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Sodium as an Important Regulator of 
Immunometabolism
Hidetaka Miyauchi ,*  Sabrina Geisberger ,*  Friedrich C. Luft , Nicola Wilck , Johannes Stegbauer , Helge Wiig , 
Ralf Dechend , Jonathan Jantsch, Markus Kleinewietfeld , Stefan Kempa , Dominik N. Müller

ABSTRACT: Salt sensitivity concerns blood pressure alterations after a change in salt intake (sodium chloride). The heart 
is a pump, and vessels are tubes; sodium can affect both. A high salt intake increases cardiac output, promotes vascular 
dysfunction and capillary rarefaction, and chronically leads to increased systemic vascular resistance. More recent findings 
suggest that sodium also acts as an important second messenger regulating energy metabolism and cellular functions. 
Besides endothelial cells and fibroblasts, sodium also affects innate and adaptive immunometabolism, immune cell function, 
and influences certain microbes and microbiota-derived metabolites. We propose the idea that the definition of salt sensitivity 
should be expanded beyond high blood pressure to cellular and molecular salt sensitivity. (Hypertension. 2024;81:426–
435. DOI: 10.1161/HYPERTENSIONAHA.123.19489.) • 
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WHITHER SODIUM?

Earlier, all was clear.1 The intracellular composition (mus-
cle for instance) exhibited a sodium concentration of 
±10 mmol/L, potassium concentration of ±160 mmol/L, 
magnesium concentration of ±35 mmol/L, etc. Anions 
were protein and phosphate. In the extracellular plasma 
water, the corresponding concentrations were sodium, 
±151 mmol/L and potassium, ±4.3 mmol/L. In humans, 
the electrolytes were distributed within the (about 40 L) 
total body water; two-thirds were inside cells and one-
third outside cells. Sodium was mostly exchangeable and 
extracellular although some was deposited in bone, the 
fate of which was largely unclear but not so exchange-
able. By the 1970s, the regulation of these constituents 
had been well worked out and balance concepts were 
sufficiently accepted to support pressure natriuresis 
of blood pressure regulation and our understanding 
of salt and water balance.2 These ideas, and the sup-
portive body of evidence, served us clinically well and 

were convincing. A veritable clinical tool was the knowl-
edge generated by Edelman et al3 and Birkenfeld et al.4 
They studied the relationship between plasma sodium, 
exchangeable sodium, exchangeable potassium, and 
total body water. Their insights showed us that by calcu-
lating effective free water clearance, we clinicians could 
always predict whose plasma sodium was going up or 
down and even at what rate the changes would occur. As 
a result, we had a fairly clear understanding of total body 
water, electrolyte contents, plasma concentrations, and 
subsequent speculations on blood pressure regulation. 
Osmotic forces, being what they are, would dictate that 
gain of exchangeable components would increase water 
and vice versa. That these ideas (a standard model if you 
will) could have immunologic implications never occurred 
to us, and we did not need anything else.

Standard models work until the mathematical infra-
structure becomes wobbly. Titze et al5 studied only 3 
people but those for weeks over time, in a Mars-flight 
simulation study. The subjects resided in a capsule over 
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weeks. The sodium and all components of the diet were 
known. The investigators’ findings that sodium accumu-
lation ran largely independent of water accumulation (or 
vice versa) was unexpected and stressed the standard 
model. How do we fit these findings into our understand-
ing of human physiology?

The next task was to discover where the not-so-
exchangeable sodium could be hiding. This experiment 
required carcass ashing and electrolyte measurements 
with atomic absorption spectroscopy.6 The skin proved to 
be an osmotically inactive, sodium accumulation site, an 
area that was also influenced by extremes of dietary salt 
intake or kidney function. Humans carry around about 5 
kg of skin, and skin is the largest reservoir of extracellular 
fluid in the body. Skin is particularly rich in glycosamino-
glycans, which because of their strong negative charge, 
in particular for sulphated glycosaminoglycans, became 
a prime candidate for a sodium interaction. Support for 
a role of glycosaminoglycans, in particular, sulphated 
glycosaminoglycans, was found in initial studies.7,8 How-
ever, this notion has been contested in 2 more recent 
rodent studies showing either no change or a reduction 
in glycosaminoglycans in animals receiving a high-salt 
diet (HSD) or in the deoxycorticosterone acetate and 
high-salt diet (DOCA)-salt model, respectively.9,10 More-
over, no indication of Na+ binding to glycosaminoglycans 
was identified.10 Thus, follow-up studies have to address 
this issue and to explain the discrepancies. Does sodium 
accumulation apply to man?

The development of magnetic resonance imaging 
for sodium allowed to visualize and quantify the tissue 
sodium content in humans.11 Of note, sodium content 
appeared to be higher in skin than in muscle for men, 
while women tended to have higher muscle sodium.12 
Interestingly, hypertensive patients, patients with end-
stage renal disease, as well as patients with autoimmune 
disease display an increased sodium content in this 
third space.13 Sodium stores seem to be dynamic, since 
SGLT-2 inhibition in patients with type 2 diabetes,14 
diuretic treatment in patients with acute heart failure,15 
successful treatment of patients with primary aldoste-
ronism,11 hemodialysis,16 and after kidney transplanta-
tion17 show reduced tissue sodium content. In addition, 

an experimental HSD study in humans triggered cuta-
neous Na+ deposition as assessed by chemical analysis 
of punch biopsies.18 These findings indicate that stored 
sodium can be mobilized. However, whether or not the 
sodium is readily exchangeable to immediately satisfy 
the Edelman equation is another issue.

These largely descriptive findings were enhanced 
by additional human balance studies in another Mars- 
simulation study. However, in this study, dietary salt intake 
could be manipulated. The subjects ingested diets differ-
ing only in 3 levels of sodium content. The investigators 
confirmed results from the earlier Mars-flight simulation 
study and found rhythmic sodium excretory and reten-
tion patterns that are independent of blood pressure or 
body water and occur independently of salt intake.19 The 
idea that sodium can accumulate in skin and skeletal 
muscle is now generally accepted,20,21 while how sodium 
influences blood pressure is not.21 Taken together, these 
hosts of findings suggested that the standard model 
requires revision. More importantly, what local molecular 
mechanisms could help us further?

The answers lay in basic research. Parallel to the 
above reports, the Titze group focused on address-
ing the mechanisms involved. They were aware that 
TonEBP (tonicity-responsive enhancer-binding pro-
tein; NFAT5 [nuclear factor of activated T-cells 5])—a 
rel-like protein that activates transcription in response 
to hypertonicity—can detect even minimal changes in 
osmolarity.22 HSD led to interstitial hypertonic sodium 
accumulation in skin, resulting in increased density and 
hyperplasia of the lymph-capillary network. Mechanisti-
cally, the NFAT5–VEGF-C (vascular endothelial growth 
factor C) axis in mononuclear phagocytes infiltrating 
the interstitium of the skin was the underlying mecha-
nism for these effects on skin lymphatics. Mononuclear 
phagocyte depletion or VEGF-C trapping by soluble  
VEGFR-3 (vascular endothelial growth factor receptor-3)  
blocked VEGF-C signaling, augmented interstitial 
hypertonic volume retention, decreased endothelial 
NO synthase expression, and elevated blood pressure 
in response to HSD.23 These preclinical findings were 
the first to connect immune cells with salt balance, 
which was also observed in humans in later follow-
up studies.24,25 Obvious calls were issued to confirm 
these results that were based on the uncomfortable 
assumption that differences in osmolality can exist 
between cell surfaces in a nanometer range. Thus, the 
experiments were repeated. The subsequent results 
demonstrated that the skin harbors a hypertonic fluid 
compartment in which mononuclear phagocytes modify 
local cutaneous electrolyte clearance via NFAT5 and 
VEGF-C/VEGFR-3–mediated modulation of cutane-
ous lymphatic capillary function. Thereby, mononuclear 
phagocytes carry out a homeostatic and blood pres-
sure–regulatory function (Figure 1).26 In this study, 
several confirmatory methods were used to investigate 

Nonstandard Abbreviations and Acronyms

CVD cardiovascular disease
EAE  experimental autoimmune 

encephalomyelitis
HSD high-salt diet
IL interleukin
NCLX Na+/Ca2+ exchanger
Th17 T helper 17
VEGF-C vascular endothelial growth factor C
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the osmolar differences at the cellular level.26,27 Sub-
sequently, these ideas were translated to an infectious 
disease and inflammatory skin diseases, incorporat-
ing both magnetic resonance imaging for sodium and 
molecular data.13,28–30 Most recently, a link between 
inflammation, metabolic dysfunction in obesity, and 
tissue sodium levels was established.31 These ideas, 
particularly those concerning osmolar gradients in the 
nanometer range, understandably caused skepticism.32 
However, as discussed earlier, the methods available at 
the present time did not give sufficient detailed spatial 
information to allow resolving these questions. Method-
ological differences could be responsible. For instance, 
the precision ashing of tissues and atomic absorption 
spectroscopy (rats) to measure cation concentrations 
was not performed in all studies. These methods require 
expensive and not distributable facilities. Recent data 

from the Pravenec laboratory, which measured such 
precautions, supported the notion that sodium accu-
mulation and blood capillary rarefaction in the skin pre-
disposes to hypertension in a rat model.27 Nonetheless, 
we argue that immune cells are involved in electrolyte 
metabolism, even at the most local of levels. We are 
convinced that this argument is compelling.

SODIUM SHIFTS THE IMMUNE CELL 
BALANCE TOWARD INFLAMMATION
Immune cells patrol throughout our body, change loca-
tion from gut or bone marrow to the circulation, spleen, 
lymph nodes, and to target organs to fulfill their diverse 
functions. On their way, they sense and integrate diverse 
environmental signals, translate them into intracellular 

Figure 1. A schematic diagram of how local (nanometer domain) sodium gradients influence osmotic sensors, effectors, and 
immune cells.
eNOS indicates endothelial NO synthase; TonEBP, tonicity-responsive enhancer-binding protein; VEGF-C, vascular endothelial growth factor; 
VEGFR-2, vascular endothelial growth factor receptor-2; and VEGFR-3, vascular endothelial growth factor receptor-3.
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information to permit adaption to a particular inflam-
matory environment for the maintenance of immune 
homeostasis. In the 1990s, investigators aimed to study 
the mechanism of saturated potassium iodide to treat 
infections. They used increases in NaCl as a control 
and found that increases by 40 mM, which is similar to 
increases found in skin stores upon dietary and inflam-
matory stimuli, could provoke proinflammatory responses 
in peripheral blood mononuclear cells.33 These findings 
were among the first studies to show that ionic signals 
are able to profoundly impact immune cell responses. 
Since then, the literature clearly demonstrates that high-
salt conditions favor proinflammatory macrophage and T 
helper 17 (Th17) cell activation and curtail the regula-
tory and anti-inflammatory activation of these cells.34,35 In 
macrophages, the NCLX (Na+/Ca2+ exchanger) is criti-
cally involved in sensing ionic sodium balance changes36 
and triggers enhanced activation of osmoprotective 
signaling pathways, such as NFAT5. Of utmost interest, 
these high salt responses contain profound metabolic 
adaption of macrophages, which includes triggering 
increased stabilization of hypoxia-inducible factor 1α and 
autophagy.37 This process helps to fight infections.27,36–40 
Increased local sodium conditions, therefore, represent a 
local microenvironmental cue, which can strengthen bar-
rier surfaces.27,40,41

In 2013, 2 landmark studies42,43 connected high salt 
intake as a potential environmental factor contributing to 
experimental autoimmunity. These investigations showed 
that high NaCl conditions could boost the differentiation 
of naive CD4+ T cells in humans and mice into patho-
genic Th17 cells. IL (interleukin)-17A and IL-23R (IL-23 
receptor) expression under Th17 differentiation condi-
tions was enhanced. This regulatory mechanism involved 
p38/MAPK (mitogen-activated protein kinase), NFAT5, 
and SGK1.34 SGK1 inactivates FOXO1 (forkhead box 
O1), thereby promoting enhanced RORγt (retinoic acid 
receptor-related orphan receptor gamma t) and IL-23R 
expression.43 In vivo, an HSD increases the number of 
Th17 cells in gut-associated lymphoid tissue and the 
central nervous system, resulting in exacerbating experi-
mental autoimmune encephalomyelitis (EAE), a mouse 
model mimicking many aspects of multiple sclerosis.42,43 
CD4+ T cell–specific SGK1 (serum/glucocorticoid regu-
lated kinase 1) deletion in mice leads to resistance to 
EAE, owing to a defect in maintaining the Th17 pheno-
type.43 Both in vitro and in vivo evidence in EAE sug-
gests that Th17 activation by high NaCl is not mediated 
through dendritic cells but rather through a separate 
pathway or direct impact on Th17 cells.44 Besides the 
NFAT5 axis, high salt also affects SGK1 via the upstream 
long noncoding RNA (Lnc)-SGK1.45 Furthermore, aside 
from its pivotal role in T cells, SGK1 in dendritic cells is 
important for salt-sensitive hypertension, vascular func-
tion, and renal inflammation.46 Translating these experi-
mental findings to humans, a 10-day HSD (15 g NaCl/

day, about 300 mmol Na+/day) in healthy nonsmoking 
male volunteers resulted in increased Th17 population in 
the peripheral blood, which was reversed after switching 
the men to normal-salt diet.47 Further, also a rather mod-
erate 14-day dietary high-salt challenge (6 g of NaCl/
day in addition to accustomed diets) increased circulat-
ing Th17 frequencies.48 Of note, in humans, potassium 
also affects high salt–induced Th17 polarization by a 
thus far unknown mechanism.49 Circulating IL-17 lev-
els were significantly increased after switching from 3 
to 18 g of NaCl for 7 days, while the addition of 4.5 g 
KCl to the HSD completely reversed the IL-17 levels.49 
A dichotomous role for NaCl on Th17-like cells has also 
been reported, where the impact of NaCl on CD4+ T cells 
may be context dependent and could differ depending 
on stimulation and cytokine environment.50

IL-17 plays a critical role in infections, autoimmune 
diseases, and inflammatory diseases. Of note, hyper-
tensive humans show significantly increased circulat-
ing IL-17 levels.51 Physiologically, IL-17 is not only 
involved in host defense but also may promote inflam-
matory tissue damage. IL-17A knockout mice initially 
increase the blood pressure similarly to controls upon 
angiotensin II infusion, whereas over time, they develop 
a less hypertensive state.51 In addition, human prototype 
IL-17–related diseases such as psoriasis, periodontal 
disease, and rheumatoid arthritis are also associated with 
hypertension.52–54

High salt is further linked to an increased risk of 
cerebrovascular diseases and dementia. A recent study 
focusing on the gut-brain axis described how high salt 
initiates a Th17 response in the gut resulting in a marked 
increase in plasma IL-17, which subsequently suppresses 
resting cerebral blood flow and endothelial function, lead-
ing to neurovascular dysregulation and cognitive impair-
ment.55 Endothelial dysfunction and cognitive impairment 
are mediated via inhibitory Rho kinase–dependent phos-
phorylation of endothelial NO synthase with reduced NO 
production of cerebral endothelial cells.55

Lupus-prone MRL/lpr mice under HSD showed a 
significant increase in the ratio of splenic Th1/Th2 
and Th17/Regulatory T (Treg) cells, accompanied with 
reduced survival.56,57 In BALB/c mice, HSD induced 
tubular proteinuria and a profibrotic phenotype with 
increased renal cortical Th1 and Th17 and reduced Treg 
cells.58 HSD also primed follicular helper T-cell differen-
tiation and promoted autoimmunity by hydroxytransfer-
ase TET2 (Ten-Eleven Translocation 2)-induced DNA 
demethylation. In vitro, TET2 silencing reduced NaCl-
induced follicular helper T-cell polarization. In models of 
colitis, several reports have established the relationship 
between high sodium and Th17 cells. In human intes-
tinal lamina propria mononuclear cells, IL-17A, IL-23R, 
TNF-α, and RORγt significantly increased after NaCl 
exposure.59 Mice on HSD developed severe 2,4,6- 
trinitrobenzenesulfonic acid (TNBS)- or dextran sulfate 
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sodium (DSS)-induced colitis compared with control mice, 
which could be ameliorated by p38 MAPK inhibition.59 
Besides Th17 cells, IL-17–producing type 3 innate lym-
phoid cells may also be affected by HSD in this context. 
When mice were fed an HSD, an intestinal inflammatory 
response associated with increased IL-23 production, 
neutrophil mobilization, and frequency of IL-17–pro-
ducing type 3 innate lymphoid cells in the colon was 
observed. Since intestinal inflammation was not observed 
in IL-17 knockout mice but albeit to a lesser degree in  
recombination-activating genes (RAG)-deficient mice, 
which lack B and T cells but have ILC, IL-17 production 
by both type 3 innate lymphoid cells and Th17 cells likely 
contributes to the inflammatory response.60 Altogether, 
these data suggest that a high salt intake may prime vari-
ous T-cell subsets, promote IL-17 production with conse-
quences for the pathogenesis of cardiovascular diseases 
(CVDs) and autoimmune diseases. Whether or not reduc-
ing salt intake to currently recommended levels would 
reduce this state of affairs remains to be seen.

SODIUM AFFECTS THE MICROBIOME AND 
INTESTINAL INFLAMMATION
Recent research has further been focusing on indirect 
roles of NaCl regulating immunity through changing 
the gut microbiota.34 High salt intake impacts the gut 
microbiota in mice and humans, particularly by deplet-
ing Lactobacillus spp.48,61–63 Along with changes in the 
gut microbiota, HSD increases the frequency of Th17 
cells in the intestines, spleen, and spinal cord along with 
the blood pressure and aggravated disease courses of 
EAE mice.48 Replenishment of live Lactobacillus muri-
nus to HSD-fed mice ameliorated the HSD-mediated 
exacerbation of EAE and salt-sensitive hypertension by 
regulating Th17 cells, likely through increased levels of 
the bacterial tryptophan metabolite indole-3 lactic acid. 
Mechanistically, indole-3 lactic acid suppressed Th17 
cell polarization, suggesting that tryptophan metabo-
lites of bacterial origin may act as inhibitors of the high 
salt–induced Th17 increase of the host.48 Concordantly, 
a meta-analysis demonstrated that probiotics (mostly 
containing Lactobacillus spp.) may reduce blood pres-
sure in hypertensive subjects.64 Kirabo et al65 also have 
shown that a high salt intake is associated with changes 
in the gut microbiome, as well as higher blood pressures 
in humans. Further, blood pressures in salt-treated mice 
were elevated when the mice received subpressor doses 
of Ang II (angiotensin II).65 HSD was associated with 
changes in an increase in the genera Firmicutes, Proteo-
bacteria, and Prevotella bacteria and a decrease in the 
genera of lactic acid–producing bacteria.65 Adaptive fecal 
microbial transfer from mice fed an HSD predisposes 
germ-free recipients to inflammation and hypertension.65 
Further evidence for microbiota-dependent effects of 
an HSD on inflammation is the observation that an HSD 

promotes experimental DSS- and dinitrobenzenesulfonic 
acid–induced colitis in mice by reducing the presence of 
intestinal Lactobacilli and butyrate production. This effect 
was not observed in germ-free mice.62

SODIUM BLUNTS ANTI-INFLAMMATORY 
REGULATORY T-CELL FUNCTION
Regulatory FOXP3+ (forkhead box P3) T cells (Tregs) play 
an essential role for the maintenance of peripheral toler-
ance and immune cell homeostasis.66,67 Depending on the 
microenvironment and tissue, Tregs show the ability to 
suppress innate and adaptive immune cells by the secre-
tion of anti-inflammatory cytokines, such as IL-10, or by 
cell-cell contact-dependent mechanism involving costim-
ulatory receptors like cytotoxic T-lymphocyte–associated 
protein 4.66,67 In humans, mutations in the FOXP3 gene, 
a master regulator of Tregs, lead to dysfunctional Tregs 
with fatal autoimmunity. Mutations have been linked to 
multiple sclerosis, type 1 diabetes, systemic lupus ery-
thematosus, chronic infections, or inflammation like 
rheumatoid arthritis.66–69 Further, differential expression 
of FOXP3 splice variants related to Treg function was 
associated with unstable plaques in patients with athero-
sclerosis.70 Experimental and clinical studies confirmed 
that Tregs are important mediators to contain chronic 
inflammation in CVD such as atherosclerosis,71 hyper-
tensive target organ damage,72 or wound healing after 
myocardial infarction.73 However, importantly, reduced 
Treg numbers and a dysfunctional Treg phenotype similar 
to autoimmunity have been reported in atherosclerosis, 
heart failure, and myocardial infarction and are associated 
with progression of disease.74–77 Furthermore, HSD also 
negatively affected the regulatory balance of T cells in 
transplantation and precipitates rejection.78 Of note, the 
deleterious effect of an HSD in the absence of SGK1 on 
CD4+ T cells in transplanted recipients was diminished.78

Mechanistically, dysfunctional Tregs found in several 
inflammatory diseases are characterized by a proinflam-
matory Th1-like phenotype with high expression levels of 
IFN-γ (interferon-γ) and lower levels of IL-10.66,79–81 Sev-
eral reports suggested that SGK1 not only plays a piv-
otal role in high salt–induced Th17 cell polarization29,42,43 
but also in Tregs.50,78,79,82–84 In vitro and in vivo, salt-SGK1 
signaling axis enables Treg cells to acquire a Th17-like 
phenotype, thus establishing salt as a nonimmune factor 
that affects Treg functional adaptation.85 In vitro, high salt 
was sufficient to induce RORγt expression in both thymic 
Treg and inducible Tregs without IL-17A production.85 A 
moderate decrease in FOXP3 expression in thymic high 
salt–induced RORγt+ Treg cells was not associated with 
a loss of Treg identity and function most likely due to still 
sufficient FOXP3 levels. In contrast, IL-2384 or IL-1β86 
can readily induce IL-17A+RORgt+FOXP3+ inducible 
Treg cells into inflammatory Th17-like Treg cells. These 
data suggest that salt-induced Treg dysfunction could 
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accelerate not only the pathogenesis of autoimmune dis-
ease but also the progression of CVD.

SODIUM INHIBITS MITOCHONDRIAL 
FUNCTION
As mentioned above, sodium is the most abundant cat-
ion in the extracellular space, kept in low concentrations 
intracellularly. This asymmetrical distribution builds up a 
high electrochemical gradient across the plasma mem-
brane and allows for a fast and substantial sodium influx. 
The latter is mediated by different channels and trans-
porters, such as the NHE (sodium-proton exchanger), the 
NKCC (sodium-potassium-chloride cotransporter), the 
NCLX, the TRPM4 (transient receptor potential melas-
tatin 4), and the amiloride-sensitive sodium channel.87 
Sodium influx and efflux not only affect cell membrane 
potential, excitation, and electrochemical conductivity but 
also intracellular pH and concentration of other ions and 
metabolites.

Interestingly, during ischemia, sodium not only accu-
mulates in myocardial tissue but was also shown to 

invade the intracellular space and accumulate in subcel-
lular compartments, more concretely, in the mitochondria. 
The contraction of healthy cardiac myocytes consumes 
large quantities of ATP, which is produced by mitochon-
drial oxidative phosphorylation.88 During cardiac isch-
emia, intracellular and mitochondrial Na+ levels increase 
along with a reduction in mitochondrial respiration with 
reduced ATP production (Figure 2), which might, in part, 
explain the imbalance of the energy demand in the fail-
ing heart.88 Also studies in patients with type 2 diabetes 
have shown that the myocardium under these conditions 
display reduced mitochondrial respiration and higher oxi-
dative stress, further linking mitochondrial dysfunction 
with the pathophysiology of heart failure.89 Besides its 
effect on oxidative phosphorylation, the Na+ overload can 
cause an imbalance in Ca2+ homeostasis by reverting the 
calcium-sodium exchange process and thus accelerate 
heart failure.90,91 These studies highlight how HSD and 
imbalances in the ionic microenvironment can be detri-
mental to a plethora of different diseases and how cellu-
lar metabolic shifts are key in regulating cellular function 
and overall homeostasis.

Figure 2. Sodium and mitochondrial metabolism.
Pictogram of a cell under hypoxic or hypertonic saline conditions. Sodium enters the cell and mitochondria (at least, in part) via the NCLX (Na+/
Ca2+ exchanger) and inhibits the electron transfer chain at the level of succinate dehydrogenase complex flavoprotein subunit A complex II 
(Sdha, II)/ubiquinone (CoQ). Subsequently, mitochondrial respiration, membrane potential (ΔΨ), and ATP production are reduced. In several 
immune cells, a proinflammatory gene expression is observed. CytC indicates cytochomre C; Fum, fumarate; Suc, succinate; TCA, tricarboxylic 
acid cycle; and TET, ten-eleven translocation.
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It was shown that sodium could impact circulating and 
tissue-invading monocytes, M1/M2 macrophages, den-
dritic cells,87 and as outlined before in detail, Th17 cells 
and Tregs, as well as vascular endothelial cell stiffness.34 
Interestingly, many of these phenotypes are mediated by 
NCLX, both at the plasma and the inner mitochondrial 
membrane. With these findings, there has been a strong 
focus on how sodium affects cellular bioenergetics.

Cellular metabolism and specifically its plasticity are 
undoubtedly of outmost importance for cell function and 
adaptation. Metabolic reprogramming is not just a hall-
mark of cancer but also emerged as critical regulator of 
immune cell activation.92,93 Sodium was shown to have 
several metabolic targets. In ischemic myocardial tissue, 
mononuclear phagocytes, and Tregs, sodium reduces 
mitochondrial oxidative phosphorylation. Sodium could 
enter the mitochondrial matrix via NCLX and interacts 
with phospholipids in the inner mitochondrial membrane, 
reducing the membrane fluidity and the diffusion of ubi-
quinone between complex II and complex III of the elec-
tron transport chain.94 In M1/M2 macrophages38 and 
Tregs,95 salt directly inhibits complex II/III of the electron 
transport chain. Treg cell–specific ablation of mitochon-
drial respiratory chain complex III in mice resulted in loss 
of function and subsequent development of fatal inflam-
matory disease early in life, without altering Treg cell 
proliferation and survival.96 Recent data demonstrated 
that high salt mirrored the metabolic and gene expres-
sion signatures and functional phenotype observed after 
complex III inhibition.95 The loss of mitochondrial func-
tion after short-term engagement in high-salt environ-
ments in vitro provoked a long-term loss of function of 
human and murine Tregs in vivo.95 Xenogeneic graft ver-
sus host disease in immunodeficient mice is a model for 
in vivo analysis of human Treg functionality.83,97,98 Adop-
tive transfer of high salt–treated or complex III inhibited 
human Tregs in xenogeneic graft versus host disease 
or murine high salt–treated Tregs to EAE similarly have 
long-term consequences in vivo.95 Interestingly, inhibition 
of CII/III is accompanied by an accumulation of succinate, 
which in turn inhibits TET2-mediated DNA demethylation 
(Figure 2). This accumulation could be a potential mech-
anism by which HSD induces altered epigenetic markers 
and thereby produces long-term effects despite a rela-
tively short-term high-salt stimulation. Besides electron 
transport chain complex II/III, in cancer and macrophage 
cell lines, salt induces aerobic glycolysis via a pyruvate 
dehydrogenase kinase–mediated activation of pyruvate 
dehydrogenase, with reduced tricarboxylic acid cycling 
and oxidative phosphorylation. Interestingly, sodium was 
recently also identified as a regulator of the liquidity of 
intracellular condensates, affecting protein-protein inter-
actions (at least partially by electrostatic shielding of the 
proteins) and thus protein aggregation under hypertonic 
stress.99 However, the exact extend of salt-induced met-
abolic remodeling in various different cell types remains 

ill defined. And there are so far only limited data avail-
able in respect to time resolution of salt-induced meta-
bolic remodeling in different cell types under different 
metabolic states. The integration and investigation of 
in-parallel–occurring signaling events will be crucial to 
understand these processes in more detail.

OUTLOOK
Accumulating evidence suggests that the blood pres-
sure–centric definition of salt sensitivity could be broad-
ened to cellular and metabolic sodium sensitivity. While 
the actions of other cations such as Ca2+ as important 
intracellular messengers are widely recognized, evidence 
continues to accumulate highlighting various unexpected 
roles of sodium in the regulation of cellular function. 
Overall, it is becoming clearer that sodium modulates 
broader bodily functions besides fluid homeostasis and 
regulates various cell functions, particularly in cells of the 
innate and adaptive immune system. Given the relevance 
of immune function for CVD and cardiometabolic dis-
ease, it is tempting to speculate that these findings may 
have important implications and are not only relevant for 
autoimmunity. However, it remains elusive as to where, 
why, and how sodium is compartmentalized, both on a 
tissue/supracellular and organelle/subcellular level and 
whether all cells are similarly sodium responsive. More 
research is needed to understand how tissue or cellular 
salinization is linked to health or disease states, age, and 
gender, as well as nutrition, and how metabolic plasticity 
on both the cellular and body level is affected.

Recent investigations (and studies well back in the 
20th century) showed that the substitution of Na+ 
with K+ (in terms of intake) showed significantly lower 
rates of stroke, major adverse cardiovascular events, 
and death from any cause.100 The driving force for this 
potassium-protection idea were the seminal studies and 
observations from the Tobian group.101 With potassium 
augmentation, better systolic blood pressure lowering 
was observed,102 compared with those subjects who 
received a regular salt intake. Whether or not salt (NaCl) 
reduction or salt substitution by KCl can affect the tis-
sue/supracellular and organelle/subcellular micromilieu, 
signaling, and immunometabolism should be addressed 
in future studies. By understanding the dependencies for 
these microenvironmental changes and the correspond-
ing environmental sensing mechanisms, we envision tar-
geted approaches to fine-tune immune cell, myocardial, 
fibroblast, and endothelial cell function and thus better 
control inflammation and CVD.
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