomic features associated with other risk groups.

Owing to the limitation in sample size, we were not able to

draw significant conclusions that could explain these discrep-

ancies between the genomic and clinical features. We also

did not include transcriptomic data in this study; such data

could be helpful in future projects for the understanding of

the mentioned outlier divergence and the contribution of spe-

cific gene expression to the mutational scenarios that we

describe.
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Deposited data

Neuroblastoma

whole-genome

sequencing data

European Genome-

Phenome Archive

https://ega-archive.org/

EGA: EGAS00001001308,34 EGA: EGAS00001004022,30 EGA:

EGAS00001006983, EGA: EGAS00001007016,

and EGA: EGAS00001007019

Original code for all the analyses Henssen lab Github: https://github.com/henssen-lab/mutsignsNBLpaper

Raw data results This paper Zenodo: https://doi.org/10.5281/zenodo.8032024

Software and algorithms

FastQC v.0.11.8 Babraham bioinformatics73 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

BWA-MEM v.0.7.15 Li et al.74 https://github.com/lh3/bwa

SAMtools v.1.10 Danecek et al.75 https://github.com/samtools/samtools

Biobambam v.2.0.87 Tischler et al.76 https://gitlab.com/german.tischler/biobambam2

Mutect2 v.4.1.8.1 McKenna et al.77 https://github.com/broadinstitute/gatk/releases

GATK v.4.1.9.0 McKenna et al.77 https://github.com/broadinstitute/gatk/releases

bedtools v.2.29.2 Quinlan et al.85 https://bedtools.readthedocs.io/en/latest/index.html

ASCAT v.2.6 Van Loo et al.81 https://github.com/VanLoo-lab/ascat

Novobreak v.1.1.3 Chong et al.80 https://github.com/czc/nb_distribution

SvABA v.1.1.0 Wala et al.79 https://github.com/walaj/svaba

Delly2 v.0.7.7 and v.0.8.1 Rausch et al.78 https://github.com/dellytools/delly

Ensembl VEP v.102.0 McLaren et al.86 https://www.ensembl.org/info/docs/tools/vep/index.html

mutSignatures v.2.1.1 Fantini et al.87 https://github.com/dami82/mutSignatures

YAPSA v.1.16.0 Daniel Huebschmann et al.88 https://github.com/HiDiHlabs/YAPSA

Palimpsest v.2.0.0 Letouzé et al.89 https://github.com/FunGeST/Palimpsest

CNA signatures (no name) Drews et al.8 https://github.com/markowetzlab/

Drews2022_CIN_Compendium

JaBba v.1.0 Hadi et al.17 https://github.com/mskilab/JaBbA

Amplicon Architect v.1.2 Deshpande et al.91 https://github.com/virajbdeshpande/AmpliconArchitect

Shatterseek v.0.5 Cortés-Ciriano et al.92 https://github.com/parklab/ShatterSeek

gGnome v.0.1 Imieli�nski, M. https://github.com/mskilab/gGnome

AmpliconClassifier v.0.4.6 Deshpande et al.16 https://github.com/jluebeck/AmpliconClassifier

MuSE2.0 v.1.0rc Fan et al.81 https://github.com/danielfan/MuSE

Pindel v.0.2.5b9 Ye et al.82 https://github.com/genome/pindel

Battenberg v.2.2.9 Nik-Zainal et al.84 https://github.com/Wedge-lab/battenberg

TrackSigFreq PCAWG Evolution and

Heterogeneity Working Group et al.41
https://github.com/morrislab/TrackSigFreq

R v.4.0.3 with packages: N/A

ComplexUpset v.1.2.1 Lex et al.93 https://krassowski.github.io/complex-upset/index.html

corrplot v.0.90 Taiyun et al.96 https://github.com/taiyun/corrplot

dplyr v.1.0.3 Wickham et al.99 https://dplyr.tidyverse.org/

GenomicRanges v.1.42.0 Lawrence et al.97 https://bioconductor.org/packages/release/bioc/html/

GenomicRanges.html

ggplot2 v.3.3.5 Wickham et al.98 https://ggplot2.tidyverse.org/

gUtils v.0.2.0 http://mskilab.com/gGnome/tutorial.html https://github.com/mskilab/gUtils

IRanges v.2.24.0 Lawrence et al.97 https://bioconductor.org/packages/release/bioc/html/

IRanges.html

ComplexHeatmap v.2.4.2 Gu et al.101 https://bioconductor.org/packages/release/bioc/vignettes/

ComplexHeatmap/inst/doc/complex_heatmap.html
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reshape v.0.8.8, Wickham et al.102 https://cran.r-project.org/web/packages/reshape/index.html

pairwiseComparisons v.3.1.2 Patil et al.103 https://cran.r-project.org/src/contrib/

Archive/pairwiseComparisons/

ggstatsplot v.0.6.8 Patil et al.104 https://indrajeetpatil.github.io/ggstatsplot/

Hmisc v.4.4.2, Harrell et al.105 https://cran.r-project.org/web/packages/Hmisc/index.html

BSgenome.Hsapiens.

UCSC.hg19

Team TBD https://bioconductor.org/packages/

release/data/annotation/html/BSgenome.

Hsapiens.UCSC.hg19.html

survival v.3.2–11 Therneau et al.95 https://cran.r-project.org/web/packages/survival/index.html

survminer v.0.4.9 Kassambara et al.100 https://cran.r-project.org/web/packages/survminer/index.html

signature.tools.lib v2.1.2 Degasperi et al.9 https://github.com/Nik-Zainal-Group/signature.tools.lib

factoextra v1.0.7 Kassambara et al.94 https://cran.r-project.org/web/packages/factoextra/index.html
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Anton G. Henssen

(henssenlab@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The WGS data that support the findings of this study have been deposited with the European Genome-phenome Archive

(https://www.ebi.ac.uk/ega/) under accession nos. EGA: EGAS00001001308,34 EGA: EGAS00001004022,30 EGA:

EGAS00001006983, EGA: EGAS00001007016, and EGA: EGAS00001007019 and are publicly available as of the date of pub-

lication.

d All original code used to analyze the sequencing data, perform the statistical analysis, and generate the plots have been depos-

ited and is publicly accessible in GitHub Github: https://github.com/henssen-lab/mutsignsNBLpaper as of the date of publica-

tion.

d All the raw data required to support the conclusions reported in this manuscript, including the results from variant calling and

mutational signature analysis, is available in Zenodo under DOI: Zenodo: https://doi.org/10.5281/zenodo.8032024.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study comprised the analyses of tumor and blood samples of 150 human patients diagnosed with neuroblastoma between 1991

and 2016. All stages, sex and age were included in this study (Figure 1). All samples were collected at diagnosis from untreated pa-

tients. Patients were registered and treated according to the trial protocols of the German Society of Pediatric Oncology and Hema-

tology (GPOH). This study was conducted in accordance with theWorld Medical Association Declaration of Helsinki (2013) and good

clinical practice; informed consent was obtained from all patients or their guardians. The collection and use of patient specimens was

approved by the institutional review boards of Charité-Universitätsmedizin Berlin and the Medical Faculty, University of Cologne.

Specimens and clinical data were archived and made available by Charité-Universitätsmedizin Berlin or the National Neuroblastoma

Biobank and Neuroblastoma Trial Registry (University Children’s Hospital Cologne) of the GPOH.

METHOD DETAILS

Sequencing data
This study is based on the analysis of two cohorts: (1) Discovery cohort, and (2) Validation cohort.

Discovery cohort

120 neuroblastoma primary tumor and matching control samples. Those samples are divided into two datasets. The first one,

sequenced in Cologne, was completed in 2015,34 and it is composed of WGS from 56 primary tumor and matching blood control

samples (Illumina HiSeq). It was downloaded (https://www.ebi.ac.uk/ega/) under accession number EGA: EGAS00001001308.34
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The second one, sequenced at the German Cancer Research Center, was completed in 2017–2019, and it includes WGS of 64 pri-

mary tumor andmatching control samples (Illumina HiSeq X Ten). The data of 53 out of the total 64 patients was publicly available and

downloaded (https://www.ebi.ac.uk/ega/) under accession number EGA: EGAS00001004022.30 The data of the 11 remaining pa-

tients is now available (https://www.ebi.ac.uk/ega/) under accession number EGA: EGAS00001006983. The quality of the raw

data was assured using FastQC.73 Reads were 30 trimmed for both quality and adapter sequences, with reads removed if the length

was shorter than 20 nucleotides. Burrows–Wheeler Aligner MEM74 v.0.7.15 with default parameters was used to align75 the reads to

human reference assembly hg19. PCR and optical duplicates were marked with bammarkduplicates2 from BIOBAMBAM276 v2.0.87

(https://github.com/gt1/biobambam2). Six patients have been excluded from the analyses due to an abnormally high number of SVs

detected (CB2044, NBL47, NBL49, NBL50, NBL53, NBL54). They present in averagemore than 5-fold SVs than the rest of the cohort

(median of SVs of the cohort: 14 SVs per patient; median of SVs of the excluded patients: 70.5 SVs per patient).

Validation cohort

This dataset was completed in January 2022, and it is composed of ultra-deep WGS (x200) from 39 primary tumor and matching

control samples (adrenal gland, blood, fat tissue, lymph node, muscle, skin) (Illumina NovaSeq S4). The data is available (https://

www.ebi.ac.uk/ega/) under accession numbers EGA: EGAS00001007016 and EGA: EGAS00001007019. The quality of the raw

data was assured using FastQC.73 Reads were 30 trimmed for both quality and adapter sequences, with reads removed if the length

was shorter than 20 nucleotides. Burrows–Wheeler Aligner MEM74 v.0.7.15 with default parameters was used to align75 the reads to

human reference assembly hg19. PCR and optical duplicates were marked with bammarkduplicates2 from BIOBAMBAM276 v2.0.87

(https://github.com/gt1/biobambam2). Three patients have been excluded from the analyses due to a contamination on normal sam-

ple (A06R-NFBQNJ, A06R-NFVDJM, A06R-GNBIPE).

Variant calling
SNVs and indels

Somatic single-nucleotide variants and small insertions and deletions were detected using Mutect2 v.4.1.8.1 from the GATK77 soft-

ware package, with standard parameters according to GATK best practices recommendations. Variants were filtered using recom-

mended filtering parameters, removing all germline mutations using a panel of normals.

SVs

In matched normal and tumor samples, somatic structural variants were called using three different variant callers with their corre-

sponding complementary methodologies: Delly278 v0.7.7, SvABA79 v.1.1.0, and Novobreak80 v.1.1.3 with default parameters. To in-

crease specificity, we followed the standard practices for SV consensus calling and intersected all the variants from the three callers

keeping the ones detected at least in two of them. An exception has been made for insertions since we only identified them using

SvABA. Variants with both breakpoints within a window of 500 bpwere collapsed. To increase sensitivity in our consensus approach,

each variant included in the final set passed all the standard filters in at least one of the required two callers to be considered in our

analysis, not requiring the passing of all the standard filters in both callers.

CNAs

Allele-specific copy-number (CN) profiles were generated from tumor and normal B allele frequencies (BAFs) and LogR values using

ASCAT81 v2.6 with parameters adjusted for sequencing data input (segmentation penalty = 200 and aspcf function gamma = 1). The

segmentation procedure from ASCAT was replaced with a custom implementation that only considers BAFs to determine start and

endpoints of segments but still estimates the segment’s coverage using the log coverage ratios. This approach avoids potential over-

segmentation due to noisy LogR values. All CN profiles were inspected manually for quality control. For samples with an estimated

tumor purity, below 60% CN calling was rerun with adjusted purity and ploidy values that were manually selected after inspection of

the sunrise plots and in agreement with pathology estimates of tumor purity. We assigned different copy number states to all profiles

considering the local copy number and overall ploidy estimates. CN gain was defined as log2((Cnmajor + Cnminor)/ploidy) > 0.3; CN

loss as log2((Cnmajor + Cnminor)/ploidy) < �0.3. CN amplifications and homozygous losses have been determined following

COSMICCNA parameters (https://cancer.sanger.ac.uk/cosmic/help/cnv/overview). In the case of amplifications, we added an addi-

tional filter of log2((Cnmajor + Cnminor)/ploidy) > 1.25 to increase specificity. For three patients no CNA results could be obtained

(NBL31, NBL36, and NBL61).

Variant calling in the validation cohort

Somatic SNVs were detected using MuSE2.082 v1.0rc (https://github.com/wwylab/MuSE) in two-steps: Muse Sump and Muse call,

using recommended parameters. SNVs were filtered using tier-based cutoffs from a sample-specific model computed by the

method, removing Tier5 class. Indels were called using Pindel83 v 0.2.5b9. with standard parameters and filtered following the

next parameters; VAF=0.2, cov = 20, hom = 6. Somatic SVs were detected using Delly278 v0.8.1 with default parameters. SVs

were processed and filtered using recommended filtering parameters, removing contamination and variants <50bp in length.

Allele-specific copy-number (CN) profiles were generated using Battenberg84 v2.2.9 with default parameters. All the reference files

used on general static were downloaded from (https://ora.ox.ac.uk/objects/uuid:2c1fec09-a504-49ab-9ce9-3f17bac531bc)

following the recommendations by the developers of the method.
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Identification of variants affecting genes and chromosome arms
Chromosomal arms

Gains and losses of chromosomal arms have been determined intersecting the coordinates of the chromosomal regions with the

CNA gains and losses, using bedtools85 v2.29.2 with parameters -wo -f 1 -F 0.60 (https://bedtools.readthedocs.io/). We considered

an overlap of the whole CNA with at least 60% of the chromosomal arm.

Genes

We predicted the variant effect for SNV and indel calls using Ensembl VEP86 (Variant Effect Predictor) v.102.0. Only SNVs and indels

classified as missense and stop gained overlapping genes, were considered. For SV calls, we considered all the genes affected by

SV breakpoints. We classified them in two types: (1) SV close to gene, defined as genes with at least one SV breakpoint at a distance

of +/� 20 kb; (2) SV within gene, defined as genes overlapping at least one SV breakpoint. For CNA calls, we considered the genes

overlapping amplifications or homozygous deletions.

Mutational signatures analyses
Themutational signatures analyses have been performed using the samemethodology for both the discovery and validation cohorts.

SNV signatures (SBS)

To retrieve mutational signatures related to somatic single-nucleotide variants operating in neuroblastoma, we used the R package

mutSignatures87 v.2.1.1. We started pre-processing all the SNVs in coding and non-coding regions detected in our patients. We

applied a filtering step for non-SNV variants, followed by the tri-nucleotide context extraction for each of the variants which are clas-

sified in 96 different mutation types, or features, and counted across samples. Next, we ran the de-novo signature extraction step

where non-negative matrix factorization (NMF) is performed. Complying with the pipeline recommendations, we computed 500 iter-

ations, first, evaluating different choice of ranks/number of signatures: k=4, k=5, and k=6. We chose k=4, resulting in four de-novo

signatures, based on the presence of clusters with consistent non-negative high silhouette scores. Then, we determined which

known COSMIC v.3.2 signatures (94 SBS reference signatures; https://cancer.sanger.ac.uk/signatures/sbs/) matched our de-

novo signatures, using a cosine similarity threshold ofR0.85. In the deconvolution step, we estimated the absolute and relative expo-

sure of the COSMIC mutational signatures in each of the patients. Next, to increase specificity and reduce the false positive assign-

ment we filtered all signatures showing an absolute exposure lower than 5%of the total number ofmutations in our cohort. Finally, we

obtained four COSMIC signatures: SBS3, SBS5, SBS18, and SBS40. The same signatures were extracted in the validation cohort.

Indel signatures (ID)

Mutational signatures associated with small somatic insertions and deletions (<50 bp) have been extracted using the R package

YAPSA88 v.1.16.0, which includes PCAWG/COSMIC indel signatures (18 ID reference signatures; https://cancer.sanger.ac.uk/

signatures/id/), following the standard pipeline. This pipeline starts with a pre-processing step of all the indels detected in our pa-

tients, in which we annotate the sequence context 10bp downstream and 60bp upstream of each variant, the variant type, and

the length. In line with the SNV signature analysis, indels are classified in 83 different classes of features, and counted across sam-

ples. Next, we computed the supervisedmutational signature analysis step, based on the linear combination decomposition function

(LCD), obtaining the exposure for each knownmutational signature in each patient. Signature exposure per neuroblastoma risk group

was estimated from the exposure per patient. In order to reduce false positive calls, recommended signature-specific cutoffs for the

indel-based PCAWG signatures have been applied, using the determined value of optimal cost factor = 3. As an additional step to

increase specificity, we filtered all signatures showing an absolute exposure lower than 5%of the total number of indels in our cohort.

From this analysis, we have obtained six PCAWG/COSMIC indel signatures: ID1, ID2, ID4, ID6, ID8, and ID9. Applying the same

methodology to the validation cohort we obtained: ID2, ID4, ID5, ID6, and ID9 indel signatures.

CNA signatures (CX)

To quantify the activity of copy number signatures in our samples, we used the 17 signatures that have been derived from over 6,000

tumors of the cancer genome atlas,8 following themethodology used byDrews et al. (17 CX reference signatures; https://github.com/

markowetzlab/Drews2022_CIN_Compendium). Using the raw absolute copy number as obtained from ASCAT (for the discovery

cohort) or Battenberg (for the validation cohort) as input, very copy number quiet samples are removed and first 43 features

describing the fundamental features of the copy number profiles are extracted from the remaining profiles. Afterward the exposure

for each previously described signature in each of our samples is calculated based on the posterior distribution of the extracted fea-

tures. As an additional step to increase specificity, we filtered all signatures showing an exposure lower than 5%of the total exposure

in our cohort. From this analysis we obtained eight CNA-based signatures: CX1, CX2, CX3, CX5, CX7, CX11, CX14, and CX15.

Applying the same methodology to the validation cohort we obtained: CX1, CX2, CX3, CX4, CX6, CX14, and CX15 CNA signatures.

SV signatures (SV)

Mutational signatures associated with somatic structural variants have been extracted using the R package Palimpsest89 v.2.0.0

following the standard pipeline for this variant type. This pipeline starts with a pre-processing step in which we annotate the type

(deletions, inversions, tandem-duplications, and translocations), size (<1 kb, 1–10 kb, 10–100 kb, 100 kb–1 Mb, 1–10 Mb, and

>10 Mb), and clustered nature of rearrangements (distinguish between clustered – R 10 breakpoints within a 1 Mb window – and

non-clustered events). SVs are classified into 38 different classes of features and counted across samples. Next, we computed

the de-novo signature extraction step, based on NMF. Complying with the pipeline recommendations, we computed 500 iterations

with num_of_sigs = auto (the appropriate rank/number of signatures was estimated from NMF metrics such as the cophenetic
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distance, obtaining k=5). In the final step of the pipeline, we estimated the absolute and relative exposure of each signature in each

sample. Following what we did for the other variant types to increase specificity we filtered all signatures showing an absolute expo-

sure lower than 5% of the total number of mutations in our cohort. As a result, we obtained five de novo signatures. In order to eval-

uate if the de novo SV-based signatures found in neuroblastoma matched any of the 21 reference SV signatures from previous pan-

cancer studies9 we used the deconvolution_compare function of Palimpsest obtaining cosine similarities between signatures. Using

the same cosine similarity threshold from the SNV analysis (R0.85) we identified two matches. De novo signatures SV2, and SV3

corresponded to reference signatures R6a (MDM2, CDK4, and 17q mutations), R6b (MDM2, and CDK4 mutations).9 Although

SV1 and R2 (TP53 mutations) also showed a cosine similarity R0.85 we could not confirm the match due to mutational profile dis-

tances (high presence of small deletions < 1kb in SV1). In addition, we described three de-novo signatures that did not match any

reference signature. We named them based on the prevalence of SVs in the different features classes: (1) SV1, small deletions; (2)

SV4, large simple intra and interchromosomal SVs + clustered translocations; (3) SV5, medium size simple intra and interchromo-

somal SVs. Applying the same methodology to the validation cohort we obtained 5 de novo signatures, 3 of which present a cosine

similarity >0.75 with the SV-based signatures from the discovery cohort.

From the patient’s exposure, we assessed the contribution of each of the different mutational signatures from the different variant

types within neuroblastoma risk groups.

Subclonal signatures analysis
The analysis of subclonal signature trajectories has been performed with the method TrackSigFreq41 based on the observed density

of mutation frequencies and changes in mutational signature activities. This method has been used instead of its predecessor,

TrackSig,90 because it adds the advantage to identify distinct populations of mutations that share similar signature activities.

TrackSigFreq has been executed using the SNV VCF file generated by MuSE2.082 as described in the variant calling section, and

copy number and purity information from Battenberg.84 We selected the mutational signatures detected by mutSignatures, as ex-

plained in the mutational signatures analysis section, to evaluate the changes in the trajectory of the mutational signature activity

through the different cancer cell fractions. To avoid losing mutational signatures with low activity, we set the exposure filter to

0 to visualize the performance of all mutational signatures without restrictions. To compare the activity of the different signatures

across the cancer cell fraction (CCF), we selected for each signature the exposures for the highest and lowest CCF, per patient.

We used the same statistical analysis explained below, comparing the frequencies of signature activity per risk group, and per CCF.

Homologous recombination deficiency analysis
The analysis of homologous recombination deficiency has been performed using two complementary approaches: 1) presence of

somatic mutations in HRR genes, and 2) HRDetect algorithm.

HRR genes

The presence of mutations in HRR genes has been evaluated using the set of somatic variants described in the Variant calling section

above, including SNVs, indels, SVs, and CNAs. We predicted the variant effect for SNV and indel calls using Ensembl VEP86 (Variant

Effect Predictor) v.102.0. Only SNVs and indels classified asmissense and stop gained overlapping genes, were considered. For SV

calls, we considered all the genes affected by: (1) SV close to gene; (2) SVwithin gene, defined in the Identification of variants affecting

genes and chromosome arms section above. For CNA calls, we considered the genes overlapping amplifications or homozygous

deletions. The set of HRR genes considered in this analysis correspond to 94 genes associated to the homologous recombination

repair (HRR) pathway, including the 15 HRR genes from the PROfound clinical trial64 (BRCA1,BRCA2, ATM, BRIP1,BARD1,CDK12,

CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, and RAD54L). We used the mutational status of these

genes to compute the correlation with the activity of mutational signatures and complex rearrangements in our data.

HRDetect analysis

For this analysis we used the signature.tools.lib R package9 (https://github.com/Nik-Zainal-Group/signature.tools.lib) for mutational

signatures analysis, which includes the HRDetect pipeline that computes the HRDetect BRCAness probability score.51 Following the

best practices specified by the authors, we used the tri-nucleotide context from our previousmutational signature analysis along with

the COSMIC v.3.2 reference signature catalog. We also supplied the indel, SV, and CNA calling from the Variant calling step

described above, to compute indels classification, rearrangements, and the copy number-based score HRD-LOH. Then the method

extracts six features: (1) proportion of deletions at microhomology; (2) SBS3 exposure; (3) R3 exposure; (4) SBS5 exposure; (5) HRD

LOH index; (6) SBS8 exposure. Finally, the function returns the HRDetect BRCAness probability score for all the samples. We used

this probability score to compute the correlation with the activity of mutational signatures and complex rearrangements in our data,

along with the evaluation of differences of BRCAness probability between risk groups.

Complex rearrangements calling and classification
To detect and reconstruct all linear and circular complex rearrangements types in neuroblastoma, we used three established com-

plementary algorithms: JaBba17 v1.0, Amplicon Architect91 v.1.2, and the R package Shatterseek92 v.0.5.

JaBba

JaBba17 has been run using standard parameters and following the best practices pipeline, including the pre-processing steps using

fragCounter and dryclean to correct for GC content and mappability and denoise the coverage data using a panel of normals. From
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these steps, we obtained the coverage input that we use along our SV calls to run the pipeline. Then, following what has been done in

previous studies,17 the output from JaBba was run into gGnome v.0.1 to classify the different complex SVs into rigma, pyrgo, TIC,

chromoplexy, chromothripsis, BFB, double minute (DM), and tyfonas.

AmpliconArchitect

We used the copy number profiles obtained from ASCAT and the bam files of all tumor samples as input to PrepareAA91 (https://

github.com/jluebeck/PrepareAA), a wrapper function that handles the preprocessing and execution of AmpliconArchitect v.1.2.

We predicted the types of amplifications present in Amplicon Architect’s91 output using AmpliconClassifier16 v.0.4.6 with standard

parameters except for –force = TRUE. With this method we classified circular amplicons in ecDNA and BFB, and linear amplicons in

complex non-cyclic amplicons (CnC).

ShatterSeek

ShatterSeek92 has been run from CNA and SV calls using standard parameters to detect chromothripsis. The filtering steps pre-

sented in the tutorial to obtain high confidence calls have been followed: at least 6 interleaved intrachromosomal SVs, 7 contiguous

segments oscillating between 2 CN states, significant fragment join tests, and either significant chromosomal enrichment or expo-

nential distribution of breakpoints test. In order to include chromothriptic candidates in our results that might affect highly amplified

regions, we also called low-confidence chromothripsis having at least 6 interleaved intrachromosomal SVs and 7 contiguous seg-

ments. In these cases, a final step of visual inspection was performed.

The three complex rearrangement calling pipelines have been run using the hg19 reference genome. The consensus variant calling

has been used for this analysis. Complex rearrangements detected by at least one method were considered. We evaluated each of

the overlapping complex rearrangements per patient. All overlapping complex rearrangements detected in the same patient showing

similar overlapping segments and junctions have been collapsed, keeping the one with most informative classification.

Clustered rearrangements identification

With the aim of classifying all those clustered SVs not falling into the known complex rearrangement categories we developed a

method following the clustering definition used in SV-based mutational signature analysis. Considering the consensus SV calling,

we classified as clustered rearrangements the events exhibitingR10 SV breakpoints within a 10Mb window of the genome. All clus-

tered rearrangements overlapping known complex rearrangements detected in our cohort were filtered out.

Functional analysis of complex rearrangements
Co-occurrence of the different complex rearrangement typeswas computed considering the presence of the different rearrangement

classes per patient. The figure has been created using the R package ComplexUpset93 v.1.2.1 (https://github.com/krassowski/

complex-upset).

The ratio of SVs involved in complex rearrangements has been extracted establishing the ratio of the number of SVs overlapping

segments or junctions of those rearrangements per patient.

For all detected complex rearrangement class in our cohort, we obtained the coordinates of each complex SV. Then, using 1 Mb

windows of the genome, we plotted the density of regions affected by complex rearrangements in each chromosome across the

whole human genome.

Using the coordinates information of complex rearrangements, we evaluated the overlap of the segments and junctions of these

clustered events with cancer-related genes and DNA repair genes using intersectBed function from bedtools85 v2.29.2 with param-

eters -wo (https://bedtools.readthedocs.io/). We performed this analysis for each complex rearrangement class separately to obtain

which genes were affected by each class differentially.

Kataegis analysis
We considered a cluster of kataegis when we called 6 or most consecutive SNVs with an intermutation distance of < 1kb. The same

method has been used in previous studies.32

Mutational scenarios analysis
The three mutational scenarios are generated using a hybrid between hierarchical and k-means unsupervised clustering methodol-

ogy (hkmeans from the factoextra R package94). We set the rank/number of clusters at k=3, after evaluation using fviz_nbclust, from

the same package, which determines and visualize the optimal number of clusters using different methods such as gap statistics. The

information fed to the clustering method was the scaled frequency of the different types of mutational signatures (SNVs, indels,

CNAs, and SVs) and complex rearrangements for each single patient. No signatures were excluded. No risk group classification,

mutational status of known driver genes (i.e., ALK, MYCN, ATR, etc.) or presence of neuroblastoma-associated chromosomal

arms rearrangements (i.e., 17q, 11p, 1p, etc.) was used to compute the clustering. From the mutational signatures and complex re-

arrangements data, we obtained 3 different clusters which we namedmutational scenarios, which when compared to the clinical risk

group classification, showed a concordance of more than 80% of the samples. Scenario #1 was enriched in high-riskMYCN-ampli-

fied patients (20 HRMNA, 3 HR non-MNA, 1 non-HR), scenario #2 in high-risk non-MYCN-amplified patients (1 HRMNA, 33 HR non-

MNA, 7 non-HR), and scenario #3 in non-high-risk patients (3 HR MNA, 5 HR non-MNA, 41 non-HR). From the results of the hybrid

clustering analysis, we were able to extract the mean clustering distances for each feature (mutational signatures and complex
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rearrangements) per scenario. Using this information, and considering a distance threshold of 0.3 to contemplate that the feature of

interest has a moderate/strong association, we identified the defining features for each scenario.

QUANTIFICATION AND STATISTICAL ANALYSIS

All comparisons between distributions in the different neuroblastoma risk groups were made using the non-parametric Wilcoxon

rank-sum test. To assess if there are differences between risk groups, we used the non-parametric Kruskal-Wallis test. The relation-

ship between different variables such as signatures, complex rearrangements, andmutated genes has been calculated using Spear-

man’s correlation coefficient. All statistical analyses have been corrected by multiple testing when applicable using the false discov-

ery rate (FDR) correction. All p values in the main text have been obtained using theWilcoxon rank-sum test unless stated otherwise.

The significance level has been established at p < 0.05.

Log rank tests were used for survival analysis across subgroups. To assess the clinical impact of the three defined mutational sce-

narios, we stratified our patients by scenario and clinical risk group classification. With this methodology wewere able to evaluate the

differences in overall survival between scenarios and risk groups. The subgroups for the analysis were: mutational scenario #1

(n = 24; 20 HRMNA, 3 HR non-MNA, 1 non-HR), mutational scenario #2 (n = 41; 1 HR MNA, 33 HR non-MNA, 7 non-HR), mutational

scenario #3 (n = 49; 3 HRMNA, 5 HR non-MNA, 41 non-HR), high-risk MYCN-amplified patients (n = 24), high-risk non-MYCN-ampli-

fied patients (n = 41), and non-high-risk patients (n = 49). To assess the clinical impact of complex rearrangements in this tumor, we

stratified our patients by the presence/absence of linear and circular complex SVs. The subgroups for the analysis were: Linear

comp. rearrang.-/ecDNA� (n = 63), Linear comp. rearrang.+/ecDNA� (n = 26), Linear comp. rearrang.-/ecDNA+ (n = 15), and Linear

comp. rearrang.+/ecDNA+ (n = 10).

To assess the hazard risk associated to the mutational scenarios compared to neuroblastoma risk group classification, we

computed two univariates Cox proportional hazards regression analysis using the coxph function from the survival R package.95

Same subgroups used for the survival analysis, defined above, were used here. Hazard ratios, give the proportional clinical risk of

belonging to each of the subgroups, including upper and lower 95% confidence intervals. Scenario #3 and non-high-risk patients

have been used as reference in this analysis. Statistical significance was assessed through the Wald statistic value for each variable

and through the Log rank test for the global statistical significance of the model.

Different additional R packages96–105 (see KRT) have been used to compute and plot the results from these analyses.
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