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Abstract
Objectives The analysis of myocardial deformation using feature tracking in cardiovascular MR allows for the assessment 
of global and segmental strain values. The aim of this study was to compare strain values derived from artificial intelligence 
(AI)–based contours with manually derived strain values in healthy volunteers and patients with cardiac pathologies.
Materials and methods A cohort of 136 subjects (60 healthy volunteers and 76 patients; of those including 46 cases with 
left ventricular hypertrophy (LVH) of varying etiology and 30 cases with chronic myocardial infarction) was analyzed. 
Comparisons were based on quantitative strain analysis and on a geometric level by the Dice similarity coefficient (DSC) 
of the segmentations. Strain quantification was performed in 3 long-axis slices and short-axis (SAX) stack with epi- and 
endocardial contours in end-diastole. AI contours were checked for plausibility and potential errors in the tracking algorithm.
Results AI-derived strain values overestimated radial strain (+ 1.8 ± 1.7% (mean difference ± standard deviation); p = 0.03) and 
underestimated circumferential (− 0.8 ± 0.8%; p = 0.02) and longitudinal strain (− 0.1 ± 0.8%; p = 0.54). Pairwise group compari-
sons revealed no significant differences for global strain. The DSC showed good agreement for healthy volunteers (85.3 ± 10.3% 
for SAX) and patients (80.8 ± 9.6% for SAX). In 27 cases (27/76; 35.5%), a tracking error was found, predominantly (24/27; 
88.9%) in the LVH group and 22 of those (22/27; 81.5%) at the insertion of the papillary muscle in lateral segments.
Conclusions Strain analysis based on AI-segmented images shows good results in healthy volunteers and in most of the 
patient groups. Hypertrophied ventricles remain a challenge for contouring and feature tracking.
Clinical relevance statement AI-based segmentations can help to streamline and standardize strain analysis by feature 
tracking.
Key Points 
• Assessment of strain in cardiovascular magnetic resonance by feature tracking can generate global and segmental strain values.
• Commercially available artificial intelligence algorithms provide segmentation for strain analysis comparable to manual  
   segmentation.
• Hypertrophied ventricles are challenging in regards of strain analysis by feature tracking.
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Abbreviations
ACDC  Automatic Cardiac Diagnosis Challenge
AHA  American Heart Association
AHT  Arterial hypertension
AI  Artificial intelligence
AS  Aortic stenosis
CMI  Chronic myocardial infarction
CMI-EWF  CMI with reduced LVEF, dilated LV, and 

global WMA
CMI-F  CMI with focal fibrosis
CMI-WF  CMI with focal fibrosis, reduced LVEF, and 

regional WMA
CMR  Cardiovascular magnetic resonance
CNN  Convolutional neural network
CS  Circumferential strain
cv  Chamber view
DENSE  Displacement encoding with stimulated 

echoes
DSC  Dice similarity coefficient
ED  End-diastole
FT  Feature tracking
GCS  Global circumferential strain
GLS  Global longitudinal strain
GRS  Global radial strain
HCM  Hypertrophic cardiomyopathy
HD  Hausdorff distance
LAX  Long axis
LL   “Lazy Luna” tool
LS  Longitudinal strain
LV  Left ventricle
LVEF  Left ventricular ejection fraction
LVH  Left ventricular hypertrophy
LVOT  Left ventricular outflow tract
post-CM  Post-contrast media application
pre-CM  Pre-contrast media application
RS  Radial strain
SAX  Short axis
SD  Standard deviation
SENC  Strain Encoding Magnetic Resonance 

imaging
WMA  Wall motion abnormalities

Introduction

Myocardial strain allows for a quantitative measurement of 
myocardial deformation. Analysis of strain using cardiovas-
cular magnetic resonance (CMR) can be obtained either by 
tissue tagging or by direct feature tracking (FT) on standard 
cine images. While CMR tagging has been validated and 
has further advanced into various different techniques (e.g., 
(fast) Strain Encoding Magnetic Resonance imaging (SENC) 
or displacement encoding with stimulated echoes (DENSE)) 

[1–4], it still has the drawback of requiring special sequences 
and scan time. In contrast to this, FT is a promising tool as 
it allows for the assessment of segmental and global strains 
in longitudinal, circumferential, and radial directions (LS, 
CS, RS, GLS, GCS, and GRS, respectively) from standard 
cine images which are usually acquired during clinical rou-
tine [5]. Left ventricular (LV) strain analysis applying CMR 
has been implied in a wide array of clinical diseases ranging 
from chemotherapy-induced cardiotoxicity [6, 7] to ischemic 
heart disease [8–10] and even non-ischemic heart diseases like 
hypertrophic cardiomyopathies (HCMs) [11, 12] or cases of 
acute myocarditis [13, 14]. Despite its wide utility and power 
to detect myocardial changes even in states with preserved 
function, FT still lacks standardization and consensus about the 
methodological process. In a previous study, different factors, 
like post-processing software used, slice selection, and 2D or 
3D analysis, which all have the potential to influence strain val-
ues, were analyzed [15]. Additionally, one must take the time-
consuming manual contouring process as well as the reader’s 
level of expertise and training into consideration, which also 
impact strain evaluation [16]. One potential approach to reduce 
influence of manually derived contours is the use of artificial 
intelligence (AI)–derived contours. AI-based segmentation 
and strain evaluation have been previously applied and vali-
dated in a large cohort with commercially available software 
[17] as well as commercially unavailable software [18]. These 
advances may further streamline strain assessment and help 
to reach a consensus about a standardized approach to feature 
tracking in clinical routine and “big data” studies.

Our study aimed at evaluating and comparing manual and 
AI-based approaches regarding quantitative strain metrics 
used in clinical routine as well as on a contour level for strain 
assessment by FT in healthy volunteers and patients with 
different cardiac diseases in order to identify strengths and 
weaknesses of these methods.

Materials and methods

The ethics review board approved all studies and all partici-
pants gave written informed consent.

Study population

In the healthy volunteers cohort, 67 subjects, retrospectively 
recruited in a previous study [15], were included. For the 
final analysis, 7 volunteers had to be excluded due to lack of 
a short-axis (SAX) stack covering the entire ventricle and 
one due to significant respiratory artifacts, which ultimately 
resulted to a healthy cohort consisting of 60 subjects. For the 
clinical validation, a cohort of 76 patients, chosen from previous 
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studies [19–21], with cases including left ventricular hypertro-
phy (LVH) (n = 46 consisting of 8 patients with arterial hyper-
tension (AHT)), 24 with aortic stenosis (AS), 14 with HCM, 
and chronic myocardial infarction (CMI) (N = 30 consisting 
of 10 patients with preserved left ventricular ejection fraction 
(LVEF), no wall motion abnormalities (WMA) and focal fibrosis 
(CMI-F), 10 with reduced LVEF, regional WMA, focal fibrosis 
(CMI-WF), and 10 with reduced LVEF with dilated LVs, global 
WMA, and focal fibrosis (CMI-EWF)), was constructed.

Imaging protocol

CMR was performed either at a 1.5-T scanner (MAGNETOM 
 Avanto−FIT, Siemens Healthineers) or a 3-T scanner (MAG-
NETOM Verio, Siemens Healthineers). Steady-state free 
precession-based cine images were acquired for 3 long-axis 
(LAX) views including a 2 chamber view (cv), a 3 cv, and a 4 
cv as well as one SAX stack covering the entire left ventricle. 
Sequence parameters for the SAX stack at the 1.5-T scanner 
were as follows: time of repetition 2.8–3.31 ms, slice thickness 
7 mm with no gap, flip angle 80°, echo time 1.2–1.44 ms, field 
of view 340–380 × 276– 308, 75  mm2, matrix 192 × 156, voxel 
size 1.4–2.0 × 1.4–2.0, 30 cardiac phases; and for the 3-T scan-
ner: time of repetition 3.1 ms, slice thickness 6 mm with no gap, 
flip angle 45°, echo time 1.3 ms, field of view 340 × 276  mm2, 
matrix 192 × 156, voxel size 1.4 × 1.4, 30 cardiac phases.

Manual segmentations

Manual segmentation was performed with dedicated soft-
ware (circle  CVI42 version 5.14.7, Circle Cardiovascular 
Imaging Inc.). Manual endo- and epicardial contours were 
drawn in end-diastole (ED), determined by the phase with 
the largest LV volume in SAX as well as in the 2 cv, 3 cv, 
and 4 cv. We were particularly attentive during segmentation 
to avoid contouring phases with the left ventricular outflow 
tract (LVOT) still visible in diastole and/or systole. Papillary 
muscles were not separately contoured as recently published 
[15]. Reference points for the delineation of segments were 
manually placed at the subepicardial border at the anterior 
intersection of the left and right ventricle.

AI‑generated segmentations

Similarly to the manual strain assessment, AI contours were 
derived in ED. The AI segmented slices with visible LVOT 
using open LV endo- and epicardial contours, which were dis-
regarded for strain analysis. Reference points were automati-
cally set by the AI; however, each point was manually validated 
to obtain comparable segmental values. The AI segmentation 
algorithms employed in the Circle  CVI42 software are comprised 
of different deep convolutional neural network models trained 
to perform SAX and LAX CMR image segmentation. A similar 

model architecture as that of the standard U-Net is adopted for 
this purpose, along with various data augmentation techniques 
to enhance the generalizability of the trained model. The model 
was trained on the UK Biobank data as well as datasets that 
include patient data with pathological conditions including 
tetralogy, cardiomyopathy, and hypertension [22]. These models 
operate solely on image pixel data and image header information 
such as image dimensions and pixel spacing.

Strain assessment

After segmentation, a FT algorithm provided strain values. The 
algorithm uses myocardial points and tracks them along the 
cardiac cycle [23, 24]. On a quantitative level, the manual and 
the AI approach were compared for strain assessment in CS 
and RS retrieved from SAX and LS retrieved from LAX views. 
All strain values were derived for global as well as segmental 
values according to the 17-segment model of the American 
heart association (AHA) for CMR without the apical segment 
[25]. Correct FT was assessed by either mesh analysis or by 
tracking the myocardial points through the phases. Improper 
tracking was defined as mesh overlay or myocardial points not 
following the extent of the contours [15, 26]. To enable compa-
rability between the segmentations regarding the strain analysis, 
we verified that the AI algorithm chose the proper ED phase.

Statistical analysis

All continuous variables are presented by mean and standard 
deviation (SD). Normal distribution was visualized by QQ plots. 
A mixed model was used to assess measurement differences 
segmentally and globally between the modalities for healthy vol-
unteers and patients combined. In the mixed model, a global test 
was applied to test for any differences. In the case of a significant 
global test, pairwise comparisons were performed. Additionally, 
we tested whether a difference found between the AI and manual 
segmentations was homogenous over all groups or whether a 
certain group showed major deviations.

Additionally, both segmentation approaches were compared 
using the “Lazy Luna” (LL) tool which allows to assess the 
similarity those of an experienced reader and an AI on the 
contour level, via reproducibility validation metrics [27]. We 
chose the Dice similarity coefficient (DSC) and the Hausdorff 
distance (HD) to compare the consensus of the manual con-
tours and the AI approach. DSC scores were calculated based 
on myocardial class, which was derived from the intersection 
of the endo- and epicardial contours placed manually or by 
the AI. High DSC numbers signifying a substantial overlap of 
the segmented areas and low numbers indicate incongruences. 
Vice versa holds true for the HD metric. In order to compare 
the proper placement of the insertion point, the LL tool addi-
tionally compared the manual- and AI-placed insertion point 
based on an angular difference to the left ventricular centroid. 
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As some SAX acquisitions were acquired after contrast media 
application (post-CM), GRS and GCS as well as DSC and HD 
metrics were compared with acquisitions pre-contrast media 
application (pre-CM). Statistical analysis was performed using 
dedicated software (SPSS version 26, International Business 
Machines and SAS version 9.4, SAS Institute Inc.). The seg-
mentation comparison tool “Lazy Luna” and the bulls-eye 
plots were created in Python (Version3.8, Python Software 
Foundation) [27].

Results

Study population

In the healthy cohort, 67 subjects were re-analyzed and in the 
clinical cohort 76 patients. Details concerning the healthy 
volunteer cohort and the patients are given in Table 1. Over-
all, AI-derived strain values showed a trend towards over-
estimation of RS values ((mean difference % (± SD)) + 1.8 
(± 1.7)) and an underestimation of CS (− 0.8 (± 0.8)) and LS 
values (− 0.1 (± 0.8)) (Fig. 1). Regarding the entire studied 
cohort, including the healthy probands and the ones with 
pathologies, global testing revealed significant differences 
for GCS (p = 0.03), GRS (p = 0.03), and RS AHA segments 
5 (p = 0.045), 10 (p = 0.04), 11 (p = 0.002), and 12 (p = 0.03). 
Pairwise testing revealed no significant differences if manual 
and AI approaches were compared for the specific cohort 
for GCS, GRS, and RS AHA segment 12. Statistically sig-
nificant results were found between AI and manual strain 
values for the subgroups AS and HCM for RS AHA seg-
ment 5 (p = 0.01 and p = 0.03, respectively), 10 (p = 0.01 
and p = 0.02, respectively), and 11 (p = 0.02 and p = 0.01, 
respectively) (Supplementary material 1). Additionally, 
we found no significant interaction between the methods 
and the examined subgroups except for AHA segment 10 
for CS (p = 0.02) as well as RS (p = 0.02) (Supplementary 
Material 2). Overall, in 83/136 cases (61%), SAX images 
were acquired post-CM. For the subgroups, the following 
percentages of SAX were acquired after post-CM: healthy 
cohort 37/60 (61.7%), CMI-F 10/10 (100%), CMI-WF 10/10 
(100%), CMI-EWF 10/10 (100%), AHT 7/8 (87.5%), AS 
8/24 (33.3%), HCM 1/12 (8.3%).

Strain analysis—healthy cohort

Strain analysis was feasible in all 60 cases for CS, RS, 
and LS. Global values were as follows: manual (mean % 
(± SD)) − 16.2 (± 2.2) GCS; 25.5 (± 4.9) GRS; − 17.5 (± 1.8) 
GLS; and for the AI approach: − 16.7 (± 2.2) GCS; 26.6 
(± 5.0) GRS; − 17.3 (± 1.7) GLS. Segmental strain values 
with standard deviations are presented in Fig. 2. The DSC 
(in %) showed good agreement between the manual and 

AI-derived contours with 85.3 ± 10.3 for SAX contours, 
85.8 ± 2.9 for 2cv contours, 83.1 ± 5.1 for 3cv contours, and 
84.1 ± 4.1 for 4cv contours (Fig. 3). Comparison of the inser-
tion points revealed a mean angle difference of 5.1 ± 10.9° 
(in relative values 1.4 ± 3.0% difference). Regarding both 
approaches, the highest CS and LS values as well as the low-
est RS values were confined to segments 11 or 12 (insertion 
point of the papillary muscle) of the AHA model.

Strain analysis—patients with various cardiac 
diseases

AI-derived contour generation and strain analysis was pos-
sible in all clinical cases. Global and segmental values are 
presented in Supplementary Material 1. The Dice metric 
values showed good agreement between the manual and AI-
derived contours with 80.8 ± 9.6 for SAX contours, 85.1 ± 4.6 
for 2cv contours, 85.9 ± 6.7 for 3cv contours, and 85.5 ± 4.4 
for 4cv contours on average (Table 2). Angular differences 
for the insertion points were on average 4.4 ± 9.4 degrees 
(1.2 ± 2.6%) for the cohort with cardiac disease. For the 
individual pathologies, the results were the following: AHT 
3.3 ± 6.4° (0.9 ± 1.8%), AS 2.0 ± 6.5° (0.7 ± 1.8%), HCM 
0.3 ± 12.7° (0.01 ± 3.5%), CMI-F 8.3 ± 7.7° (2.3 ± 2.1%), 
CMI-WF 5.9 ± 8.6° (1.6 ± 2.4%), and CMI-EWF 9.6 ± 9.2° 
(2.7 ± 2.6%). Figure 4 presents examples with proper tracking 
and corresponding pathologic features. Tracking errors were 
found in 27 cases (35.5%; 27/76) of which 3 were from CMI-
WF and 24 from the LVH group with 4 in the AHT group 
(16.7%; 4/24), 16 in the AS group 66.7%, 16/24) and 4 in 
the HCM group (16.7%; 4/24). Further analysis revealed that 
tracking errors in the LVH group were mostly confined to the 
basal, midventricular anterolateral, and inferolateral segments 
at the insertion point of the papillary muscle (81.5%; 22/24), 
leading to higher LS strain values in these segments. The infe-
rior midventricular segment was the third most affected region 
(8.3%; 2/24). In one case from the CMI group, despite proper 
epicardial contours, tracking features were identified within 
the right ventricle (3.7%; 1/76). Figure 5 shows examples of 
tracking errors encountered in the clinical cohort.

Analysis of images pre‑ and post‑contrast media 
application

GRS and GCS were lower post-CM for manual segmen-
tations (GRS pre-CM 25.7 ± 6.9% vs. 20.1 ± 7.8 post-
CM application; p < 0.001; GCS pre-CM − 15.0 ± 3.0 
vs. − 13.3 ± 4.2 post-CM; p < 0.001) and AI segmenta-
tions (GRS pre-CM 28.2 ± 6.8% vs. 21.4 ± 8.1 post-CM; 
p < 0.001; GCS pre-CM − 17.1 ± 2.8 vs. − 13.0 ± 4.3 post-
CM; p < 0.001).
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The DSC and HD metrics were in the same range for 
pre-CM and post-CM SAX segmentations; however, a lower 
score post-CM were noted (DSC: 83.6 ± 9.3% for pre-CM 
vs. 80.5 ± 14.3% post-CM; HD: 3.3 ± 1.4 mm pre-CM vs. 
3.6 ± 1.7 mm post-CM).

Discussion

The main results of our studies are as follows: strain analysis 
by FT on cine images based on AI-derived contours is feasi-
ble and results in equivalent global and segmental strain val-
ues with the exception of lateral segments in hypertrophied 
ventricles. The difference however is attributable to tracking 

Fig. 1  Global strain values for 
the healthy and the disease 
cohorts for circumferential, 
radial, and longitudinal strains 
in %. Overall, AI-derived 
strain values showed a trend 
towards overestimation of RS 
values and underestimation 
of CS and LS values. Global 
significant differences were 
found for circumferential and 
radial global strain values, with 
pairwise comparison revealing 
no significant differences. LVH, 
left ventricular hypertrophy; 
AHT, arterial hypertension; AS, 
aortic stenosis; HCM, hyper-
trophic cardiomyopathy; CMI, 
chronic myocardial infarction; 
F, cases with focal fibrosis, 
no wall motion abnormalities, 
and preserved left ventricular 
function; WF, cases with focal 
fibrosis, wall motion abnormali-
ties, and reduced left ventricular 
function; EWF, cases with 
fibrosis, global wall motion 
abnormalities, and reduced left 
ventricular function and dilated 
left ventricles
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Fig. 2  Segmental strain values for the healthy cohort for circumfer-
ential, radial and longitudinal strains in %. Segmental strain values, 
according to the American heart association model, are presented 
from left to right for circumferential, radial, and longitudinal strains 

in %. Pairwise comparisons showed no statistically significant differ-
ences between the manual (top) and the AI-based (bottom) segmenta-
tions

Fig. 3  Dice metric comparison between manual and AI segmenta-
tions. Comparison of manual (second column from the left) and 
AI-based segmentations (third column from the left). Third column 
from the right depicts myocardial class annotations for manual seg-
mentations (red) and the rightest column for AI segmentations (blue). 

The second column from the right demonstrates the spatial overlap 
between the contours (green area). Discrepancies are in the corre-
sponding colors of manual (red) or AI contours (blue). DICE values 
ranged from 83% in the 3-chamber view to 94% in the short axis for 
the exemplary case
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errors as the spatial overlap metric shows good agreement 
of the methods.

CMR has become the gold standard for LV and right ven-
tricular volume and mass quantification [28] with a stand-
ardized approach for analysis and post-processing of images 
[29]. Yet, there are no consensus recommendations on how 
to quantify LV myocardial tissue dynamics and deforma-
tion by applying CMR. Therefore, we explored how strain 
assessment by FT can potentially become more standardized 

involving AI-powered approaches. In our study, we could 
demonstrate that AI-generated contours for strain assess-
ment by FT are reliable and result in equivalent global and 
segmental values. In a previous study by Ruijsink et al, DSC 
between manual and AI-based segmentation was 93% for 
the endocardial segmentation and 84% for the epicardial 
segmentation [18]. We found a similar DSC for the myo-
cardial class in our study. Other segmentation algorithms 
which were tested on the “Automatic Cardiac Diagnosis 

Table 2  Spatial overlap metrics for the pathologies sorted by short and long axes

HD Hausdorff distance, WMA wall motion abnormalities, LVEF left ventricular ejection fraction, SAX short axis

Parameter Chronic myocardial infarction (N = 30) Left ventricular hypertrophy (N = 46)

Subgroup Healthy 
volunteers

Focal fibrosis, 
no WMA and 
preserved LVEF

Focal fibrosis, 
WMA and 
reduced LVEF

Focal fibrosis, global 
WMA and dilated LV 
with reduced LVEF

Arterial 
hypertension

Aortic 
stenosis

Hypertrophic 
cardiomyopathy

Dice SAX (%) 85.7 ± 8.6 79.7 ± 9.7 78.4 ± 9.8 78.6 ± 10.7 83.9 ± 8.5 81.5 ± 8.2 81.2 ± 10.5
HD SAX (mm) 2.6 ± 1.2 3.6 ± 1.3 4.0 ± 1.4 4.5 ± 2.1 3.9 ± 1.2 4.0 ± 1.5 4.1 ± 1.3
Dice 2 chamber view (%) 85.8 ± 2.9 83.6 ± 4.5 83.3 ± 3.0 80.5 ± 5.8 87.5 ± 1.9 87.1 ± 3.8 86.6 ± 3.9
HD 2 chamber view 

(mm)
4.7 ± 2.7 5.2 ± 2.9 6.7 ± 2.2 7.7 ± 4.7 4.4 ± 1.2 4.5 ± 1.7 5.1 ± 2.6

Dice 3 chamber view (%) 83.1 ± 5.1 84.4 ± 2.7 85.4 ± 4.0 77.7 ± 9.3 86.9 ± 2.9 86.4 ± 4.3 85.8 ± 4.3
HD 3 chamber view(mm) 6.7 ± 4.7 5.5 ± 1.9 3.7 ± 1.0 6.4 ± 2.9 4.7 ± 1.7 3.9 ± 1.7 5.1 ± 1.8
Dice 4 chamber view (%) 84.1 ± 4.1 83.6 ± 1.7 83.5 ± 4.4 82.5 ± 4.9 86.2 ± 2.9 87.6 ± 3.4 84.8 ± 3.5
HD 4 chamber view 

(mm)
7.0 ± 0.9 9.1 ± 4.8 10.0 ± 3.3 8.9 ± 3.3 6.3 ± 2.5 4.8 ± 4.5 6.1 ± 3.8

Fig. 4  Examples of proper AI contours with strain values and under-
lying pathologies. Top row represents a patient with a chronic myo-
cardial infarction and focal subendocardial scar at the inferolateral 
wall (late gadolinium enhancement (LGE)) images in a 2 chamber 
views (top row, left image) and short axis (top row, second from the 
left) with subtle wall motion abnormalities. Global longitudinal strain 
was reduced (− 15.9%). Middle row represents a patient with chronic 
myocardial infarction and microvascular obstruction on LGE imaging 

(middle row left and second from the left). Left ventricular function 
and global longitudinal strains were severely impaired. Bottom row 
represents a patient with left ventricular hypertrophy due to long-
standing arterial hypertension. On LGE imaging a diffuse fibrotic 
process is visible (bottom row left and second from the left). Global 
longitudinal strain is mildly reduced with no focal accentuation. The 
second and third columns from the left represent manual and AI seg-
mentations of two chamber views, respectively
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Challenge” (ACDC) dataset, achieved DSC scores up to 
96% for the LV [30]. These scores are higher than the one 
presented here; however, the underlying dataset in the chal-
lenge plays an important factor. The ACDC dataset included 
similar pathologies as in this study, such as HCM, CMI, 
and dilated cardiomyopathies; however, whether scans were 
carried out after contrast administration was not clearly 
depicted. Images obtained after contrast media application 
pose an additional challenge as myocardial fibrosis might 
be mistaken for the blood pool by AI algorithms as well as 
human readers. In this study, we found the overall lowest 
segmentation overlap, indicated by DSC and HD metrics, in 
the CMI group. As all scans in the CMI group were carried 
out after contrast administration and each case included at 
least one focal fibrosis; these scans posed a challenge for 
the algorithm. This was also evidenced by the lower DSC 
and HD in the comparison of pre-CM and post-CM images. 
In the subset of LVH, we found higher DSC scores in com-
parison to the healthy and CMI cohorts. We believe that 
this paradoxon can be explained by the larger LVM in the 
LVH cohort as the overall differences in segmentations are 
divided by a larger area. When considering the HD metric, 
the healthy cohort showed the lowest value regarding the 
SAX segmentations.

When segmental values, which are defined according to 
the AHA model, are compared, the insertion point has to be 
taken into consideration. In order to verify the proper inser-
tion, visual analysis can be carried out; however, for large 

data, this is tedious. We propose therefore a comparison 
based on angular differences as outlined in the methods. The 
highest angular differences (8.7°) were seen in the CMI-F 
cohort. Comparing this to the general division of the AHA 
segments (60°), we feel that these are neglectable; however, 
the relevance of angular differences and their impact on 
AHA segments ought to be investigated further.

Interestingly, the study by Ruijsink et al used 3 SAX slices 
as well as 2cv and 4cv for strain assessment with diastolic 
contours. This might potentially impact the strain analysis 
of CS and RS values [15]. Previous studies reported normal 
values for FT on the full SAX coverage [5, 31]. To addition-
ally achieve a more streamlined post-processing of CMR 
images, AI algorithms, with the placement of contours in ED 
and ES for functional assessment, can “recycle” these con-
tours for strain assessment by FT. Further studies employing 
this approach, potentially in clinical routine scenarios, are 
needed to verify whether this approach is feasible in a real-
world setting. We analyzed not only a healthy population 
but also one with different clinical entities, which were cho-
sen as either to be a challenge regarding the segmentation 
(post-contrast cines with fibrosis) or for the FT algorithm 
(wall motion abnormalities) or both (LVH subgroup, CMI-
EWF). In addition, we compared all cases 1:1 and not only 
selected cases, which minimizes the possibility of errors. 
The LVH group, especially AS and HCM cases, was bur-
densome for the AI on a contour and tracking level. Studies 
about AS and CMR FT have been previously published but 

Fig. 5  Examples of tracking errors. The left and the middle column 
show tracking errors in the 3-chamber view at the insertion point of 
the papillary muscle in the anterolateral segment. Middle and bottom 
row represent manual and AI segmentations respectively. The right 

column shows a tracking error in the 2-chamber view in the inferior 
midventricular segment. Middle and bottom row represent manual 
and AI segmentations, respectively
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none covered AI-derived contours or analysis of tracking 
errors [32–37]. As the majority of tracking issues in the LVH 
group was related to the anterolateral and inferolateral seg-
ments, papillary muscle hypertrophy could have played a 
role [38, 39]. As the FT algorithm relies on recognition of 
voxel-based features, which are in general sparse or even 
absent in the normal myocardium [40], hypertrophy of the 
myocardial tissue can further deteriorate tracking. We found 
the highest CS and LS as well as the lowest RS value in the 
abovementioned segments in the healthy cohort. Andre et al 
presented similar results, with the highest variance in these 
segments. Potentially, the movement of the papillary muscle 
can have an impact on the values in these segments even in 
non-pathologic states, which would be further exacerbated 
with hypertrophy of the myocardium and its appendages. 
A previous study found statistically significant differences 
between healthy male and female volunteers in AHA seg-
ment 5 of LS analysis [15]. One other study reported a sig-
nificantly larger papillary muscle mass in males compared 
to females [41], which might possibly explain the previous 
findings and the ones presented here. In concordance with 
the identified segments that pose a challenge for the FT 
algorithm, the AI-derived strain values show the only sig-
nificant differences compared to manual contours in these 
segments. Interestingly, the differences between the meth-
ods were due to strain values for AS and HCM cases (Sup-
plementary Material 2). These differences however are not 
based on a contour level as evidenced by the DSC. Potential 
influencing factors might relate to the LAX extent or the 
acquisition itself. In comparison to the other pathologies, 
we found the 3cv slice location in this group frequently at a 
narrower angle. This finding might be related to a prominent 
and dilated ascending aortic root in AS patients impairing 
proper 3cv acquisitions [42, 43].

The intersegmental differences are a drawback for FT-
derived strain values. In a head-to-head comparison between 
fast-SENC, tagging, and FT, all techniques had good repro-
ducibility; however, in a segmental inter-study comparison, 
FT showed the lowest agreement [3]. This was confirmed by 
other studies reporting a rather large variation across seg-
ments rendering comparisons rather unfeasible and addition-
ally demonstrating that segmental analysis with FT is com-
plex and clinical implications uncertain [31, 44]. A potential 
solution might be the use of regional instead of segmen-
tal values [45]. In contrast to FT, other techniques such as 
DENSE have a higher reproducibility of segmental strain 
values [46, 47]. In addition, segmental strain values provided 
by DENSE have been shown to carry a prognostic implica-
tion in patients after an acute myocardial infarction [48]. 
Regarding the segmental approach, SENC-derived strain 
values similarly show a better intersegmental agreement 
[3, 49]. The fast SENC technique seems highly reproduc-
ible, even across different sites [50, 51]. Clinical application 

of this technique has shown clinical merit; however, more 
research is needed regarding segmental values [52]. In gen-
eral, all strain values derived from commercially available 
software are potentially limited in their comparability as new 
versions provide new values; hence, providing the software 
version applied is of great importance.

Lastly, we want to comment on the effect of contrast 
media application on FT-derived strain values. On the one 
hand, we noticed that the segmentation becomes more chal-
lenging for the AI algorithm; on the other hand, post-CM 
strain values are lower. This is in line with previous literature 
[53]. As SAX acquisition are now most of the time acquired 
after contrast media application, challenges and AI segmen-
tation networks have to take this into consideration.

Limitations

This is a single-center study with a limited number of cases 
but reflects different disease entities. This limits potential 
statistical power in the detection of significant differences 
in the pairwise comparisons. Another limitation is that we 
did not compare cardiac contours along the cardiac cycle in 
order to depict the proper tracking of the FT algorithm. Fur-
thermore, we want to point out that we did not use another 
vendor, which reduces generalizability.

Conclusions

Our study shows that application of AI-derived contours for 
feature tracking and strain analysis in CMR yields results 
comparable to manual segmentations. Attention should be 
taken while evaluating left ventricle hypertrophy cases espe-
cially in patients with aortic stenosis independent of the use 
of manual or AI-derived contours.
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