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1. Supplementary figure 

Figure S1 shows eight of the sixteen angular-measured optic chiasm maps after coregistration 

(section 3.1.4 in main manuscript). For each measurement, the estimated voxel-wise angular (𝜃�⃗⃗� ) map 

with the corresponding angular orientation of the external magnetic field (𝜃𝐵0⃗⃗ ⃗⃗  ) are shown. The 𝜃𝐵0⃗⃗ ⃗⃗   

was estimated as 𝜃𝐵0⃗⃗ ⃗⃗  = 𝑎𝑐𝑜𝑠⁡ (𝐵0
⃗⃗ ⃗⃗ (𝜃𝑖) ∙ 𝐵0⃗⃗ ⃗⃗ (𝜃0)). Middle and bottom rows also show the estimated 

R2* via α1 in M1 (Equation 2) and R2,iso* via β1 in M2 (Equation 1). 

 

Figure S 1: R2* angular (𝜃�⃗⃗� ) dependency in a coronal section of the ex vivo specimen from 7 of the 16 angular measurements. 

They are sorted using the calculated 𝐵0⃗⃗⃗⃗  (𝜃𝑖) angular elevation (𝜃𝐵0 in the inset) after coregistration: The first row shows the 

voxel-wise angular 𝜃�⃗⃗�  map constrained between 0° and 90°. Second row is the estimated R2* via α1 parameter maps analysed 

with M1 (Equation 2). Third row shows the estimated R2,iso* via β1 parameter maps analysed with M2 (Equation 1). 

 

2. Hollow cylinder fibre model in detail  

The hollow cylinder fibre model (HCFM) proposes an analytical approximation of the angular 

orientation (𝜃�⃗⃗� ) dependence of the GRE signal to 𝐵0⃗⃗ ⃗⃗ . This approximation establishes that the total MR 

signal comes from water molecules in an infinitely long hollow cylinder affected by the diamagnetic 

myelin sheath (Liu, 2010). Under this model, the diamagnetic myelin sheath magnetically is the only 

perturber of the water molecules and the myelin sheath divides the total volume in three 

distinguishable compartments: (1) the intra-axonal (SA), (2) myelin (SM) and (3) extra-cellular (SE) 

compartments. Then, the total MR signal, SC, is defined as: 

 𝑆𝐶(𝑡, 𝜃�⃗⃗� ) = 𝑆𝐴(𝑡, 𝜃�⃗⃗� ) + 𝑆𝐸(𝑡, 𝜃�⃗⃗� ) + 𝑆𝑀(𝑡, 𝜃�⃗⃗� ), (S1) 



where the signal decay coming from each compartment, as defined in (Wharton and Bowtell, 2012) 

and (Wharton and Bowtell, 2013), are defined as a function of time (t) and 𝜃�⃗⃗� : 

 𝑆𝐴(𝑡, 𝜃�⃗⃗� ) ≈ 𝜌𝐴𝑉𝐴𝑒
−𝑅2𝐴𝑡+𝑖𝜔𝐴(𝜃�⃗⃗� )𝑡, (S2a) 

 𝑆𝐸(𝑡, 𝜃�⃗⃗� ) ≈ 𝜌𝐸𝑉𝐸𝑒
−𝑅2𝐸𝑡−𝐷𝐸(𝑡,𝜃�⃗⃗� ), and (S2b) 

 𝑆𝑀(𝑡, 𝜃�⃗⃗� ) ≈ 𝜌𝑀𝑉𝑀𝑒
−𝑅2𝑀𝑡+𝑖𝜔𝑀(𝜃�⃗⃗� )𝑡−𝐷𝑀(𝑡,𝜃�⃗⃗� ). (S2c) 

In these compartmental equations, ρ, R2 and V are respectively the proton density, transverse 

relaxation rate and volumes for each compartment (defined with the corresponding sub-indices). The 

functions ωA and ωM are the (local) frequency offset of the intra-axonal and myelin water molecules 

produced by the myelin susceptibility (from (Wharton and Bowtell, 2012) and (Duyn, 2014)), defined 

as: 
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where χI and χA are the isotropic and anisotropic magnetic susceptibilities of the myelin sheath (in 

ppm), E is the exchange factor between compartments (in ppm) and ω0 is the Larmor frequency (= 

γ|𝐵0⃗⃗ ⃗⃗ |, in MHz, with γ the gyromagnetic ratio) of the water molecules. The DE and DM functions are the 

dephasing in the extracellular and myelin compartments across the voxel. DE is defined, in the work of 

(Wharton and Bowtell, 2013), as a piece-wise function using the approximation introduced by 

(Yablonskiy and Haacke, 1994) and discussed in the following section. The DM function is assumed to 

be negligible in this study, i.e., DM ≈ 0. 

 

3. Analytical expression of the dephasing component (D E) of the extracellular 

compartment (SE) 

 Yablonskiy and Haacke, (1994) proposed the analytical expression for the magnetic dephasing 

of a medium due to the presence of cylindrical dephasors (defined as cylinders with a different 

magnetic susceptibility than the medium) oriented with an angle 𝜃�⃗⃗�  to 𝐵0⃗⃗ ⃗⃗  defined as: 
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(S4) 

where Vc is the cylinder’s volume (equal to the fibre volume fraction, FVF), J0 is the zeroth-order 

Bessel’s function of the First Kind, u is the variable of integration and ωE is the frequency offset in the 

extracellular space. The latter is defined as: 

 𝜔𝐸(𝜃�⃗⃗� ) = 2𝜋𝜒𝐸𝑠𝑖𝑛
2(𝜃�⃗⃗� )𝜔0, (S5) 

where χE is the mean susceptibility of the myelin sheet, defined as (χI + 0.25 χA)(1 – g2
ratio). In the work 

of (Wharton and Bowtell, 2013; Yablonskiy and Haacke, 1994), Equation S4 was approximated for two-

time scales divided by the so-called critical time (α in (Wharton and Bowtell, 2013)), defined as: 

 𝛼 = 1.5 ⋅ 𝜔𝐸
−1. (S6) 



For times shorter than the critical time, the dephasing function is approximated by a quadratic 

function, while for times longer than the critical time this function becomes linear. The corresponding 

analytical expressions (Yablonskiy and Haacke, 1994) are: 
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In this equation, 𝐷𝐸
′  and 𝐷𝐸

′′ are expressions having all the parameters that are not time 

dependent, including sin4(𝜃�⃗⃗� ) and sin2(𝜃�⃗⃗� ), respectively. This simplified expression, especially the 

quadratic approximation, is used later (next section). However, this piecewise approximation has a 

discontinuity at this critical time, as observed in Figure S2. To avoid this discontinuity when DE 

overpasses the critical time for the in silico data, we used an analytical solution to Equation S4. This 

solution was performed in Mathematica 12 (Wolfram Research, Inc., Champaign, IL (2020)), giving the 

following expression: 

 𝐷𝐸(𝑡, 𝜃�⃗⃗� ) = 0.5 ⋅ 𝐹𝑉𝐹 (−2 + 𝜔𝐸𝑡𝐽1(𝜔𝐸𝑡)(−2 + 𝜋𝜔𝐸𝑡𝐻0(𝜔𝐸𝑡)) +

𝐽0(𝜔𝐸𝑡)(2 + (2 − 𝜋𝐻1(𝜔𝐸𝑡))(𝜔𝐸𝑡)
2)), 

(S8) 

in where J1 is the first-order Bessel’s function of the First-Kind, and H0 and H1 are the zeroth and first-

order Struve functions ((Struve, 1882) and (Aarts and Janssen, 2016)), respectively. The offset 

frequency in the extracellular space (ωE) is dependent on the mean angular orientation and the g-ratio, 

as defined in (Yablonskiy and Haacke, 1994) and (Wharton and Bowtell, 2012). 

 

Figure S 2:  Signal decay in the extra-cellular compartment due only to dephasing (DE) using different DE functions. The signal 
decay (i.e., exp(-DE) in Equation S2b) was evaluated in function of time (in ms) and at three different angular orientations (0°, 
60° and 90°). Two expressions for the DE function (Equation S4) were used: the analytical solution given in Equation S8 
(Integrated DE, blue curve) and the piece-wise approximation proposed in the work of Yablonskiy et al. 1994 in Equation S7 
(approximated DE, orange curve). Both functions were evaluated using the simulation values (section 3.2, Table 1). 



 

4. The magnitude of the signal decay in the hollow cylinder fibre model (HCFM) and it’s 

second-order approximation, the log-quadratic model (M2) 

The magnitude of the MR signal based on the HCFM is defined as: 

 |𝑆𝐶| ≈ √𝑅(𝑆𝐶)
2 + 𝐼(𝑆𝐶)

2, (S9) 

where Sc is the total signal defined in Equation S1 and 𝑅(. ) and 𝐼(⁡. ) are the real and imaginary 

components of Sc. Evaluating Equation S9 with Equations S1 and S2(a-c) results in: 
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2 𝑒−2𝑅2𝑀𝑡−2𝐷𝑀

+2𝑉𝐴𝑉𝐸𝜌𝐴𝜌𝐸𝑒
−(𝑅2𝐴+𝑅2𝐸)𝑡−𝐷𝐸 cos(𝜔𝐴𝑡)

+2𝑉𝐴𝑉𝑀𝜌𝐴𝜌𝑀𝑒
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(S10) 

 Using the natural logarithm function (ln(x)) of the above equation and neglecting the 

contribution of DM results in: 
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This expression can be approximated to a second-order polynomial model if the three 

functions related to time, i.e., the transverse relaxation rates (e.g. 𝑒−𝑅2𝑡), the frequency offsets of the 

intra-axonal and myelin compartments (i.e. cos(ωAt) and cos(ωMt)) and dephasing of the extra-axonal 

compartment (e.g. e-DE), are sufficiently small. Following the derivation of Wharton and Bowtell, 2013 

(Wharton and Bowtell, 2013), the approximation of Equation S11 can be achieved if both exponential 

and cosine functions are expanded using the Taylor expansion in 2nd order: 
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2
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2
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 If these conditions are fulfilled and the quadratic approximation for DE is used (DE = 𝐷𝐸
′ t2, 

Equation S7), the argument of the logarithm function in Equation S11 up to order two in time becomes: 
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The expression of Equation S13 can be approximated by a 2nd order Taylor expansion in time1: 

 𝑙𝑛(|𝑆𝑁|) ≈ 𝛾0 − 𝛾1𝑡 − 𝛾2𝑡
2, (S14) 

in which each γ-parameter is defined as: 

 𝛾0 = ln(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸 + 𝑉𝑀𝜌𝑀) = ln(〈𝑉〉𝜌), (S15a) 

 𝛾1 =
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(S15c) 

and, for simplification, ΔR2ij = R2i – R2j, Δωij = ωi – ωj and νi = Viρi (sub-indexes i and j are the 

compartment’s indices A, E and M). Note that, in contrast to (Wharton and Bowtell, 2013), we did not 

neglect the contribution of the myelin-water signal at this point. Thus, the expression in Equation S14 

can describe the magnitude of the signal decay of the HCFM by including all the compartments on 

under certain conditions: (1) the signal of the myelin compartment is completely diminished for echo 

times longer than T2M, therefore its contribution must be discarded after the corresponding echo time 

(i.e., νM ≈ 0 for TE = T2M). This also ensures that the approximation of Equation S12a remains valid for 

TE larger than T2M. And (2), given the parameters used in this simulation (section 3.2, Table 1), the 

accuracy of Equation S14 decreases at TE > 30 ms (not shown here). 

With this linear approximation of the HCFM, it is clear that the log-quadratic model (M2) can 

be defined as a simplification of Equation S14 and the M2 parameters of Equations S15a-d by 

neglecting the contribution of myelin (i.e. νM ≈ 0). If so, the parameters of Equation S14 can be 

simplified in the following equation: 

 𝑀2: 𝑙𝑛(|𝑆𝑁|) ≈ 𝛽0 − 𝛽1𝑡 − 𝛽2𝑡
2, (S16) 

Where: 

 𝛽0 = 𝑙𝑜𝑔(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸), (S17a) 

 𝛽1 =
𝑉𝐸𝜌𝐸𝑅2𝐸+𝑉𝐴𝜌𝐴𝑅2𝐴
(𝑉𝐴𝜌𝐴+𝑉𝐸𝜌𝐸)

, (S17b) 
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. 
(S17c) 

In the scenario where R2A is equal to R2E (i.e. R2A = R2E ≡ R2N, with N denoting “non-myelinated”), 

the analytical expression for β1 becomes 𝛽1,𝑛𝑚 (Equation 3, section 2.2). 

The proposed heuristic analytical expression of β1 in Equation 4, 𝛽1,𝑚, was motivated originally 

by taking Equation S17b and incorporating the myelin compartment information (VM, ρM and R2M) in a 

similar manner, resulting in the following expression: 

 
1 Note that the transition from Equation S13 to S14 was possible by performing a Taylor’s expansion of the function 

log(𝑎 + 𝑏𝑡 + 𝑐𝑡2). This expansion results in the expression log(𝑎) +
𝑏

𝑎
𝑡 +

𝑏2−2𝑎𝑐

2𝑎2
𝑡2, which are the corresponding parameters 

defined in Equations S15a-c.  

 𝛽1 =
𝑉𝐸𝜌𝐸𝑅2𝐸+𝑉𝐴𝜌𝐴𝑅2𝐴+𝑉𝑀𝜌𝑀𝑅2𝑀

(𝑉𝐴𝜌𝐴+𝑉𝐸𝜌𝐸+𝑉𝑀𝜌𝑀)
, (S18) 



which is the same expression derived in Equation S15b. Here we propose 𝛽1in Equation S18 (or 𝛽1,𝑚 in 

Equation 6 under the assumptions: 𝑅2𝐴 = 𝑅2𝐸 ≡ 𝑅2𝑁, ρA = ρE ≡ ρN, and VA + VE = 1 – VM) as a heuristic 

term rather a derived term from the HCFM (i.e. γ1, Equation S15b) given the validity range of Equation 

S14. Surprisingly, it turned out that this heuristic parameter 𝛽1 explains better the in silico fitted 𝛽1 

than the 𝛽1,𝑛𝑚 (Equations 3 and S17b, see Figure 7).  

Equation S18 can be re-written as a function of the myelin water fraction (MWF), axonal water 

fraction (AWF) and extra-axonal water fraction (EWF), defined as: 

 𝑀𝑊𝐹 =
𝜌𝑀𝑉𝑀

𝜌𝐴𝑉𝐴+𝜌𝐸𝑉𝐸+𝜌𝑀𝑉𝑀
, (S19a) 

 𝐴𝑊𝐹 =
𝜌𝐴𝑉𝐴

𝜌𝐴𝑉𝐴+𝜌𝐸𝑉𝐸+𝜌𝑀𝑉𝑀
, (S19b) 

 𝐸𝑊𝐹 =
𝜌𝐸𝑉𝐸

𝜌𝐴𝑉𝐴+𝜌𝐸𝑉𝐸+𝜌𝑀𝑉𝑀
. (S19c) 

 Since the sum of the water fractions are equal to 1, β1 becomes: 

 𝛽1 = 𝑀𝑊𝐹 ⋅ 𝑅2𝑀 + 𝐴𝑊𝐹 ⋅ 𝑅2𝐴 + 𝐸𝑊𝐹 ⋅ 𝑅2𝐸, or (S20a) 

 𝛽1 = 𝑀𝑊𝐹 ⋅ 𝑅2𝑀 + (1 −𝑀𝑊𝐹) ⋅ 𝑅2𝑁; (S20b) 

where Equation 5 (or S20b) is obtained if we assume in Equation S20a that the relaxation rate in the 

intra- and extra-cellular water is the same: 𝑅2𝐴 = 𝑅2𝐸 ≡ 𝑅2𝑁. 

 

5. In silico  data setup: SNR and irregular binning  

To make the in silico data as similar as possible to the ex vivo data, noise was added to the 

signal decay of the in silico data, in such a way that the in silico SNR is like the SNR seen in the ex vivo 

GRE data. For that, the ex vivo SNR was calculated by dividing the signal of the white matter region of 

the OC and the standard deviation of the background in (image) magnitude space. No noise correlation 

correction was performed in this calculation since the coil has only 2 receiver channels. As a result, an 

average SNR value of 112 was obtained for this region (section 3.2), and with this SNR value, a complex 

random Gaussian noise was added to the in silico data as follows: 

 𝑆𝑠𝑖𝑙𝑖𝑐𝑜(𝑡, 𝑆𝑁𝑅 = 112) = 𝑆𝑠𝑖𝑙𝑖𝑐𝑜(𝑡, 𝑆𝑁𝑅 = ∞) + 𝑁(0, 𝜎𝑠𝑖𝑙𝑖𝑐𝑜(𝑆𝑁𝑅 =

112)) + (0, 𝜎𝑠𝑖𝑙𝑖𝑐𝑜(𝑆𝑁𝑅 = 112)), 

(S21) 

where N(0,σ) is the Normal distribution with mean 0 and the standard deviation defined by: 

 𝜎𝑠𝑖𝑙𝑖𝑐𝑜(𝑆𝑁𝑅) =
|𝑆𝑠𝑖𝑙𝑖𝑐𝑜(𝑡=0)|

𝑆𝑁𝑅
, (S22) 

where the magnitude signal is divided by the desired SNR at time 0 (|Ssilico(t = 0)|).  

 With the noise added, the magnitude of the in silico MR signal at SNR = 112 was obtained: 

 |𝑆𝑆𝑖𝑙𝑖𝑐𝑜| = √𝑅(𝑆𝑠𝑖𝑙𝑖𝑐𝑜)
2 + 𝐼(𝑆𝑠𝑖𝑙𝑖𝑐𝑜)

2. (S23) 

To compare the in silico data analysis across the 5000 signal decays per simulated g-ratio, 

sampled κ and 𝜃�⃗⃗�  to the irregularly binned ex vivo data analysis (section 3.3.1 and Figure 5B), the α-

parameters and β-parameters from the in silico data required three consecutive averaging-steps: (1) 



an averaging across the 5000 replicas, resulting in the replica-averaged 𝛼�̂�(𝑖: 0,1), 𝛽�̂�(𝑗: 0,1,2) and their 

standard deviations 𝑠𝑑(𝛼𝑖), 𝑠𝑑(𝛽𝑗) per sampled κ value and 𝜃�⃗⃗� . (2) A weighted averaging across κ 

values per each 𝜃�⃗⃗�  irregular bin of the ex vivo data in each κ range. For that, it was obtained the 

distribution of the κ values from the voxels contained in each of the 20 defined 𝜃�⃗⃗�  irregular bins. The 

𝜃�⃗⃗�  range per bin and κ range is given in Table A1. Then, all the obtained distributions were averaged 

per κ range (Figure S3 from A to C) to remove possible influence of the irregular 𝜃�⃗⃗�  bins on κ. The 

standard deviation from this average was calculated, normalised and used later (referred as the 

sd(𝑃(𝜅𝑙)) in Equation S28). Next, a probability distribution, 𝑃(𝜅𝑙), was fitted accordingly (Figure S3 

from D to F) and the weighted averaging on 𝛽�̂� (the same procedure is performed for 𝛼�̂�) was calculated 

as follows: 

 
⟨𝛽𝑗⟩𝑃 =

∑ 𝛽�̂�⁡(𝜅𝑙)𝑃(𝜅𝑙)𝑙

∑ 𝑃(𝜅𝑙)𝑙
, 

(S24) 

where the expression for 𝑃(𝜅𝑙) was heuristically chosen and varied per each fibre dispersion (κ range): 

a Beta distribution for the highly dispersed fibres (κ < 1 range, Figure S3-D), defined as: 

 𝑃(𝜅𝑙 < 1) =
𝜅𝑙
𝑎−1(1−𝜅𝑙)

𝑏−1𝛤(𝑎+𝑏)

𝛤(𝑎)𝛤(𝑏)
, (S25) 

 where 𝛤(𝑐) = ∫ 𝑥𝑐−1𝑒−𝑥𝑑𝑥
∞

0
 (S26) 

is the Gamma function. The coefficients a and b estimated for this range were 3.145 and 1.234, 

respectively. Given the clear half-shaped normal distribution, a Half-Normal distribution for the mildly 

dispersed fibres (1 ≤ κ < 2.5 range, Figure S3-E) was used, defined as: 

 𝑃(1 ≤ 𝜅𝑙 < 2.5) =
√2

𝜎√𝜋
𝑒𝑥𝑝 (

−(𝜅𝑙−1)
2

2𝜎2
). (S27) 

The coefficients μ and σ were 0 and 0.4498, respectively. And given the fast decay of the values 

at the beginning of the distribution, an Exponential distribution for the highly aligned fibres (2.5 ≤ κ 

range, Figure S3-F) was used, defined as: 

 𝑃(2.5 ≤ 𝜅𝑙) = 𝜆𝑒𝑥𝑝(−𝜆(𝜅𝑙 − 2.5)). (S28) 

 The coefficient λ was 0.2241. The standard deviation of ⟨𝛽𝑗⟩𝑃 was also estimated by error-

propagating the 𝑠𝑑(𝛽𝑗) weighted by 𝑃(𝜅𝑙) and its standard deviation sd(𝑃(𝜅𝑙)), as follows:  

 

𝑠𝑑 (⟨𝛽𝑗⟩𝑃) =
√∑ (

𝑠𝑑(𝛽𝑗(𝜅𝑙))𝑃(𝜅𝑙)

∑ 𝑃(𝜅𝑙)𝑙 ⁡
)

2

+ (𝛽�̂�(𝜅𝑙)⁡𝑠𝑑(𝑃(𝜅𝑙)))
2

𝑙 , 

(S29) 

while the first squared term requires the normalisation factor (∑ 𝑃(𝜅𝑙)𝑙 ) because the weights 𝑃(𝜅𝑙) 

are not normalised, the second is not needed since sd(𝑃(𝜅𝑙)) is already normalised. Finally, the ⟨𝛽𝑗⟩𝑃
 

and 𝑠𝑑 (⟨𝛽𝑗⟩𝑃), and the ⟨𝛼𝑖⟩𝑃 and 𝑠𝑑(⟨𝛼𝑖⟩𝑃) (as in Equation S29) were averaged and error-propagated, 

respectively, as a function of the 𝜃�⃗⃗�  values for each irregular bin.  



 

Figure S3: Assembling the in silico data across the simulated κ ranges and angular (𝜃�⃗⃗� ) irregular bins. To make the in silico 

data comparable to the ex vivo data, the frequency of voxels as a function of κ was obtained per defined 𝜃�⃗⃗�  irregular bin in 

the ex vivo data (Figure 3). This was performed for the 20 𝜃�⃗⃗�  bins (AnisoBin X, with X the corresponding bin from 1 to 20, see 

Table A1) and per fibre dispersion (κ range): highly dispersed (κ < 1, A), mildly dispersed (1 ≤ κ < 2.5, B) and negligibly dispersed 
(κ ≥ 2.5, C) fibres. The mean and standard deviation across histograms were obtained (error bars). The means were normalised 
with respect to the cumulated value (i.e., sum of all the mean values) and fitted with a continuous function (𝑃(𝜅𝑙)) per  κ 
range, previously normalised: a beta distribution for κ < 1 (D), half-normal distribution for 1 ≤ κ < 2.5 (E) and exponential 
distribution for κ ≥ 2.5 (F). The standard deviation was also normalised by the cumulated value per κ range and used as the 
standard deviation of the continuous distributions (sd(𝑃(𝜅𝑙))).  

Dispersion range 

Irregular bin 
1 < κ 1 ≤ κ < 2.5 2.5 ≤ κ 

#1 and (𝜽𝟎) [0, 29.3]° 

(17.3°) 

[0, 26.5]° 

(20.4°) 

[0, 30.7]° 

(22.9°) 

#2 [29.3, 39.3]° [26.6, 36.8]° [30.8, 40.8]° 

#3 [39.4, 45.9]° [36.9, 43.5]° [40.9, 47.2]° 

#4 [45.6, 50.8]° [43.6, 48.6]° [47.3, 52.1]° 

#5 [50.9, 55.0]° [48.7, 52.9]° [52.2, 56.2]° 

#6 [55.1, 58.6]° [53.0, 56.6]° [56.3, 59.7]° 

#7 [58.7, 61.8]° [56.7, 60.0]° [59.8, 62.7]° 

#8 [61.9, 64.7]° [60.1, 63.0]° [62.8, 65.6]° 

#9 [64.8, 67.4]° [63.1, 65.9]° [65.7, 68.3]° 

#10 [67.5, 70.0]° [66.0, 68.5]° [68.4, 70.7]° 

#11 [70.1, 72.3]° [68.6, 71.0]° [70.8, 72.9]° 

#12 [72.4, 74.6]° [71.1, 73.5]° [73.0, 75.2]° 

#13 [74.7, 76.7]° [73.6, 75.7]° [75.3, 77.2]° 

#14 [76.8, 78.7]° [75.6, 77.8]° [77.3, 79.2]° 

#15 [78.8, 80.6]° [77.9, 79.8]° [79.3, 81.1]° 

#16 [80.7, 82.4]° [79.9, 81.7]° [81.2, 82.8]° 

#17 [82.5, 84.1]° [81.8, 83.6]° [82.9, 84.4]° 

#18 [84.2, 85.7]° [83.7, 85.3]° [84.5, 85.9]° 

#19 [85.8, 87.3]° [85.4, 87.3]° [86.0, 87.4]° 



#20 [87.4, 90]° [87.4, 90]° [87.5, 90] 
Table S1 : Range of angles (𝜃�⃗⃗� ) defined by [min, max] values, contained in each 𝜃�⃗⃗�  irregular bin per fibre dispersion (κ range) 

in the ex vivo data (section 3.3.1). The angular offset, 𝜃0 (see section 3.3.1), is defined as the angular average of the 1st irregular 
bin, resulting in 17.3° (κ < 1), 20.4° (1 ≤ κ < 2.5) and 22.9° (2.5 ≤ κ).  

6. The weighted-Akaike Information Criterion for the studied models  

 To assess whether the increased model complexity of M2 is better explained than M1 by the 

meGRE signal decay, the weighted-Akaike Information Criterion corrected was calculated (wAICc, 

(Burnham et al., 2011)). The wAICc was estimated based on the difference of the corrected Akaike 

Information Criterion (AICc) between the models under study. In general, the wAICc for a given set of 

j models is defined as: 

 wAICc(Ml) =
exp(−0.5⁡ΔAICc(Ml))

∑ exp(−0.5⁡ΔAICc(Mj))𝑗

, (S30) 

where ΔAICc is the difference of two AICcs defined as:  

 ΔAICc(Ml) = AICc(Ml)− min
𝑀𝑗∈{𝑀𝑗}𝑗

(AICc(Mj)), (S31) 

and the corresponding AICc per model is defined as: 

 
AICc(Ml) = 𝑛⁡𝑙𝑜𝑔 (

SSE(Ml)

𝑛
) + 2𝑘 +

2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
, 

(S32) 

where SSE is the sum of squared errors between the data points and the fitted model Ml, n is the 

sample size and k is the number of parameters in each model, when the data is being fitted by linear 

regression (Gordon, 2010).  

In the following, we consider two models: M1 = M1 (Equation 2 with k = 2) and M2 = M2 

(Equation 1 with k = 3). The work of (Burnham et al., 2011) classifies how a model is being described 

by the data based on the ΔAICc. In our conservative approach (section 3.3.2), we reduced the original 

classification of ΔAICc based on how M2 could be explained by the data and take the so-called ΔAICc > 

2 Rule to determine the threshold. First, we explored the case where AICc(M1) > AICc(M2). In this case, 

the wAICc for M2 is defined as (according to Equation S30):  

 wAICc(M2) =
1

(1+exp(−0.5𝛥AIC(M1))
, with (S33) 

 ΔAICc(M1) = ⁡AICc(M1) − AICc(M2) and ΔAICc(M2) = 0 (S34) 

which are the Equations 11 and 12 used in section 3.3.2. Note that for the case AICc(M1) ≤ AICc(M2), 

we considered that M2 is not being explained by the data as compared to M1. Second, the ΔAICc > 2 

Rule is what early studies used to dismiss a model of a study. The corresponding wAICc value for the 

dismissed model is 0.27, while the wAICc value for the best model is 0.73. It is important to mention 

that (Burnham et al., 2011) discussed that this cutoff is really poor. However, we decided to use this 

conservative rule for our study.  

 Here, we use the wAICc to test how well the data are explained by a given model as compared 

to another. It is important to mention, according to (Burnham et al., 2011), that a high wAICc for a 

specific model does not mean that this particular model fits the data the best, instead it suggests that 

this model is favourable (as compared to another model) by the data in the trade-off between bias and 

variance of the fitted model parameters given a specific dataset and sample size.  



7. R2* toolbox and in silico  dataset using Wharton and Bowtell’s in vivo  compartmental 

R2s values  

A self-made MATLAB code capable of simulating and analyzing multiecho gradient echo (meGRE) 

MR signal based on a user-defined set of parameters is presented in this work. The code provides a 

versatile tool to gain insights into the underlying processes associated with meGRE MR data. By 

allowing users to define input parameters like the ones defined in Table 1 in the main manuscript, the 

simulation can be tailored to specific research needs, facilitating a comprehensive analysis of R2* 

behavior under various scenarios. This code gives as output all the analyses presented in the main 

manuscript, particularly the first, second and fourth analyses. This self-developed MATLAB code 

empowers researchers to deepen their understanding and make informed decisions based on the 

simulated and analysed R2* using the classical M1 or log-quadratic M2 models. This code is free and 

available to use in the following Github repository: https://github.com/quantitative-mri-and-in-vivo-

histology/r2s_iso_estimation  

To demonstrate the capabilities of the MATLAB code, new in silico data was generated using the 

R2 values from (Wharton and Bowtell, 2012). These results complement the found results for the in 

silico dataset simulated with R2 values from (Dula et al., 2010). 

7.1. Methods: in silico dataset  

7.1.1. Simulated R2* signal decay from the HCFM 

Multi-echo GRE signal decay was simulated as ground truth (hereafter, in silico data) to assess 

the impact on M2 of variable fibre orientation, dispersion and myelination (i.e., g-ratio). The averaged 

MR signal, assumptions, addition of dispersion and noise were performed equally as in section 3.2. The 

main difference is the R2 values per compartment, obtained from (Wharton and Bowtell, 2012): R2N of 

27.8 s-1 and R2M of 125 s-1. 

7.1.2. Data analysis  

The generated in silico data was fitted and binned equally as in section 3.3.1. The quantitative 

analyses were also performed as described in section 3.3.2 and their corresponding subsections.  

7.2. Results 

7.2.1. First analysis: Ability of M2 to obtain the angular -independent β1  

parameter for varying g-ratio and fibre dispersion values  

Figure S4 shows the performance of M2 when estimating R2,iso* via β1 for variable g-

ratio and fibre dispersion. To visualise this, we compared the 𝜃�⃗⃗�  dependence of α1 from M1 to 

the residual 𝜃�⃗⃗�  dependence of β1 from M2 (Figure S4A and S4B). Both 𝜃�⃗⃗�  dependencies were 

quantified in Figure S4C using their respective nRMSD (Equation 9). The results are from the 

analysis performed on the in silico and ex vivo data. 

The ability of M2 to reduce the 𝜃�⃗⃗�  dependency of β1 varied with g-ratio and fibre 

dispersion, the 𝜃�⃗⃗�  dependency of α1 was also strongly influenced by g-ratio and fibre 

dispersion: smaller g-ratio values and reduced fibre dispersion increased the 𝜃�⃗⃗�  dependency 

of α1 and (the residual 𝜃�⃗⃗�  dependency) of β1 (Figure S4A and S4B, respectively).  

The fibre dispersion affected the performance of M2 similarly between in silico and ex 

vivo datasets (Figure S4C bottom). In both datasets, the improvement is largest for negligible 

https://github.com/quantitative-mri-and-in-vivo-histology/r2s_iso_estimation
https://github.com/quantitative-mri-and-in-vivo-histology/r2s_iso_estimation


dispersion (from ΔnRMSD = -13.1%-points for the in silico data with a g-ratio of 0.8 and 

ΔnRMSD = -37.6%-points for the ex vivo data). For the ex vivo data, the nRMSD(β1) was the 

lowest for the negligibly dispersed fibres (nRMSD(β1): 1.3% at κ ≥ 2.5). For the in silico data, 

the nRMSD(β1) was the lowest for the highly dispersed fibres and for a g-ratio of 0.8 

(nRMSD(β1): 0.11% to 0.21% with decreasing fibre dispersion). For the g-ratios of 0.66 and 

0.73, the nRMSD(β1) was higher but still below 19%.  

The 𝜃�⃗⃗�  dependence of α1 on fibre dispersion was the same between in silico and ex 

vivo datasets (Figure S4C top): the lower the dispersion the higher the nRMSD(α1). The 𝜃�⃗⃗�  

dependence of α1 increased as the g-ratio decreased.  

 

Figure S 4: Orientation dependence and quantification of linear model parameters (α1 and β1) for varying g-ratio 
and fibre dispersion values. (A-B) Depicted is the α1 parameter of M1 (proxy for R2*) and β1 parameter of M2 (proxy 
for the isotropic part of R2*) as a function of the angle between the main magnetic field and the fibre orientation 
(𝜃�⃗⃗� ) for different fibre dispersion and g-ratio values. The different columns depict different dispersion regimes: highly 

dispersed (κ < 1, first column), mildly dispersed (1 ≤ κ < 2.5, second column) and negligibly dispersed (κ ≥ 2.5, third 
column) fibres. Note that the smallest angle (𝜃0) varied across dispersion regimes: 17.3° (κ < 1), 20.4° (1 ≤ κ < 2.5) 
and 22.9° (2.5 ≤ κ). This was caused by the irregular binning (see section 3.1.4). (C) Depicted is the normalised root-
mean-squared deviation (nRMSD, Equation 11 in %) of the α1 parameter of M1 (proxy for R2*, top) and β1 parameter 
of M2 (proxy for the isotropic part of R2*, bottom) for different fibre dispersion and g-ratio values. The distinct colours 
of the curves in A-B or bars in C (blue and green) distinguish between in silico data with variable g-ratios (increasing 
blue hue with increasing g-ratio) and ex vivo data (olive curve). 

7.2.2. Second analysis: Assessment of the microstructural interpretability of 𝛽1 

Figure S5A and S5B report the angular-orientation (𝜃�⃗⃗� ) dependent relative differences 

(𝜖𝑛𝑚 and 𝜖𝑚, Equation 11) between the fitted β1 from the in silico data and its predicted 

counterparts using M2 (Equation 3) and the heuristic expression (Equation 4). Figure S5C shows 

the mean and standard deviation of 𝜖𝑛𝑚 and 𝜖𝑚 across angles. 

𝜖𝑛𝑚 was large, between -50% and 0%, and varied strongly with g-ratio and fibre 

dispersion. Even more, 𝜖𝑛𝑚 showed a 𝜃�⃗⃗�  dependence where the largest deviation was 

observed for the smallest g-ratio (0.66) and the lowest fibre dispersion (Figure S5A). By 

contrast, 𝜖𝑚 was smaller across all the studied fibre dispersions, between 10% and 41%, and 

showed a smaller 𝜃�⃗⃗�  dependence, which was largest for the smallest g-ratio and lowest fibre 

dispersion. However, on average, we found that negligibly dispersed fibres showed the 

smallest 𝜖𝑛𝑚 and 𝜖𝑚 per g-ratio. 



The mean across angles for 𝜖𝑛𝑚, ⟨𝜖𝑛𝑚⟩, was higher than -20% whereas the mean across 

angles for 𝜖𝑚, ⟨𝜖𝑚⟩, was higher than 15% (Figure S5C). On average across all g-ratios and fibre 

dispersion arrangements, ⟨𝜖𝑛𝑚⟩ was approximately 2 times larger than ⟨𝜖𝑚⟩, except for the 

negligibly dispersed fibres, in where ⟨𝜖𝑚⟩ was approximately 1.5 larger than ⟨𝜖𝑛𝑚⟩. 

Interestingly, the highest changes in the relative differences was observed at g-ratio of 0.66, in 

which ⟨𝜖𝑛𝑚⟩ decreased and ⟨𝜖𝑚⟩ increased with decreasing fibre dispersion. Simultaneously, 

the variability for both relative mean differences, 𝑠𝑑(𝜖𝑛𝑚) and 𝑠𝑑(𝜖𝑚) respectively, increased; 

indicating the strong residual 𝜃�⃗⃗� -dependency on the 𝛽1 parameters. 

 

Figure S 5: Assessment of the microstructural interpretability of β1 by the deviation between fitted and biophysically 
predicted β1. The relative difference (ε, Equation 11) was calculated between the fitted β1 to the in silico data and 
two biophysically-modelled expressions for β1 based on the HCFM. The two expressions for β1 values were calculated 
from the original expression for M2, β1,nm (Equation 3, resulting in εnm) and the heuristic expression, β1,m (Equation 
4, resulting in εm). This was calculated per g-ratio and fibre dispersion. (C) The corresponding mean, <ε>, and 
standard deviation, sd(ε), of the relative differences across the angular orientations (𝜃�⃗⃗� ) were estimated. The hue 

intensity coding represents increasing g-ratio value for both error estimations. 

7.2.3. Third analysis: Myelin water fraction (MWF) and g -ratio estimation from 

ex vivo data using the heuristic expression of R 2, iso* via β1, m  

Figure S6 reports the MWF estimated from the ex vivo data by inverting the heuristic 

expression for β1,m (Equation 6), using the compartmental R2 values from (Wharton and 

Bowtell, 2012) (Table 1). Figure S6A shows the estimated MWF as a function of 𝜃�⃗⃗�  while Figure 

S6B shows the median and standard deviation (sd) of the estimated MWF across 𝜃�⃗⃗� .  

The estimated MWF was larger with decreasing fibre dispersion (Figures S6A). Moreover, 

there was a trend towards larger estimated MWF for larger 𝜃�⃗⃗� . Across 𝜃�⃗⃗� , the estimated 

median ex vivo MWF was -0.01 for fibres with negligible dispersion but moved towards to even 

lower small values (MWF: -0.09) for dispersed fibres (Figure S6B, respectively). The standard 

deviation across MWF was similar for different fibre dispersions, ranging from 0.0068 to 

0.0104. 



 

Figure S6: Dependence of the MWF estimation on angular orientation for three different fibre dispersion ranges in 

ex vivo data. (A) The MWF was estimated by using the heuristic analytical expression of β1 (β1,m, Equation 4) and 

the fitted β1 for the ex vivo data using the compartmental R2 values from Wharton and Bowtell, 2013 (hues of green) 

in Table 1. This calculation was performed per angle (𝜃�⃗⃗� ) and for the three different fibre dispersion ranges: highly 

dispersed, mildly dispersed and negligibly dispersed. The increasing green hue represents decreasing fibre dispersion. 

(B) The corresponding median and standard deviation (sd) were estimated across 𝜃�⃗⃗�  per fibre dispersion range. 

7.2.4. Fourth analysis: the effect of echo time ranges on the performance of M2  

In this section, two sub-analyses were performed for in silico data at variable g-ratio 

and ex vivo data, both with negligibly dispersed fibres (i.e., κ ≥ 2.5) using the three meGRE 

subsets with different maximum echo time (TEmax). In the first sub-analysis, we presented 

similar results as in Figure 6, only for different TEmax. In the second sub-analysis, it was assessed 

whether M2 was better explained than M1 by the different meGRE subsets using the 

corresponding average wAICc of M2 (Equation 12). 

 

7.2.4.1. First sub-analysis: assessing the residual 𝜃�⃗⃗�  dependence in β1 

subsets with different maximum echo times 

Using the meGRE subset with the largest TEmax, the 𝜃�⃗⃗�  dependence of α1 and 

residual 𝜃�⃗⃗�  dependence of β1 were similar for ex vivo and in silico data (Figure S7, first 

column). M2 could greatly reduce the 𝜃�⃗⃗�  dependency of β1 when compared to the 𝜃�⃗⃗�  

dependency of α1 (Figure S7C): nRMSD(α1) of 15.7% (in silico) and 37.9% (ex vivo) was 

reduced to 3.8% (in silico) and 1.3% (ex vivo). Using the meGRE subsets with smaller TEmax 

(36 ms and smaller), M2 was less effective (Figure S7A-B, second and third column). An 

increased 𝜃�⃗⃗�  dependence was observed for β1 compared to α1 with an ΔnRMSD = 5.3%-

points at 36 ms (in silico) and ΔnRMSD = 14.1%-points at 18 ms (ex vivo). 



 

Figure S 7: Effect of the maximal echo time, i.e., meGRE subsets with different maximum echo times, on the 𝜃�⃗⃗�  

dependency of α1 and β1. (A and B) Angular orientation (𝜃�⃗⃗� ) dependence of α1 in M1 and β1 in M2 for the three 

meGRE subsets with varying maximum TE (TEmax: 54 ms, 36 ms and 18 ms). Two datasets are compared: ex 
vivo (green curve) and in silico (blue curve) data at variable g-ratio; both only for the negligibly dispersed fibres 
(κ ≥ 2.5). The magenta vertical lines in some of the subplots indicates the magic angle (𝜃�⃗⃗�  = 55°). (C) 

Quantification of the 𝜃�⃗⃗�  dependency of α1 and β1 for three meGRE subsets with different maximal echo times 

(TEmax) by is the normalised root-mean-squared deviation (nRMSD, Equation 9 in %) of the α1 parameter of M1 
(proxy for R2*, top) and β1 parameter of M2 (proxy for the isotropic part of R2*, bottom). The distinct colours 
distinguish between in silico data at variable g-ratios (clear to dark blue bars) and ex vivo data (green bar), 
both for negligible dispersed fibres (κ ≥ 2.5). 

7.2.4.2. Second sub-analysis: assessing if M2 is better explained by the data 

using meGRE subsets with different maximum echo times.  

The average wAICc showed different trends across the different meGRE subsets 

with varying TEmax for both datasets. For the ex vivo data, the average wAICc decreased 

when meGRE subsets with smaller TEmax were used. Using the meGRE subsets with the 

largest and intermediate TEmax (54 and 36 ms), the average wAICc indicated that M2 was 

better explained than M1 by the data with wAICc values in the ranges of wAICc > 0.73 

(TEmax = 54 ms) and 0.73 > wAICc > 0.5 (TEmax = 36 ms), respectively. Interestingly, for the 

in silico data, the average wAICc depended on g-ratio when the meGRE subset with largest 

TEmax was used (0.73 > wAICc > 0.5) but was below 0.5 and even non g-ratio dependent 

when the remaining meGRE subsets (the intermediate and lowest TEmax) were used (i.e., 

M2 was not better explained by the data than M1). Note that the large standard deviation 

of the reported wAICc per dataset indicates that the results are only valid on average 

whereas the wAICc for single voxels (ex vivo data) or replicas (in silico data) can be outside 

the reported ranges.   

 



 

Figure S 8: Assessing if model M2 is better explained by the meGRE signal decay than M1, quantified by the 
averaged wAICc for M2 (Equation 12). This quantification was done per meGRE subsets with different maximum 
echo time (TEmax) for the in silico data at variable g-ratios (increased blue hue in bars, higher g-ratio) with R2 
values from Wharton and Bowtell, 2013; and ex vivo data (green bar) for negligibly dispersed fibres (κ > 2.5). 
The magenta and orange lines mark the following ranges: over the magenta line (wAICc = 0.73), M2 is better 
explained by the data; between the magenta and orange (wAICc = 0.5) lines, there is a preference for M2 but 
it is ambiguous whether M2 is better explained than M1 by the data; and bellow the orange line, M2 is not 
better explained by the data than M1. 

 


