
International Journal of Computer Assisted Radiology and Surgery (2024) 19:553–569
https://doi.org/10.1007/s11548-023-03012-y

ORIG INAL ART ICLE

A simulation-based phantommodel for generating synthetic mitral
valve image data–application to MRI acquisition planning

Chiara Manini1,2 ·Olena Nemchyna3 · Serdar Akansel3 · Lars Walczak1,2,4 · Lennart Tautz4 ·
Christoph Kolbitsch5 · Volkmar Falk2,3,6 · Simon Sündermann2,3,6 · Titus Kühne1,2,6 ·
Jeanette Schulz-Menger2,6,7 · Anja Hennemuth1,2,4,6,8

Received: 16 January 2023 / Accepted: 31 July 2023 / Published online: 7 September 2023
© The Author(s) 2023

Abstract
Purpose Numerical phantom methods are widely used in the development of medical imaging methods. They enable quan-
titative evaluation and direct comparison with controlled and known ground truth information. Cardiac magnetic resonance
has the potential for a comprehensive evaluation of the mitral valve (MV). The goal of this work is the development of a
numerical simulation framework that supports the investigation of MRI imaging strategies for the mitral valve.
Methods We present a pipeline for synthetic image generation based on the combination of individual anatomical 3D
models with a position-based dynamics simulation of the mitral valve closure. The corresponding images are generated using
modality-specific intensity models and spatiotemporal sampling concepts. We test the applicability in the context of MRI
imaging strategies for the assessment of the mitral valve. Synthetic images are generated with different strategies regarding
image orientation (SAX and rLAX) and spatial sampling density.
Results The suitability of the imaging strategy is evaluated by comparingMVsegmentations against ground truth annotations.
The generated synthetic images were compared to ones acquired with similar parameters, and the result is promising. The
quantitative analysis of annotation results suggests that the rLAX sampling strategy is preferable forMV assessment, reaching
accuracy values that are comparable to or even outperform literature values.
Conclusion The proposed approach provides a valuable tool for the evaluation and optimization of cardiac valve image
acquisition. Its application to the use case identifies the radial image sampling strategy as the most suitable forMV assessment
through MRI.
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Introduction

In biomedical engineering, the termphantom refers to an arti-
ficial object that has relevant properties of the human body
or a medical device and can be used for multiple biomedi-
cal applications [1]. Phantoms play a significant role in the
development of cardiac imaging and image analysis meth-
ods.
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Table 1 Properties of the datasets
used for model generation.
Thoracic anatomy and heart
model were based on two CT
datasets covering the torso of one
patient as well as three CT
datasets showing the heart
anatomy of different patients.
MRI intensity properties were
extracted from case 4. CT
volumes 1.2, 2, 3 consist of ten
phases, from which we choose
the timeframe with open MV

Case/volume Image size Voxel size [mm3] Data type Model components

1.1 512 × 512x345 0.65 × 0.65 × 2 CT Thorax

1.2 256 × 256x286 0.86 × 0.86 × 0.5 CT Aorta, atria, ventricles and MV

2 256 × 256x300 0.68 × 0.68 × 0.5 CT

3 512 × 512x240 0.36 × 0.36 × 1 CT

4 320 × 320x12 0.87 × 0.87 × 6 MRI Intensities

Table 2 Intensity distributions. Intensity distributions mean and stan-
dard deviation (SD) values for each entity in the anatomical 4D model
extracted from exemplary CMR (case 4 in Table 1)

Intensity mean Intensity sd

Left heart Mitral valve 266 25

Atrial wall 100 38

Atrial cavity 357 14

Myocardium 75 8

Ventricle cavity 344 23

Right heart Atrial wall 88 32

Atrial cavity 405 26

Ventricle wall 71 25

Ventricle cavity 356 15

Aorta 330 22

Bones 157 72

Liver 119 47

Kidney 126 14

Lung 8 4

Bronchi 389 42

Physical phantoms are used to assess imaging device per-
formance, geometric distortion, signal-to-noise ratio (SNR),
etc., and provide important information for the development
and validation of imaging and post-processing pipelines;
few physical phantoms support the simulation of motion
and blood flow [2–6] see Table 1 in Supplementary mate-
rial. Most published physical phantoms focus on sub-
parts of the cardiovascular anatomy, such as the ventricles
[3–5]. Few physical phantoms represent cardiac and breath-
ing motion (https://www.cirsinc.com/products/radiation-th
erapy/dynamic-cardiac-phantom/ retrieved on 14.07.2023).
In addition to physical phantom models, numerical phan-
tom methods are widely used in the development of imaging
techniques for moving structures such as the heart. These are
more easily adaptable for changes in the anatomy-pathology
of the relevant structures, see Table 2 in Supplementary
material. For image acquisition optimization purposes, the

combination of computational human phantoms with the
simulation of the imaging procedure can be a time- and cost-
efficient tool [7–17].

The development of appropriate imaging strategies that
enable a comprehensive assessment of cardiac anatomy,
morphology, and function requires the consideration of the
capabilities of the imaging system as well as the cardiovas-
cular motion induced by contraction and breathing.

Computational phantoms for the simulation of cardiac
image data consist of three major modules,

1.Generation of the anatomical model,
2.Simulation of the motion, and
3.Simulation of the imaging process/properties of image
data.

Anatomy

Existing geometrical models of selected cardiac structures
are based on a mathematical ellipsoidal model [17] or image
segmentations [10, 13, 14, 16]. Advanced models such as the
XCAT phantom have been extended over the years so that the
anatomical model covers the thorax and provides a detailed
heart model. The phantom can be parameterized to represent
different genders and age groups [18].

Motion simulation

Regarding motion simulation, observation-based as well as
finite element simulations have been suggested. Models
based on observations typically perform statistical analysis
of respiratory and cardiac motion [10, 11]. The models pre-
sented by Zhou et al. [14] and Baillargeon et al. [12] model
the electromechanical behavior of the heart to simulate car-
diac contraction. Segars et al. proposed a model based on 4D
nonuniform rational b-splines (NURBS) [7, 9] and in [15]
further consider hemodynamics. These models enable sim-
ulations for different parameterizations in order to consider
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e.g., disease-related changes in the blood flow or excitation
propagation [12].

Imaging simulation

Similar to motion simulation, image generation can be based
on observations or physics-based simulation models. Hanafy
et al. used observations of image data in combination with
a Poisson noise model for the simulation of cardiac SPECT
images [17], andGilbert et al. employed a CycleGAN to gen-
erate synthetic echocardiographic images based on machine
learning [16]. The observation-based approaches are very
successful in the generation of realistic-looking images,
which consider the typical artifacts and properties of real
images. However, they can only reproduce the properties of
the observed training sets. The CT simulations provided by
Segar et al. use the analytical projection algorithm to simu-
late image acquisition in order to support the optimization of
data acquisition and processing [8, 10]. For MRI imaging
simulations, Wissmann et al. applied a simulation opera-
tor, which considered tissue properties, imaging sequence,
coil and noise [11], whereas Zhou et al. parameterized the
OD1N simulator (http://od1n.sourceforge.net/ retrieved on
05.09.2022) with the literature parameters to generate syn-
thetic cardiac MRI images [14].

To date, none of the above-mentioned methods supports
the investigation of mitral valve imaging strategies. The
mitral valve (MV) is composed of very thin tissue mov-
ing rapidly [19]. Each MV component can present structural
abnormalities that can affect its function [20]. There are two
computational cardiac phantoms, which include a model of
the mitral valve; but they have so far only been used in the
context of device design, and disease and treatment-related
simulations [8, 13]. Furthermore, they do not consider the
surrounding structures. Gao et al. proposed a model limited
to mitral valve-ventricle coupling [13] and Baillargeon et al.
present a four-chamber heart model [12].

Cardiac magnetic resonance (CMR) imaging has the
potential for a comprehensive evaluation of the mitral valve.
The quantitative assessment of the severity of MV dysfunc-
tion can support patient-specific therapy planning [21]. Lang
et al. demonstrated that radially rotated long axis image
sampling strategies have the potential for accurate mitral
annulus identification [22]. Current MRI imaging protocols
dohowever not includeoptimal sequences for the quantitative
assessment of the complete mitral valve anatomy, including
orifice and leaflets, and motion [23]; the identification of a
suitable sampling strategy is therefore highly desirable. A
computational phantom that includes a mitral valve could
help identify the optimal imaging strategies to improve the
assessment of mitral valve anatomy and motion properties.

The goal of our work is the development of a numeri-
cal simulation framework, which supports the investigation

of imaging strategies for the mitral valve. This includes the
identification of optimal spatio-temporal sampling to delin-
eate the MV anatomy. We propose a computational phantom
based on thorax CT and cardiac CT segmentations. Position-
based dynamics simulate the closing dynamics of the MV
[24]. We combine this dynamic model with a framework for
the application of different intensity distribution models and
sampling strategies. We test the applicability by evaluating
different MRI image planes against segmentation and quan-
tification accuracy.

Materials andmethods

This section describes the proposed computational phantom
for synthetic 4D image generation and the use case evalu-
ating different spatiotemporal sampling strategies for MRI
imaging regarding MV annotation accuracy.

Computational phantom

Data for model generation

The ground truth geometric model is generated with seg-
mentations of contrast-enhanced CT datasets (Siemens
SOMATOM Definition Flash, Siemens, Germany). Data
from three adult patients suffering from type II insufficiency
were selected. Informed consent was obtained and ethical
permission was granted (EA2/093/16 or EA2/133/14). For
our example use case, we processed four CT image volumes;
a torso CT was used to extract anatomical representations of
relevant thoracic structures such as ribcage, lung and aorta.
The three cardiac CT angiography images for cases 1–3 were
used for the more detailed heart and valve segmentations
(details in Table 1).

For the extraction of image properties used in the sim-
ulation of the synthetic images, intensity values of the
corresponding anatomical structures and their standard devi-
ation were extracted from in vivo cardiac cine MRI images
(case 4 in Table 1) [25].

Anatomical model with a movingmitral valve

The image-based anatomical model is generated by combin-
ing relevant entities:

• Relevant anatomical structures (bones, lung and bronchi,
liver, kidney, aorta) in the torso were segmented interac-
tively in the first dataset of case 1 (Table 1) using an ad
hoc tool developed in MeVisLab [26].

• The heart (composed of both atria and ventricles) was
segmented with Brainview (Philips Healthcare, Best, the
Netherlands) using the cardiac CT data for all three cases.
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Fig. 1 Model generation. The separate entities (left) are fused, and labels are assigned for all anatomical structures (right). The markers used for
the fusion of the heart model with the surrounding structures are shown in the right box

Fig. 2 Image simulation workflow. Workflow for multi-slice 2D images simulation starting from the anatomic 4D model

These segmentation methods provide voxelmasks with
spatio-temporal resolutions determined by the input image
data.

• The diastolic phase with open MV was chosen from the
multiphase cardiacCT images, and the segmentationswere
provided by an experienced user. The open mitral valve
was segmented for all three cases with the method pro-
posed by Tautz et al. [27]. This method provides a smooth
surfacemeshwith a sampling that is independent of the res-
olution of the underlying image data. The mean face area
of our mesh model of the valve is 0.55 mm2. The resulting
surface mesh was used as input for a valve closure simu-
lation [24] with a temporal resolution of 180 frames/valve
closure. The valve closure segmentation can deal with a
moving annulus. For this work, we consider a static heart
model and a fixed valve annulus. The valve surface was

then rasterized to generate a voxelized image representa-
tion considering an appropriate surface thickness of 1 mm
[28].

To combine these components, the thorax segmentation
model (fromvolume1.1 inTable 1)was separately fusedwith
each of the three heart segmentations (case 1.2–3 in Table 1)
using 10 anatomical landmarks defining cardiac structures,
including the four valves center, ventricle landmarks such as
the apex and the center of the septum, and markers along
the aorta centerline (Fig. 1). Corresponding landmarks were
manually annotated in the thorax and the cardiac CTs, the
distance between each marker pair was minimized by the
iterative closest point algorithm [29] to obtain the complete
model. The resulting geometric model for volume 1 (image
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Table 3 MR imaging parameters

Imaging Parameter Values

Scanner Philips ingenia ambition X
1.5 T

Series description cine-4CH

Scanning sequence Gradient recalled (GR)

Repetition time [ms] 3.3

Echo times [ms] 1.67

Flip angle [°] 60

In-plane resolution—acquired
(isotropic) [mm]

1.4

In-plane resolution—reconstructed
(isotropic) [mm]

0.866

Slice thickness [mm] 6

Slice spacing [mm] 6

Temporal resolution [phases/cycle] 30

K-space sampling Cartesian

size 512 × 512 × 345 and voxel size 0.65 × 0.65 × 2 mm3)
is shown in Fig. 1.

Synthetic image generation

The synthetic images are generated combining the 4D
anatomic model and the observation-based intensity model
following the workflow shown in Fig. 2, which consists of
three major steps:

1. Application of intensity model and temporal sampling
2. Definition of position and orientation of image planes
3. In-plane spatial sampling

Use case: MRI image simulation

Intensity model for the MRI imaging use case

The relevant entities such as lung, bones, blood pool,
myocardium, etc. were segmented on a typical cardiac cine
4CH MRI dataset (case 4 in Table 1, full MRI properties
in Table 3). The intensity distribution of each entity was
analyzed with both Gaussian and Rician distribution fitting
(Fig. 3) [30]. Given the minimal differences between the fit-
ted distributions (mean square distances 0.05 and 0.21 for
blood pool and myocardium, respectively), we decided to
use the Gaussian for the simulation. Table 2 shows the cor-
responding mean and standard deviation for all intensity
distributions.

Application of intensities and temporal sampling

The observed intensities (Table 2) were assigned to each
anatomical entity. In the next step, we added typical imaging
artifacts such as noise and spatio-temporal partial volume
effects (Fig. 2). First, temporal sampling was performed to
obtain a resolution of 10 timesteps/valve closure, mimicking
typical temporal resolutions observed in MRI images. Then,
Gaussian noise (mean� 0 and σ � 38) was added. The value
of σ was chosen as the maximum standard deviation within
the values observed in the heart entities intensity distribu-
tions (left and right heart in Table 2). Lastly, smoothing with
a Gauss kernel was applied, emulating the filtering applied
in the reconstruction process [31].

Definition of position and orientation of image planes

The simulated image orientationswere based on two standard
views in cardiac MRI: short-axis (SAX) and radial long-axis
rotation (rLAX). Automatic methods for SAX slice position-
ing described in literature use connection of the MV center
and the LV apex as plane normal to determine the SAX ori-
entation [32]. To emulate this approach, we determine the
orientation of the SAX is based on the principal component
analysis (PCA) of theMV to orient the image planes automat-
ically parallel to the valve annulus. The minimum principal
component (defining the valve axis) was used as the image
plane normal. Both the gap between slices and slice thickness
were set to 6 mm mimicking a typical short axis acquisition
[25].

We defined three rotational long axis sampling schemes,
consisting of 6, 9 and 18 slices (rLAX6, rLAX9, rLAX18).
Image slices were created by rotating around the valve axis
with a fixed angle. The slice thickness was set to 6 mm.

In-plane spatial sampling

Two consecutive spatial resampling steps were applied to
mimic the acquired/reconstructed voxel size of MRI image
data [25].

Spatial resolution values were set to those observed in the
standard short axis images for both SAX and rLAX to allow
comparison. Resampling to the acquired in-plane voxel size
was performed first with a resolution of 1.4 × 1.4 mm2. The
resampling to the reconstructed in-plane resolution was then
applied using the observed resolution of 0.87 × 0.87 mm2.

Assessment of mitral valve annotation accuracy
for different sampling strategies

The anatomic 4D model (Fig. 2) provides us with a ground
truth anatomy for our segmentation analysis. This cannot
be generated from MV measurements on acquired images,
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Fig. 3 Segmentation for intensity
distribution analysis. Examples
of relevant representative regions
(first row) for ventricle blood
pool (left), and for the
myocardium (right). The second
row shows the corresponding
intensity distributions (yellow)
and the two fitted distribution
models: Gaussian (blue) and
Rician (orange). Mean square
distance values (MSD) between
the two curves are reported

because only measured image values are available there and
no referencemethod for quantitative valve assessment in vivo
is available. All the comparison with ground truth performed
in this session refer to the valve model with the simulated
motion used as input for the synthetic image generation.

Mitral valve annotation

Three domain experts segmented themitral valve in the simu-
lated images using a dedicated prototypical software solution
as shown in Fig. 4 (average segmentation time approximately
20min per case; SAX 3.5min, rLAX6 3.5min, rLAX9 5min
and rLAX18 8 min); the valve annulus is highlighted with
red points and the orange contour. The yellow points repre-
sent the valve orifice. The users annotated two points for the
annulus, two for the leaflet ends (defining the orifice) and a
variable number of points for leaflet contours on each rota-
tional plane (rLAX). In the SAX stack the valve annotation
was performed using spline contours.

Quantitative parameter calculation

For the quantitative assessment of the annotations, clinically
established quantitative parameters [33] were computed for
the segmented geometric valve model and the ground truth
model.

Annulus diameters and height were computed using a
principal component analysis (PCA) on the annular points.
Annulus andorifice areaswere computed as two-dimensional
areas after projecting the points to the annular plane (Fig. 5).

The values computed on the three expert annotations are
compared for each case to its ground truth value.

Biases were computed for each quantitative parame-
ter of each case for all the proposed sampling strategies
as:

BI AS �
∑N

i�1

(
aCASE , i − aGT

)

N

whereaCASE , i is the value of the quantitative parameter com-
puted on the user i annotation of the analyzed case, aGT is
the same parameter for the ground truth valve and N=3 is the
number of users that performed the annotations.

Annulus and orifice contour

The shortest distances between the user segmented valve
contour points and the relative ground truth contour were
computed. Boxplots are used to report the results including
minimum values, percentiles (25th, 50th and 75th), mean,
maximum and outlier values. The corresponding mean and
standard deviation values are reported in Supplementary
material.

Point to surface distance

The shortest distance of each annotated point from the ground
truth valve surface was computed. Color-coded glyphs were
created for visualization, mean and standard deviation values
were computed for each case and each user segmentation.
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Fig. 4 Annotation tools.
Annotation software interface for
the interactive annotation of the
radial long axis (rLAX) images
(a) and short axis (SAX) image
data (b). Red points indicate the
annulus, blue ones the leaflets
and the yellow ones the leaflets
end (orifice)

Experiments and results

Synthetic image generation

We compared the simulated image data to volunteer data
acquired with similar parameter settings as suggested for
rLAX18 (Table 3).

Figure 6 shows corresponding slice orientations. It can
be observed that intensity distributions appear similar. How-
ever, typical artifacts from hemodynamics as well as small
structures not included in our anatomical model are missing
in the simulated data, and anatomical regions appear more
homogenous.

Annotation accuracy assessment

Three domain experts (a cardiologist, a cardiovascular sur-
geon, and a biomedical engineer, all experienced in MV
annotation on echocardiographic data) segmented the mitral

valve on the generated image datasets with the MeVisLab-
based prototype (Fig. 4). On rLAX slices, the users annotated
two points per slice to indicate the annulus position, two for
the leaflet end and a variable number of points for the leaflet’s
contour. On SAX slices, the user annotated the valve using
splines on each slice where the valve was visible.

The point clouds obtained from the segmentation on the
simulated images with different sampling concepts were
evaluated against ground truth annotations to quantify the
achievable accuracy for valve assessment.

Quantitative parameter evaluation

The quantitative parameters computed for the anatomical
models we generated based on the CT datasets and the
PBD simulation are shown in Fig. 7. The inter-user vari-
ability is higher for SAX slices. On rLAX the differences
between users decrease with the increasing number of rota-
tional planes. Exceptions are observed for the height (case1
and case 3) and the minimum diameter (case 3). For most
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Fig. 5 Clinically established
quantitative parameters. Mitral
valve model output from
annotations (a) and clinically
established quantitative
parameters: Dmax: maximum
diameter (b), Dmin: minimum
diameter (b), height (c), annulus
2D area (d) and orifice 2D area
(e). The valve axis used to set the
plane orientation corresponds to
the z-axis of the annulus PCA (c)

Fig. 6 Real vs synthetic images
comparison. MRI acquired on
healthy volunteer (left) with
similar parameters to our
rLAX18 generated synthetic
image based on the anatomy
derived from CT and intensities
from CMR (right)
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Fig. 7 Quantitative parameters
for case 1 (left), case 2 (middle)
and case 3 (right) for all users
(user 1 in blue, user 2 in red and
user 3 in green). The black line
corresponds to the value
computed on the ground truth
valve model. SAX: short axis,
rLAX6, rLAX9, rLAX18: radial
long axis with 6, 9 and 18 planes.
The user segmentation values
and relative distances from the
ground truth are reported in
Supplementary Material

parameters, we observe the smallest errors for rLAX-derived
ones.

Bias computed as shown in methods section are reported
for each case and sampling strategies in Table 4. The values
are in line with Fig. 7 finding and it can be observed a general
underestimation of the valve in the user annotation on the
synthetic MRI.

Qualitative annulus and orifice contour evaluation

To understand the causes for the differences in the quan-
titative results, we qualitatively analyzed the annulus and
orifice contours. Figure 8 shows the annulus and orifice con-
tours obtained from the user annotations of the SAX images
togetherwith a surface visualization of the valvemodel. In all
cases, the SAX-based contours differ most from the ground
truth model. This could be due to sampling factors, such as
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Fig. 8 Annulus and orifice SAX
annotations contours. Annulus
(top row) and orifice profiles
(bottom row) extracted from
SAX annotations of all users
(blue, red, green) and ground
truth profile (black) for case 1
(left), case 2 (middle) and case 3
(right)

Table 4 Quantitative parameter
bias for every sampling strategy
(SAX, rLAX6, 9 and 18) and
every case (case 1, 2 and 3).
Minimum values for each
quantitative parameter are in bold

BIAS [mm]

Quantitative parameter SAX rLAX6 rLAX9 rLAX18

CASE 1 Diameter max −8.01 −4.70 −2.94 −2.34

Diameter min −6.08 0.08 2.36 1.93

Height −2.28 25.86 32.98 51.61

Annulus area −12.71 −1.29 1.38 3.53

Orifice area −7.10 −13.32 −9.39 −6.38

CASE 2 Diameter max −17.30 −3.63 −2.30 0.32

Diameter min −13.99 −6.68 −6.63 −6.75

Height −46.79 −40.15 −24.99 −29.16

Annulus area −32.27 −13.16 −11.37 −9.72

Orifice area −14.82 −14.68 −10.02 0.28

CASE 3 Diameter max −6.03 2.90 2.47 3.40

Diameter min −17.27 −7.45 −5.29 −2.62

Height −1.10 −29.60 −3.84 −7.71

Annulus area −27.63 −5.63 −1.19 −0.50

Orifice area 1.35 −16.98 −11.91 −7.96

slice spacing and thickness. The orifice contours donotmatch
the ground truth, even when the orifice quantitative parame-
ters seem to bewell approximated also using SAXannotation
(case 3 Fig. 7). Both contourswere better approximated using
rLAX annotations and their agreement with the ground truth
improved increasing the number of planes (Fig. 9). The inter-
observer agreement was also better for the rLAX approach.

Annulus and orifice contour distance from ground
truth

The annotation accuracy for annulus and orifice is assessed
quantitatively via the distances between the ground truth and
user contours. Figure 10 shows the distances between anno-
tated annulus and the ground truth. The distances for SAX
are higher than those from the rLAX annotations. Reference
mean and standard deviation values are reported in Table 5.
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Table 5 Annulus contour
distance from ground truth.
Average ± standard deviation in
mm of the annotated annulus
contour distance from the ground
truth one. The minimum value for
each user is highlighted in bold.
SAX: short axis, rLAX: radial
long axis with 6, 9 or 18 planes

SAX rLAX 6 rLAX 9 rLAX 18

CASE 1 User 1 3.16 ± 2.87 1.85 ± 0.92 2.10 ± 1.18 1.60 ± 0.91

User 2 8.67 ± 2.40 1.89 ± 1.00 2.29 ± 1.51 2.30 ± 1.44

User 3 8.83 ± 2.29 1.74 ± 0.69 2.14 ± 0.94 2.82 ± 0.89

CASE 2 User 1 7.34 ± 2.16 2.30 ± 0.94 2.16 ± 0.81 2.46 ± 0.96

User 2 9.55 ± 1.49 3.09 ± 1.18 3.05 ± 1.28 2.69 ± 1.32

User 3 8.33 ± 1.67 2.80 ± 1.43 3.13 ± 1.57 2.82 ± 1.19

CASE 3 User 1 5.60 ± 2.28 1.63 ± 0.62 1.69 ± 0.80 1.48 ± 0.55

User 2 4.16 ± 2.98 1.95 ± 0.92 2.10 ± 0.83 2.07 ± 0.90

User 3 5.03 ± 2.24 2.59 ± 1.36 2.52 ± 1.61 2.38 ± 1.32

Table 6 Orifice contour distance
from ground truth. Average ±
standard deviation in mm of the
annotated orifice contour
distance from the ground truth
one. The minimum value for
each user is highlighted in bold.
SAX: short axis, rLAX: radial
long axis with 6, 9 or 18 planes

SAX rLAX 6 rLAX 9 rLAX 18

CASE 1 User 1 2.05 ± 1.06 1.94 ± 1.62 1.79 ± 1.28 1.33 ± 1.08

User 2 2.33 ± 1.32 2.35 ± 1.92 1.59 ± 1.11 1.51 ± 1.16

User 3 6.32 ± 3.64 2.07 ± 1.68 1.95 ± 1.16 1.58 ± 1.18

CASE 2 User 1 3.09 ± 1.38 2.53 ± 1.27 2.42 ± 1.26 3.07 ± 1.60

User 2 3.02 ± 1.92 4.22 ± 2.78 3.43 ± 1.73 2.76 ± 1.59

User 3 4.09 ± 2.71 1.85 ± 0.97 2.45 ± 1.66 2.23 ± 1.76

CASE 3 User 1 2.17 ± 1.37 2.49 ± 1.38 1.85 ± 0.95 2.03 ± 0.98

User 2 2.14 ± 1.25 2.52 ± 1.97 2.21 ± 1.51 2.93 ± 2.39

User 3 2.88 ± 2.19 3.01 ± 2.95 2.66 ± 2.19 2.44 ± 1.91

Table 7 Point-to-mesh distances.
Average ± standard deviation of
the computed point-to-mesh
distances. All values are in mm
and the minimum value for each
user is highlighted in bold. SAX:
short axis, rLAX: radial long axis
with 6, 9 or 18 planes.
Corresponding boxplots are
reported in Supplementary
material

SAX rLAX 6 rLAX 9 rLAX 18

CASE 1 User 1 1.10 ± 0.92 0.86 ± 0.67 0.93 ± 0.97 0.79 ± 0.80

User 2 0.95 ± 0.82 0.87 ± 0.77 0.99 ± 1.11 0.86 ± 1.07

User 3 1.39 ± 1.65 0.77 ± 0.58 0.77 ± 0.64 0.69 ± 0.63

CASE 2 User 1 0.90 ± 0.87 1.32 ± 0.88 1.15 ± 0.91 1.29 ± 1.00

User 2 1.15 ± 0.73 1.77 ± 1.50 1.65 ± 1.22 1.50 ± 1.21

User 3 0.79 ± 0.66 1.30 ± 0.91 1.37 ± 1.03 1.47 ± 1.00

CASE 3 User 1 0.66 ± 0.62 0.87 ± 0.63 0.95 ± 0.78 0.91 ± 0.64

User 2 1.19 ± 0.92 1.17 ± 0.69 1.10 ± 0.79 1.20 ± 0.88

User 3 1.21 ± 1.17 1.01 ± 0.68 0.92 ± 0.74 0.85 ± 0.69

The orifice contour annotations on SAX also differ more
from the ground truth than the rLAX annotations, even if the
variation is slightly less evident in case 2 and case 3 (Fig. 11).
Reference mean and standard deviation values are reported
in Table 6.

Distances of annotations from the ground truth
surface

The color-coded glyphs in Fig. 12 show positions and dis-
tances of the point annotations relative to the ground truth
surface. The color scale is set according to the minimum

and maximum distance values found in all three cases (see
Supplementary Material).

It could be noted that precise annular shape information
could not be derived from the SAX stacks. In addition, the
points separating the leaflets and the leaflets tips were not
correctly identified.

The average distances of the annotations from the ground
truth surfaces are reported in Table 7. Even if the SAX image
annotation points seem to be the closest to the ground truth
surface for case 2, the analysis shown in Figs. 9, 10 and
11 demonstrates that the orifice and annulus contours differ
substantially from the ground truth. We can observe that in
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Fig. 9 Annulus (left) and orifice (right) contours from the annotations
of all users for case 1. From first row: short axis annotation (SAX),
radial long axis with 6, 9 and 18 planes (rLAX6, rLAX9 and rLAX18).
The best agreement for the orifice contour is achieved in the annotation
of rLAX18

some case SAX annotation allows correct identification of
the visible parts of the valve but essential information about
annulus and orifice is missing in the image data.

Application on healthy volunteer acquiredMRI

The annotation approach was tested on images acquired with
the suggested sampling concept, theworst and the best results
are shown in Fig. 13. The application highlighted the need
for registration to correct for breathing motion.

Annotation results from SAX and rLAX for worst and
best case on healthy volunteer MRI are shown in Fig. 14.
In both SAX cases, the annulus contour is flattened, and the
commissures differ from the annotation on radial LAX.

Fig. 10 Annulus contour distances from the ground truth. Distances
values between the ground truth annulus contour and the user annota-
tions on the simulated images with different sampling strategies (SAX,
rLAX6, rLAX9and rLAX18).Mean and standard deviation are reported
in Table 3

For example, Figs. 13a and 14a show an irregular contour,
meaning small shifts between slices in different rotations
result in an implausible valve model.

Discussion

The image data simulated with the presented approach
look very similar to volunteer data acquired with similar
spatio-temporal sampling, and the images have comparable
properties regarding intensity distributions and noise. How-
ever, there are several features missing in the simulated data
(Fig. 6). The effects of blood flow are not simulated, and
ventricles appear more homogeneous than in real data. This
observation corresponds to other simulation-based image
generation approaches [11, 14]. Considering that the image
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Fig. 11 Orifice contour distances from the ground truth. Distances val-
ues between the ground truth orifice contour and the user annotations of
the image data with different sampling strategies (SAX, rLAX6, rLAX9
and rLAX18). Corresponding mean and standard deviation are reported
in Table 4

generation approach by Gilbert et al. provides synthetic
echocardiographic imagedata that looks realistic [16], a simi-
lar approachmight also help to synthesizemore realisticMRI
images.

The valve annotation results provided for the different
imaging strategies are directly connected to quantitative
parameter estimation. Their variability affects information
that are key in surgical planning, such as annulus shape and
dimension, leaflet length (derived from orifice contour).

Quantitative parameters derived from rLAX annotations
showed better agreement between users and with the ground
truth reference values (Fig. 7), suggesting that this image
sampling strategy would be preferable for clinically relevant
parameters estimation. This result is in line with the analysis

performed by Leng et al. [22] showing radial sampling strate-
gies to bemore accurate for annulus parameter identification.
In the absence of the actual anatomy of the valve, the authors
use values obtained on the 18 rotational long axis slices as
ground truth. Standard methods suggested for the quanti-
tative assessment of the mitral valve with MRI currently
consider only 3 LAX orientations for mitral valve quantifi-
cation [34]. Based on our observations, this might suffice for
the detection of strong abnormalities, but not for the assess-
ment of mitral valve properties in tasks which require the
analysis of the valve leaflets e.g., for intervention planning.

Even though some quantitative parameters were derived
correctly from the SAXstack annotation, the qualitative anal-
ysis of annulus and orifice contours shows that they were
misplaced with respect to the ground truth.

The qualitative evaluation of the annulus and orifice
contour (Figs. 8 and 9) further supports the idea that the
anatomical coverage of the mitral valve on SAX does not
allow for the extraction of the relevant landmarks with suffi-
cient accuracy for an assessment of the individual anatomy.

The corresponding quantitative analysis confirms this
hypothesis for both the annulus (Fig. 10) and the orifice
contour (Fig. 11). Furthermore, the average differences for
the annulus contour (rLAX6: 2.20 mm ± 1.01 mm, rLAX9:
2.35 mm ± 1.17 mm and rLAX18: 2.22 mm ± 1.05 mm)
are substantially lower for rLAX than for SAX annotations
(6.74 mm ± 12.12 mm). It is even lower than the error
found in previous publications for mitral valve assessment
(3.23 mm ± 2.66 mm) [27] and comparable to the low-
est reported inter-user variation on echocardiographic data
(1.63 mm ± 0.76 mm) [35]. The orifice contour differences
follow the same pattern (rLAX6: 2.55 mm ± 1.84 mm,
rLAX9: 2.26mm± 1.43mm, rLAX18: 2.21mm± 1.52mm,
SAX: 3.12 mm ± 1.87 mm, literature [27]: 3.84 mm ±
2.54 mm).

The achievable annotation accuracy on SAX highly
depends on the distance between the slices, their thickness
and position. If the annulus is located between two slice
planes, the annulus profile annotation will be misplaced
(Fig. 8). rLAX images enable annotation of the leaflets from
annulus to the end of the leaflets on every slice, but com-
missure identification is affected heavily by the number of
considered rotations. Acquiring a higher number of slices
increases the chance to intersect the valve in the commissure
area but alsomeans higher scanning and annotation times and
effort. Our approach enables the optimization of the num-
ber of planes with regard to the required accuracy. Overall,
our results indicated that an rLAX image sampling strategy
would be preferable for MV assessment, reaching accuracy
values that are comparable or even outperform literature val-
ues. This result is in line with themeasure performed byGarg
et al. [36] in which the authors recommend long-axis stack
to best assess the MV leaflets.
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Fig. 12 Distances of user annotations from ground truth valve surface for CASE 3. The points are color-coded depending on the distance from the
surface, the scale is set according to the minimum and maximum distance values found for all three cases (see Supplementary Material)

Fig. 13 Valve positions in
acquired images. Two different
radial LAX images are shown in
(a) and (b). Example (a) depicts
a visible shift between two
rotations. Example (b) shows a
proper image acquisition
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Fig. 14 Image annotation results. Reconstructed valves frompoints seg-
mented on rLAX are shown as gray surfaces. Annotations on SAX are
shown as red points. The annotations on the completely misaligned

rLAX plane are shown in blue and they have been excluded for the sur-
face generation in (a). The surface borders corresponding to the annulus
and the orifice are irregular in the worst case (a) even after excluding
the most shifted plane

Concerning the accuracy of our model with respect to
other cardiac phantoms that include the mitral valve, the dis-
tances between the annotation on the synthetic images and
the ground truth are comparable for all the cases and all the
user to the segmentations reported by Laing et al. [37] for
their physical patient-specific model (0.98 mm ± 0.91 mm).

We observed the need of registration in the MRI data
acquired with the rLAX acquisition concept considered best
according to the simulation study (Figs. 13, 14). Annulus
and orifice could be better identified than on the SAX data,
but an accurate valve model reconstruction would require a
strategy to avoid or correct the motion induced shift between
the rotations, which had been acquired in separate breath-
holds. Motion tracking is a common problem for cardiac
valve imaging, and our approach could be extended with a
motion simulation using parameters derived from real world
data with MV tracking algorithms [38, 39]. Vice versa, our
model could be helpful to validate automatic valve tracking
algorithm since it provides ground truth reference values for
accuracy analysis.

Limitations

The MV apparatus model we used for the image generation
was limited to the valve leaflets surface and annulus, although
the simulation of the valve closure also considered the pap-
illary muscles and the chords apparatus. Furthermore, the
heart contraction is neglected in the image generation. Intro-
ducing the heart motion will also result in a moving annulus
and valve and this could decrease the segmentation accuracy
for the proposed sampling strategies.

The synthetic image generation considers only someof the
imaging artifacts related tomotion and imagepostprocessing.
Artifacts caused by magnetic field imperfection [31] are not
addressed and they should be included in future.

The limited number of 3 subjects used for development
and validation of the model is a main limitation of the work
and will be extended in future works.

Conclusion

We presented a computational phantom for synthetic image
generation that includes a simulation of the moving mitral
valve. We presented its application for the evaluation of MRI
valve imaging strategies. For the image-based assessment of
the MV different image orientation and positioning strate-
gies were evaluated, and the most promising strategy was
applied for image acquisition in a healthy volunteer to test
the transferability. The radial sampling strategy was found
to be best for MV anatomy assessment. In line with [22],
the results also suggest that rLAX6 and rLAX9 might be
sufficient for the delineation of the annular profile. For the
correct identification of the orifice, however, rLAX18 may
be preferable.

General findings on the assessibility of key features of the
mitral valve could be transferred fromsimulated to real image
data. However, the dynamic model as well as the intensity
simulation might benefit from the integration of a motion
model and a machine learning approach for image synthesis
as suggested in the related literature [10, 11, 16].

The presented use case investigates MRI imaging for MV
assessment, the image synthesis pipeline can be applied to
other imaging techniques as well as to other cardiac valves.
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