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In Brief
The human genome encodes
thousands of noncanonical
ORFs along with protein-coding
genes. As a nascent field, many
questions about them remain:
How many exist? Do they
encode proteins? What evidence
is needed for their verification?
Central to these debates has
been the advent of ribosome
profiling (Ribo-Seq) to discern
genome-wide ribosome
occupancy and
immunopeptidomics to detect
peptides presented by major
histocompatibility complex
molecules. This article
synthesizes the current state of
noncanonical ORF research and
proposes standards for their
future investigation and
reporting.
Highlights
• Ribo-seq paired with proteomics-based methods optimally detects noncanonical ORFs.• Data quality and analytical pipelines impact the output of a Ribo-seq experiment.• Noncanonical ORF catalogs variably report both high- and low-stringency nominations.• A framework for standardized noncanonical ORF evidence will advance the field.
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PERSPECTIVE
What Can Ribo-Seq, Immunopeptidomics, and
Proteomics Tell Us About the Noncanonical
Proteome?
John R. Prensner1,2,* , Jennifer G. Abelin3, Leron W. Kok4 , Karl R. Clauser3,
Jonathan M. Mudge5 , Jorge Ruiz-Orera6 , Michal Bassani-Sternberg7,8,9,
Robert L. Moritz10 , Eric W. Deutsch10, and Sebastiaan van Heesch4
Ribosome profiling (Ribo-Seq) has proven transformative
for our understanding of the human genome and prote-
ome by illuminating thousands of noncanonical sites of
ribosome translation outside the currently annotated
coding sequences (CDSs). A conservative estimate sug-
gests that at least 7000 noncanonical ORFs are translated,
which, at first glance, has the potential to expand the
number of human protein CDSs by 30%, from ~19,500
annotated CDSs to over 26,000 annotated CDSs. Yet,
additional scrutiny of these ORFs has raised numerous
questions about what fraction of them truly produce a
protein product and what fraction of those can be under-
stood as proteins according to conventional understand-
ing of the term. Adding further complication is the fact that
published estimates of noncanonical ORFs vary widely by
around 30-fold, from several thousand to several hundred
thousand. The summation of this research has left the
genomics and proteomics communities both excited by
the prospect of new coding regions in the human genome
but searching for guidance on how to proceed. Here, we
discuss the current state of noncanonical ORF research,
databases, and interpretation, focusing on how to assess
whether a given ORF can be said to be “protein coding.”

Defining the extent of RNA translation in the human
genome—and the resulting proteins—has long been a major
focus for biomedical research. Approximately 19,500 protein-
coding genes, which produce ~80,000 annotated protein
coding isoforms, constitute the canonical proteome (1–6). Yet,
whether this catalog is comprehensive has recently under-
gone substantial debate spurred by sequencing-based ad-
vances in the analysis of ribosome translation, termed
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ribosome profiling (Ribo-Seq). Based on classical techniques
used to isolate ribosome–RNA complexes, Ribo-Seq is an
RNA sequencing–based approach that profiles ribosome-
protected RNA fragments, precisely defining ORFs actively
engaged by translating ribosomes (7, 8). As a tool to detect
the translation of RNA, the precision of this methodology is
unprecedented: from individual ribosome footprints, the exact
codon being translated in a purified ribosome–RNA complex
can be determined. Through the sequencing of hundreds of
millions of ribosome footprints, a single Ribo-Seq experiment
can therefore produce a detailed and accurate representation
of a given sample’s translated RNAs, typically identifying
~11,000 to 12,000 translated genes per sample (9–11), which
is more similar to the ~12,000 to 13,000 expressed protein-
coding mRNAs detected in a given cell type (12) compared
with the ~9000 to 11,000 proteins per sample typically
detected in mass spectrometry (MS) methods (13, 14).
In addition to confirming known protein coding sequences

(CDSs), the high predictive power of Ribo-Seq has unveiled
thousands of other genomic sites of ribosome translation.
These are most commonly found within known mRNAs (i.e.,
different reading frames than canonical CDS regions) but also
within transcripts annotated as long noncoding RNAs
(lncRNAs), pseudogenes, or retroviral elements in the genome
(7, 9, 11, 15–23). Ribo-Seq can also provide clues on previ-
ously missed N-terminal in-frame extensions to known CDSs,
initiated at sites alternative to the classically annotated initia-
tion codon (24–27). The nomenclature and estimated abun-
dance of noncanonical ORFs are listed in Figure 1A. For
clarity, these ORFs are termed “noncanonical” to distinguish
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PERSPECTIVE
them from CDSs included in reference gene annotation—that
is, Ensembl-GENCODE—even though their translation, to our
knowledge, occurs through mechanisms of ribosome activity
similar to that of CDSs. Throughout this text, the term
“noncanonical ORF” is therefore defined as any ORF that is
not an annotated CDS, an in-frame extension or truncation
(either N-terminal or C-terminal), or an in-frame intron reten-
tion of an annotated CDS. For our purposes, we will be
focusing on upstream ORFs (uORFs), upstream overlapping
ORFs (uoORFs), internal ORFs that overlap the CDS but are
translated in a different frame (intORFs), downstream over-
lapping ORFs (doORFs), downstream ORFs (dORFs), and
lncRNA-ORFs (as in Fig. 1A). We will not discuss in depth
ORFs that may be translated from pseudogenes (19), genomic
retroviruses (28), or other repetitive sequences (29) (see
Limitations section).
Given these observations, the genomics community has

been faced with the fundamental question: does the genome
actually encode far more than the ~19,500 protein-coding
genes currently accepted as canonical? In response, there
have been increasing efforts to corroborate the observations
from Ribo-Seq using MS, with the overall conclusion that only
a low percentage of noncanonical ORFs are detectable by
conventional tryptic proteome methods employing liquid
chromatography with tandem MS (LC–MS/MS) techniques (9,
15, 30–34). Yet, far more noncanonical ORFs appear to be
detectable with immunopeptidomic approaches that profile
peptides presented by the class I human leukocyte antigen
(HLA-I) system (Fig. 1B) (34–39). Moreover, independent of
their protein-coding capacity, noncanonical ORFs may serve
important roles in the regulation of mRNA translation (40–42).
With these observations at hand, one of the central tasks for
the proteomics and genomics communities alike is to develop
a consensus understanding on what constitutes sufficient
evidence of detection for a noncanonical ORF from each
technology and how to standardize these assessments given
the limitations of each methodology.
TYPES OF EVIDENCE FOR NONCANONICAL ORFs

Translated noncanonical ORFs can be detected by either
Ribo-Seq or LC–MS/MS approaches, with examples of tran-
sition to canonical annotated protein-coding genes emerging
from both. For example, translation of the signaling proteins,
APELA (43), POLGARF (44, 45), TINCR (46), and the cardiac
proteins, MYMX (47) and MRLN (48), was first identified using
Ribo-Seq, whereas LC–MS/MS data provided the initial evi-
dence for the translation products of uORFs in ASNSD1,
MKKS, MIEF1, and SLC35A4 (30, 49).
Together, the combination of Ribo-Seq and LC–MS/MS is a

powerful way to identify translated CDSs and ORFs (21,
50–52). Ribo-Seq does not directly detect proteins but rather
provides evidence of ongoing nucleotide translation. By
contrast, LC–MS/MS evidence for noncanonical ORFs takes
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the form of direct detection of peptides. In the case of con-
ventional LC–MS/MS of cellular lysates, these peptides are
typically tryptic, meaning they were generated by protein
cleavage at the C-terminal side of a lysine or an arginine, or
semitryptic, meaning they were generated by protein cleavage
at the C-terminal side of a lysine or an arginine at one end of
the peptide but not the other. However, many ORFs have now
been observed in MS-based HLA-I immunopeptidomics data
(18, 34, 36, 38, 53). Here, no tryptic digestion is employed.
Instead, peptides containing the HLA-I peptide–binding motifs
of the HLA-I allele expressed by a specific cell line or tissue
are observed. A variety of lower-throughput approaches have
also been used to assess translation of noncanonical ORFs,
including generation of custom antibodies, expression of
epitope-tagged ORF complementary DNAs, selective reaction
monitoring, and radiolabeled in vitro translation (9, 17, 54–56).
While high-quality Ribo-Seq and LC–MS/MS tryptic prote-

ome data on the same sample should be able to identify highly
consistent sets of endogenous CDSs, Ribo-Seq is not able to
pinpoint the responsible translation event for exogenous
proteins, which originate from sources other than the sample’s
own genetic material. Similarly, Ribo-Seq cannot detect or
predict protein stability, folding, or post-translational modifi-
cation (PTM). If there is a substantial discrepancy with MS
detecting many additional proteins, then the quality of the
Ribo-Seq library should be inspected (see later). It should also
be noted that Ribo-Seq, like all sequencing-based methods,
may not be able to resolve translation events in repetitive
genomic regions, such as retrotransposons, pseudogenes, or
genes with very high homology.
By contrast, Ribo-Seq will almost always detect many

noncanonical ORFs that are not found by proteomics. This is
due to several factors: both the nature of the data itself as well
as technological differences in the methods that may impact
the ability to detect lowly expressed molecules with high
confidence. For example, all MS-based proteomics methods
lack a PCR amplification step that is present in most nucleo-
tide sequencing–based methods, which enables higher
sensitivity at lower sample inputs. Regarding the nature of the
data, Ribo-Seq has the ability to identify translating ribosome
signatures in an unbiased way, which may confidently find
ORFs less than eight amino acids long that are fundamentally
challenging to identify by MS (15, 57). In fact, Ribo-Seq can
confidently identify an ORF that is simply a start codon fol-
lowed by a stop codon (i.e., Met*) because the Ribo-Seq reads
remain sufficiently long for unique genomic mapping (58).
Second, since some noncanonical ORFs are located in GC-

rich promoters (such as uORFs), these may encode amino
acid sequences that are enriched in arginine (CGU/CGC/CGA/
CGG codons) and thus would be excessively cleaved by
trypsin to small peptides that cannot be uniquely mapped to a
single ORF. Whether use of alternative proteases (59) could
improve noncanonical ORF detection in whole lysate prote-
omics is unclear.
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FIG. 1. An overview of noncanonical ORF types and detection
methods. A, a schematic illustrating the standardized names of
noncanonical ORF types, their relationship to known mRNAs, and
current estimations of their abundance. B, generalized workflows for
ribosome profiling (Ribo-Seq), tryptic proteome mass spectrometry,
and human leukocyte antigen (HLA) immunopeptidomics. The sche-
matic indicates general properties of sample preparation for these
data types. CDS, coding sequence; dORF, downstream ORF; doORF,
downstream overlapping ORF; intORF, internal ORF; lncRNA-ORF,
ORF residing within an annotated lncRNA; uORF, upstream ORF;
uoORF, upstream overlapping ORF.

Ribo-Seq and the Noncanonical Proteome
CONSIDERATIONS AND QUALITY CONTROL STEPS FOR THE
DATA-DRIVEN DISCOVERY OF NONCANONICAL HUMAN ORFs

Differences in the nature of Ribo-Seq and LC–MS/MS-
based tryptic proteome and immunopeptidome data collec-
tion also represent a source of substantial variability in the
detection of noncanonical ORFs. Notably, while targeted
proteome and immunopeptidome LC–MS/MS approaches
may offer improved sensitivity, these require candidate
noncanonical proteins of interest to be known prior to anal-
ysis. While each method uses high-throughput data genera-
tion to profile cellular translation comprehensively, the data
have intrinsically different strengths and weaknesses that may
result in discordance between them (Table 1).

Ribo-Seq

The quality of a Ribo-Seq dataset is most commonly eval-
uated using three considerations: codon periodicity, library
complexity, and number of canonical CDSs identified.
Codon periodicity reflects the percentage of Ribo-Seq

reads that correctly identify the known reading frame of
CDSs (Fig. 2, A–C). In a high-quality Ribo-Seq dataset, ≥70%
of reads that are between 28 and 30 nucleotides in length map
to the correct reading frame of known CDSs. The precise read
length that displays the most preferable (the “cleanest”) signal
can vary and depends on the sample type and the method of
nuclease digestion used to eliminate cellular RNAs not bound
within the translating ribosome. Because of limitations of the
experimental technique as well as biological variation in ribo-
some occupancy, a codon periodicity above 90% is typically
not attainable (60). A Ribo-Seq dataset with a codon period-
icity <60% should ideally not be used for ORF discovery
because of challenges with accurate identification of the
reading frame (19, 60, 61). A periodicity between 60 and 70%
is a gray zone where the data may be used in some cases with
increased caution and stringency.
Library complexity refers to the number of unique RNA

molecules sequenced and what fraction of these are ribosome
footprints that map to CDSs. The challenge with a low
complexity library is that the majority of the reads will be PCR
duplicates. When the number of initially isolated footprints is
limited (e.g., because of low quality of the input material or
suboptimal sample processing), ultimately many duplicate
copies of this limited number of footprints will be sequenced.
This means that deeper sequencing of this library will yield no
or only minimally more biologically distinct footprints. Typi-
cally, the majority of reads in such low-complexity libraries will
come from nonfootprint sources, particularly intergenic and
intronic contaminants (e.g., microsatellite repeat elements, ri-
bosomal RNAs, or small RNAs that overlap gene regions),
which are unintentionally isolated during the Ribo-Seq pro-
cedure because these RNA species are of a similar size to the
ribosomal footprint and may have certain RNA structures (62,
63). In general, a Ribo-Seq library with sufficient complexity
will have the majority of reads mapping to annotated and
novel CDSs. In some cases, such as with degraded samples,
there may be substantial intergenic noise or a higher fraction
of RNA species that are normally restricted to the cell nucleus
but yet still sufficient codon periodicity and library complexity
in terms of unique RNA molecules that map to CDSs. Here,
the challenge is to achieve sufficient sequencing depth to
ensure adequate sampling of unique RNA molecules. While
Mol Cell Proteomics (2023) 22(9) 100631 3



Ribo-Seq and the Noncanonical Proteome
150 million reads typically suffices for the analysis of a high-
quality Ribo-Seq library, a “noisy”—yet usable—library may
require very deep coverage (>400 million reads), which is
mostly a consideration for the financial cost of the sequencing
(60, 64, 65). For human Ribo-Seq libraries, typically 15 to 30%
of the sequenced reads can be classified as ribosome foot-
prints, and the rest is often discarded. For a library sequenced
to a depth of 150 million reads, that would total to approxi-
mately 22.5 to 45 million ribosome footprints—a number
comparable to a routinely sequenced RNA-Seq library. Of
these, >80% should map to annotated CDSs (60), leaving ~5
million ribosome footprints for ORF discovery.
The number of known CDSs identified is particularly

important when one aims to provide a comprehensive view of
all translated ORFs in a sample of interest. This metric relates
both to the amount of noise in the library, the periodicity of the
footprints, as well as the depth of the sequencing. A suffi-
ciently sequenced Ribo-Seq library for a human sample with
high periodicity should detect at least >9000 annotated CDSs
and often >10,000 annotated CDSs (9–11, 18). Human sample
Ribo-Seq libraries that do not reach this threshold—despite
sufficiently deep sequencing and periodicity—should be used
with caution, as the false-negative rate for detecting ORFs will
be high (many ORFs will be missed). While Ribo-Seq-based
ORF detection tools theoretically have a low false-negative
rate, the confidence (false discovery rate [FDR]) with which
an ORF or CDS is detected, the number of independent
samples in which it can be found, and the translation rate of
the ORF should always inform research decision-making. For
instance, direct comparison of noncanonical ORF FDRs and
translation rates, compared with those of canonical CDSs, can
inform both the relative abundance of the ORF’s translation
product and the degree of certainty with which the algorithm
could nominate it.
Because de novo and ab initio RNA assemblies are tech-

nically challenging with the short nucleotide sequences
(28–30 nt) obtained during a Ribo-Seq experiment, analysis of
Ribo-Seq data requires alignment of the reads to a reference
transcriptome, most commonly Ensembl or RefSeq though
custom transcriptomes are also used in some cases. Statis-
tical assessment of a noncanonical ORF nomination is
inconsistent across computational methods, with some ap-
proaches calculating a p value for significance (e.g., Ribo-
Taper (61), ORFquant (10), Ribo-TISH (66), PRICE (67), and
RiboCode (68)) and other approaches computing confidence
scores (e.g., RibORF (19), Ribotricer (69), ORF-RATER (70)). In
addition, these methods are often based on fundamentally
different modeling approaches, including hidden Markov
(RiboHMM (20)), multitaper (RiboTaper (61)), transformer
(DeepRibo, TIS Transformer (71, 72)), support vector machine
(RibORF (19)), expectation-maximization (PRICE (19, 67))
models, among others. As such, different methods may be
more appropriate for certain research questions, datasets, or
desired ORF types.
4 Mol Cell Proteomics (2023) 22(9) 100631
As a consequence, two different algorithms can have
differing ORF outputs for the same gene. This can be due to
the level of stringency or the strengths and weaknesses of a
particular ORF caller for a certain type of ORF or certain quality
of data. For example, some ORF callers cannot detect ORFs
with near cognate start codons, whereas others are better
suited for the detection of overlapping reading frames where
periodic footprint signals are mixed and hard to dissect. Other
tools handle alternative splicing better. Depending on the
research question, input data quality, species of interest, or
annotation goals, combinations of ORF callers followed by
curation of called ORFs may be necessary (see later in “How
many noncanonical ORFs are there?”).

HLA-I and HLA-II Immunopeptidomics

In the past decade, interest in HLA-I and HLA-II presented
peptides has become widespread across many areas of
biomedical research, as a subset of HLA-presented peptides
demonstrate antigenic properties and represent a class of
potential therapeutic targets (73–76). The application of HLA
immunopeptidomics differs from tryptic proteome protocols,
as these methods leverage native lysis buffer and antibody or
affinity-tag enrichment steps to isolate HLA–peptide com-
plexes from cell lysates (Fig. 1B) (77, 78). The peptides are
naturally produced following degradation of endogenously
expressed source proteins by cellular proteases and pepti-
dases and the proteasome. As such, no tryptic digestion is
used in immunopeptidome analyses, which may enable some
noncanonical proteins to be detected by immunopeptidomics
even if they cannot generate tryptic peptides. Therefore,
regarding detection of noncanonical proteins, HLA immuno-
peptidome analysis has three advantages over tryptic prote-
ome analysis: (1) each HLA allele has a distinct peptide-
binding motif that presents specific subsets of peptides,
which can then be detected with MS in the absence of
digestion with a protease; (2) the HLA presentation pathway
may have privileged access to proteins that are rapidly
degraded as the half-life of HLA–peptide complexes (hours)
are in general longer than the half-life of rapidly degraded
proteins (minutes) (78, 79); and (3) HLA immunopeptidomics
broadly samples endogenous proteins from all abundance
levels including those from lower-abundance noncanonical
ORFs (80–82). These advantages align with recent studies that
have shown higher observation rates of noncanonical proteins
in the HLA-I immunopeptidome compared with the tryptic
proteome (39, 83).
Similar to tryptic proteome datasets, immunopeptidome

datasets require strict quality control steps to ensure the data
and analysis are of high quality. Peptide length, the presence
of peptide-binding motifs, and predicted binding to HLA
molecules coded by specific alleles are common quality
control steps in immunopeptidomics workflows. Because
HLA-I and HLA-II molecules have unique peptide-binding
grooves that accommodate peptides of different lengths,



TABLE 1
Features and characteristics of methods to detect noncanonical ORF translation

Data type Molecule detected Digestion step?
Target size of

analyte
Number of

CDSs detected
Number of ORFs

detected
Strengths Weaknesses

Ribo-Seq RNA bound within
ribosomes

RNase and
DNase

28–30 nt 10,000–13,000 2000–200,000 Genomewide Does not detect proteins
directly

No bias because
of trypsin

Cannot detect PTMs

Detects small and
large CDSs

Cannot inform
post-translational
protein regulation

Nucleotide-level precision Analysis pipelines may
be discordant

Defines exact reading
frame of ORF

LC–MS/MS Tryptic peptides Trypsin 8–25 amino
acids

9000–11,000 10s to 100s Direct protein detection High false-positive rate
without Ribo-Seq

Informs protein abundance Biased against small
proteins

May detect PTMs Trypsin may bias
protein representation

Proteome-wide Does not provide
nucleotide-level
precision

HLA
immunopeptidomics

HLA-presented
peptide antigens

None 8–12 amino
acids

8000–10,000 1000–5000 Direct protein detection Does not inform
protein stability

Enrichment for
low-abundance,
strong binders

Does not indicate
intracellular abundance

Proteome-wide HLA allele expression
limits peptide
representation

Can detect unstable
translations

Does not provide
nucleotide-level
precision

Does not require
tryptic sites
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FIG. 2. Quality metrics of Ribo-Seq and stringency of ORF calling. A, an illustration showing codon periodicity as a central metric of Ribo-
Seq library generation. Three illustrations indicate high-quality, borderline, and poor-quality Ribo-Seq libraries. B, an illustration representing
high-stringency and low-stringency ORF calling. In the top case, a small number of reads map the the 3′UTR of an annotated mRNA, and only
two-thirds of those 3′UTR reads support the same reading frame of a potential dORF nomination. In the middle and bottom cases, a potential
intORF has varying read support evidence. The middle case shows clear evidence of an intORF by a large increase in reads mapping to the +2
reading frame midway through the CDS. In the bottom case, there is a smaller change in the reads mapping to the +2 reading frame. C, use of
ribosome-stalling drug treatments to clarify translational start sites. Cultured cells are treated with homoharringtonine or lactimidomycin to stall
ribosomes at the main translational start site of a given ORF, leading to a clearer resolution of the specific start codon. CDS, coding sequence;
dORF, downstream ORF; intORF, internal ORF.

Ribo-Seq and the Noncanonical Proteome
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Ribo-Seq and the Noncanonical Proteome
peptide size is an important quality control metric of immu-
nopeptidomics data. Specifically, HLA-I peptides are ~8 to 12
amino acids long (mostly 9mers), whereas HLA-II peptides are
generally 12 to 25mers (77). HLA-II peptides are also typically
found in nested sets, while this is not a global feature of HLA-I
peptides, and can also be used to quality control HLA-II
immunopeptidome datasets. Furthermore, each individual
person expresses different HLA alleles with distinct HLA-
binding motifs, which influence which peptides are pre-
sented. Therefore, it is common to confirm that HLA allele–
specific binding motifs of the expressed HLA molecules are
present in the immunopeptidome data, and that peptides
derived from canonical and noncanonical ORFs in a given
dataset are predicted to bind to the expressed HLA molecules
to a similar extent. A number of computational approaches
(e.g., MHCflurry, NetMHCpan, MixMHCpred, ForestMHC,
HLAthena) can be used to both predict HLA peptides and the
strength of their binding to various HLA molecules (76, 84–89).
It is important to note that HLA-I binding prediction is currently
more accurate compared with HLA-II binding prediction, as
HLA-II motifs are more complex and large subsets of diverse
HLA-II heterodimers are in the process of being characterized
and the associated prediction algorithms are being further
improved (90–93).
Interestingly, peptides derived from noncanonical ORFs are

much more abundant in HLA-I datasets compared with HLA-II
datasets (18, 34, 36, 38, 39, 53, 94). HLA-I molecules usually
present peptides derived from proteasome-mediated degra-
dation of newly synthesized and other cellular proteins, and
HLA-I presentation is tightly linked with protein synthesis and
degradation rates. In contrast, HLA-II molecules, which are
often expressed on professional antigen-presenting cells,
present peptides derived from degradation of extracellular
proteins that were taken up by the antigen-presenting cells or
from endogenous proteins that are destined to be degraded in
specialized vacuolar compartments of the endosome–
lysosome system. Both HLA-I and HLA-II systems require
trafficking to ensure peptide loading in the right compartment.
For HLA-I, the peptides themselves are transported into the
endoplasmic reticulum by a transporter associated with anti-
gen processing, whereas in case of HLA-II, the source pro-
teins must first reach the acidic compartments for
degradation, for example, via receptor-mediated internaliza-
tion or recycling of transmembrane proteins. Hence, the
sources of HLA-II–presented peptides are often stable and
abundant proteins.
Because of HLA-I binding constraints, and the short length

of some noncanonical proteins, a noncanonical ORF is often
represented by a single peptide in HLA-I immunopeptidome
data, and therefore, additional quality control measures
should be taken to support these identifications. To this end, a
noncanonical protein subset-specific FDR threshold should
be applied to each individual ORF type, rather than a global
FDR (83, 95) because noncanonical ORF peptides represent a
small fraction (typically <5%) of the overall immunopeptidome
and individual ORF types vary considerably in their frequency.
Thus, a global FDR can be excessively permissive for a small
subpopulation and lead to higher false-positive identifications.
Beyond leveraging known HLA-specific peptide lengths,

binding motifs, and subset-specific FDR, there are further
quality metrics that can be applied to immunopeptidomics
datasets when the focus is the identification of rare nonca-
nonical proteins (96). The gold standard for supporting the
identification of noncanonical peptides presented by HLA
molecules is by comparing the retention time and MS/MS
spectrum of an identified peptide with a synthetic peptide of
the same amino acid sequence. However, it is often the case
that hundreds of noncanonical peptides are identified in a
single HLA-I immunopeptidome experiment, making the syn-
thetic peptide confirmation for all potential noncanonical-
derived HLA-I peptides not feasible. To overcome this chal-
lenge, it is now possible to compare the observed MS/MS
spectra with predicted MS/MS spectra with tools such as
Prosit (97). The comparison of the predicted and observed
MS/MS spectra provides additional support for noncanonical
peptide identification (98, 99). In addition, there are also mul-
tiple algorithms that can predict peptide retention times. The
predicted retention time, using tools such as DeepLC or
DeepRescore, can be compared with measured retention time
for all peptides in a sample (canonical and noncanonical), as
the correlation between predicted and observed retention time
supports the LC–MS/MS identifications of noncanonical-
derived peptides in immunopeptidomes (100, 101). Overall,
deep learning–based prediction of peptide MS/MS spectra
and retention time are powerful tools that help reduce the
number of false-positive noncanonical peptide identifications
in immunopeptidome datasets.

Tryptic Proteome LC–MS/MS

Rigorous standards for the analysis of LC–MS/MS tryptic
proteome data have been established by the Human Prote-
ome Organization/Human Proteome Project (HUPO/HPP) in-
ternational consortium, as reviewed elsewhere (102–104), and
these standards remain the expectation for researchers
claiming identification of noncanonical ORF peptides (30). For
claims of detection of proteins not previously detected, these
guidelines require two nonnested and uniquely mapping
peptides each of at least nine residues in length with a total
extent of at least 18 amino acids and with high-quality pep-
tide-spectrum matches (PSMs) upon manual inspection (30,
102, 104). Peptides may be from different samples but ideally
should be reported in the same article to ensure consistency
of data analysis, which is consistent with prior HUPO/HPP
recommendations (102, 104). These PSMs should be provided
in the form of universal spectrum identifiers so that the spectra
can be easily examined by others (105).
Yet, consistent application of high-quality tryptic proteome

data collection and analysis guidelines remains nonuniform
Mol Cell Proteomics (2023) 22(9) 100631 7
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across the research community. Proteogenomic studies
looking for noncanonical ORFs without Ribo-Seq data—that
is, by predicting and including all ORFs in RNA transcripts—
have been plagued by high false-positive rates (30, 49,
106–109), and initial efforts to inspect early claims of nonca-
nonical ORF peptides concluded that “many of the spectral
matches appear suspect” (30).
Moreover, while use of decoys is standard in tryptic prote-

ome experiments to define global FDRs, decoys may be less
useful for distinguishing true peptides for noncanonical ORFs.
Indeed, Wacholder et al. (110) have concluded that decoy bias
among noncanonical ORF products leads to inaccurate FDR
estimates for short ORFs when decoys are created by
reversing the complete protein sequence but not when
excluding the initial Met from the reversal. Finally, efforts to
identify noncanonical ORFs in tryptic proteome data must
account for peptides instead being derived from canonical
variants including single amino acid variants and splice-site
peptides for alternative isoforms of known CDSs. The use of
personalized proteogenomic database searches is not
straightforward or used by all in the proteomics community.
Considering these factors, the general experience of the

research community is that few noncanonical ORFs are found
by conventional tryptic proteome LC–MS/MS analyses, and
some of those are ultimately false-positive peptides (111,
112). In some cases, such ORFs are “undiscoverable” by
tryptic proteome approaches, either because of the short
length of noncanonical ORFs or intrinsic sequence features
that do not produce LC–MS/MS observable tryptic peptides.
For example, translation of repetitive amino acid sequences
(e.g., glycine–leucine) has recently been described (29).
Nevertheless, even approaches aimed at enriching for small
proteins from cell lysates result in only modest increases in
noncanonical ORF detection, rather than exponential in-
creases (33). On the other hand, other enrichment techniques
focused on PTMs (i.e., the acetylome, phosphoproteome, and
ubiquitylome) have also reported noncanonical proteins and
may provide both an alternative method to enrich for nonca-
nonical proteins and also hint toward potential functional
relevance of this subset of noncanonical proteins given the
cellular roles of those PTMs (83).
Furthermore, data-independent acquisition-MS (DIA-MS)

provides a potential opportunity to detect noncanonical ORF-
derived peptides that have been reliably detected previously
with high-quality spectra obtained with narrow isolation win-
dows from a data-dependent acquisition approach. In DIA-
MS, previously identified peptides are more reproducibly
sampled by sequentially isolating and fragmenting peptides
across the m/z range, which decreases stochastic sampling
bias toward higher abundant species and may increase the
chances of finding rare noncanonical ORFs (113). This
approach has been used in conjunction with Ribo-Seq to
claim detection of microproteins from noncanonical ORFs
(50). Caution should remain with DIA approaches as
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fragmentation spectra are predominantly a mixture of multiple
coisolated peptide ions in broader mass windows, rather than
discrete isolated narrow mass ion windows. This results in
blended spectra, often containing multiple low-abundance
peptide ions, which can confuse DIA algorithms and that
make manual verification extremely challenging.
Beyond technical limitations of MS, there are also biological

factors that may make noncanonical ORFs less frequently
observed in tryptic proteome LC–MS/MS datasets. To this
end, there is increasing evidence that points toward intrinsic
instability of proteins translated from noncanonical ORFs,
resulting in their immediate degradation. Kesner et al. (114)
used functional genomics approaches to demonstrate that the
ribosome-associated BAG6 membrane protein may directly
triage hydrophobic noncanonical ORF translations to the
proteasome for degradation. Thus, it is possible that many
noncanonical ORFs do not generate a stable protein product
and might only be observable by immunopeptidomics or in
tryptic proteome experiments with inhibition of the protein
degradation mechanisms of a cell.
HOW MANY NONCANONICAL HUMAN ORFs ARE THERE?

The number of noncanonical ORFs encoded in the human
genome remains highly speculative. To date, a limited number
of human tissues and cell lines have been analyzed by Ribo-
Seq, and proteogenomics studies that have aimed to incor-
porate ORFs derived from these datasets have been difficult
to interpret because of numerous false positives. As such,
while it is well-established that the human genome contains
thousands of translated noncanonical ORFs, whether the
precise number is closer to 10,000 or 100,000 remains a
matter of debate. A further complication is that different
research communities may not use a consistent definition of
what types of ORFs we define as “noncanonical.” Yet, while
analyses of more cell lines and tissues will certainly uncover
additional noncanonical ORFs, there can be variable nonca-
nonical ORF identifications even within analyses of the same
cell line. Such variability reflects the equal—perhaps fore-
most—contribution of different analytical methods for
noncanonical ORFs in the estimation of their prevalence.

The Number of Noncanonical ORFs

Most Ribo-Seq studies focusing on noncanonical ORFs
report detection of several thousand ORFs, typically between
2000 and 8000 (9, 11, 15, 16, 18–21, 51, 61, 115). Interest-
ingly, this range seems relatively stable when comparing
studies that employ only a few cell lines and broader analyses
looking across many different human tissue types. To
consolidate these findings, we have recently participated in an
international consortium to aggregate 7264 high-confidence
noncanonical ORFs and provided formalized annotations for
them within the GENCODE gene annotation database (16).
This GENCODE set demonstrates substantial overlap in the
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identification of certain types of ORFs, such as uORFs, across
diverse datasets such as pancreatic progenitors, heart and
stem cells, suggesting that perhaps the diversity of several
ORF types may not be dramatically larger with the inclusion of
more tissue types. In support of this, Ribo-Seq profiling of five
human tissue types and six primary human cell types similarly
reported 7767 ORFs in total (15). When subsetting this dataset
for consistency with the inclusion criteria for the GENCODE
catalog (i.e., removing ORFs below 16 amino acids in size, as
well as ORFs without an AUG start codon), 2475 of 7767
ORFs remained, of which 1702 (±70%) were represented in
the GENCODE catalog as well (supplemental Tables S1–S4).
While these studies have measured and determined

noncanonical ORF translation directly from Ribo-Seq data,
there are many other databases that have aggregated larger
numbers of ORFs from a variety of sources, including both
Ribo-Seq and in silico predictions. Among these, smProt (n =
327,995 human ORFs (116)), sORFs.org (n = 4,377,422 ORFs
across humans, mouse, and fruit flies (117)), RPFdb (118, 119),
and smORFunction (n = 617,462 human ORFs (120)) have
compiled reported or putative noncanonical ORFs. Notably,
OpenProt (121, 122) has two aspects to their database
workflow: one that collates all predicted ORFs (n = 488,956)
and a second that proposes 33,836 translated ORFs identified
by a reanalysis of over a hundred Ribo-Seq datasets with the
PRICE pipeline (67). When considering studies that have
generated Ribo-Seq datasets to measure noncanonical ORF
translation, there are also several efforts that have proffered
exceptionally large numbers of directly detected ORFs—
specifically, the nuORFdb (34) by Ouspenskaia et al. and the
Human Brain Translatome Database (123) by Duffy et al.,
which propose numbers of >230,000 and >75,000 ORFs,
respectively.

Why is There Such Discordance in the Number of
Noncanonical ORFs Across Databases?

The interpretation of such dramatically different accounts of
noncanonical ORF abundance remains a challenge. Indeed,
given that there are currently only ~60,000 Ensembl genes
(including 19,827 protein-coding genes, 18,886 lncRNAs,
4864 small ncRNAs, 15,241 pseudogenes, and 2221 other
RNAs in Ensembl, version 109.38), colossal datasets with
>200,000 ORFs may be interpreted to suggest that every gene
has upward of four distinct ORFs. In practice, these large
datasets may include isoform variants (e.g., N-terminal ex-
tensions, C-terminal extensions, and intron retentions) that are
not part of the reference proteome, and thus the number of
noncanonical ORFs may be larger in some databases because
of differences in how these isoforms are categorized.
While sample and data quality likely contribute to the vari-

ability in the numbers of noncanonical ORFs in some catalogs,
differences in Ribo-Seq data analysis also account for much
variation in prospective noncanonical ORFs. For example,
biologically, there is some amount of stochastic or pervasive
translation across all RNAs, which may relate to leaky ribo-
somal scanning (124–126) or transient interactions between
ribosomes and RNAs as the ribosomes locate CDSs or RNAs
accomplish proper folding (127, 128). Yet, the manner in which
computational pipelines process Ribo-Seq data results in ORF
calls that may be more or less stringent (Fig. 2B), resulting in
different proportions of false-positive (stochastic) and false-
negative (e.g., sample-specific) ORF calls (60, 129, 130). For
example, RibORF (19), which uses a support vector machine
and recommends a fixed cutoff score of 0.7, has been shown
to produce the highest numbers of ORF calls of any tested
algorithm in a recent benchmarking study (131). To confirm
these differences directly, we have reanalyzed published high-
quality Ribo-Seq data for six biological replicates of pancre-
atic progenitor cells differentiated from human embryonic
stem cells (11) using four common ORF detection pipelines
(ORFquant (10), PRICE (67), Ribo-TISH (66), and Ribotricer
(69)), observing substantial variability in the number of ORFs
called (~10-fold difference from ~50,000 to ~500,000), the
types of ORFs called, the length of the called ORFs, and the
reproducibility with which ORFs could be detected across all
six replicates (Fig. 3 and Experimental procedures section).
There may be specific reasons for the different performance

characteristics of each algorithm. For example, the lower
stringency of RibORF may be due to the fact that this pipeline
considers uniformity of read coverage across the ORF,
whereas Ribo-Seq is known to have a 5′ bias to read
coverage. Therefore, RibORF may excessively promote
intORFs and doORFs since the 5′ ends of these ORFs overlap
annotated CDSs, which typically have higher read coverage
independent of a periodic footprint signal that matches the
correct reading frame. This is evident in nuORFdb (34) and the
Human Brain Translatome Database (123): when analyzing the
fraction of ORFs with an AUG-start resulting in an ORF ≥16
amino acids, doORFs and intORFs are 173-fold and 18-fold
(respectively) higher in abundance compared with other ma-
jor datasets (Fig. 4, supplemental Tables S5–S8). By contrast,
uORFs are only three times more abundant (Fig. 4).
It is also true that different computational pipelines may

have different capacity to identify certain classes of nonca-
nonical ORFs. For example, the deterministic multitaper-
based statistical inference of significant periodic signal
within predicted ORFs as performed by RiboTaper (61) and
ORFquant (10) provides high-confidence detection of ORFs
with an AUG start codon, but have not, to date, been opti-
mized for non-AUG ORFs. In contrast, the probabilistic algo-
rithm employed by PRICE (67) has enhanced ability to identify
very short ORFs and non-AUG ORFs absent from other ORF
callers (Fig. 3, B and E). Yet, when there are neighboring pu-
tative initiation codons (e.g., CUG and AUG), PRICE will
generate larger numbers of putative ORFs that might require
manual curation or further filtering. In addition, since anno-
tated CDSs have generally more abundant Ribo-Seq read
coverage, low-abundance out-of-frame reads may be more
Mol Cell Proteomics (2023) 22(9) 100631 9
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readily interpreted as an intORF with a non-AUG start codon
by PRICE, whereas other ORF callers are less likely to
consider these reads as sufficient evidence for a translated
ORF. Thus, when applied to biological replicates of the same
sample, PRICE produces the least consistent ORF calls
compared with other pipelines, independent of initiation
codon variability (Fig. 3, A–C) (131). nuORFdb (34) and
OpenProt (122) both employ PRICE in their analysis pipelines.
It is important to note, however, that the specific research
question being pursued should inform the types of ORF callers
used: indeed, deterministic algorithms such as RiboTaper or
ORFquant may miss intORFs or overlapping ORFs identified
by PRICE because of the difficulty in resolving mixed period-
icity signals of overlapping reading frames (Fig. 3A).
In summary, depending on the type of ORF one aims to find

and the desired inclusiveness of ORFs one aims to output,
one ORF caller might be better suited than another. Certain
ORF callers outperform others in detecting specific ORF cat-
egories such as intORFs (Fig. 3A), very small ORFs (Fig. 3, B
and D), or near cognate start codons (Fig. 3E), whereas others
handle exon–exon junctions and longer ORFs better and/or
provide better replicate behavior. These differences then lend
to substantially different results when producing noncanonical
ORF catalogs (Fig. 4).

Detection of Translational Start Sites

Determining the translational start site of an ORF remains a
nuanced problem. While conventionally proteins have been
annotated with AUG start sites, exceptions to this rule have
long been known (132, 133), and noncanonical ORFs are more
likely to employ non-AUG start sites (125, 134). In a typical
Ribo-Seq experiment, identification of translational start sites
from Ribo-Seq data is inferred based on two factors:
sequencing coverage and the intrinsic restrictions of the
computational pipeline (e.g., some algorithms only consider
AUG start codons, as discussed previously). Yet, independent
of the computational pipeline, there may be gaps in the
sequencing coverage that lead to misidentification of the main
translational initiation site (Fig. 2C). For experiments with
cultured cells, use of small molecules that block ribosome
elongation, such as homoharringtonine (135) or lactimidomy-
cin (136), enables ribosome accumulation on translational
initiation sites, which enables more precise determination of
the start codon. Because of the difficulty in identifying
noncanonical ORF start sites and the variability in computa-
tional approaches to start codon recognition (e.g., Fig. 3E),
use of homoharringtonine or lactimidomycin with cultured
cells is highly recommended. In frozen tissue samples, these
compounds are no longer effective.

HOW TO SELECT AN ORF SEQUENCE DATABASE FOR MS DATA
ANALYSIS?

Given the wide differences between the different databases
for Ribo-Seq ORFs, one central question is how to use these
10 Mol Cell Proteomics (2023) 22(9) 100631
databases, or which to use for any specific analysis? Because
the size of the ORF output in a given database can vary
enormously, users should base their decision on what scien-
tific question they intend to pursue and evaluate carefully the
suitability of the input Ribo-Seq data quality as well as the
stringency with which ORF calling was performed. In general,
high stringency databases provide high-confidence Ribo-Seq
ORF detections, and thus peptides found mapping to these
ORFs are more likely to reflect a true positive result. While
these databases reduce false positives, it is at the expense of
comprehensiveness, as the existing high stringency data-
bases will yield more false negatives in the MS analysis. Low
stringency databases provide a much larger set of Ribo-Seq
ORFs but will yield more false positives—because of the
lack of support from another orthogonal technique. If the
ORFs are accompanied by Ribo-Seq quality metrics, it may be
tractable to estimate the proportion of false positives and
refilter the ORFs to suit one’s own purposes. These databases
will provide a larger candidate search space for peptide
alignment and may enable detection of true positive ORFs not
present in the high stringency databases. Yet as described
earlier, because of the concern for false-positive nominations,
ORFs detected by MS searches should be closely inspected
to verify integrity of both ORF call and peptide identification,
as there will likely be cases of false-positive ORFs being
supported by false-positive peptides. Ultimately, certain sci-
entific questions may lend themselves to certain databases:
for example, analyses of alternative N-terminal CDS exten-
sions often emphasize non-AUG start sites (24), which may
benefit from a Ribo-Seq analysis that employs the PRICE al-
gorithm. Research efforts aimed to identify a maximal space of
potential translation events may also favor a lower stringency
database, with the caveat that any individual result should
receive additional scrutiny. Alternatively, if the goal is to
characterize a high-confidence unannotated microprotein, a
high stringency database may be more desirable. Likewise, for
reference annotation purposes and functional studies, we
prefer more stringent workflows that yield reproducible ORF
calls across samples (no false positives).
ARE NONCANONICAL ORFs PROTEINS?

The term “protein” is conventionally used to refer to an
amino acid sequence that produces a molecular structure that
plays an intrinsic cellular role in maintaining normal cell
biology. While some proteins may be unstable and rapidly
degraded under certain conditions (e.g., beta-catenin), most
proteins participate in cell biology when present in a stable
form. Also, almost all annotated proteins show evidence of
evolutionary conservation, structural folding, and domain ar-
chitecture, and frequently also protein–protein interactions
and/or interactions with nucleic acids.
According to this understanding of the term “protein,” it

could be inferred that the vast majority of noncanonical ORFs
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FIG. 3. ORF callers have different specialties and variable performance. A, stacked bar plot displaying all detected ORF categories per
ORF caller. For each, the percentage of unique ORFs shared between at least one, three, or six replicates is shown. Please note that these are
relative contributions to the total number of ORFs. The absolute numbers of ORF identifications can be inferred from C. B, density plots dis-
playing the distribution of ORF lengths in nucleotides (excluding the stop codon) for unique ORFs shared between at least one, three, or six
replicates. C, line graphs showing the numbers of unique ORFs detected by each tool shared between at least one, three, or six replicates. The
x-axis denotes the percentage of overlap used to consider two ORFs being similar or not, with 100% overlap meaning that the detected ORF
was fully identical between [x] number of replicates. Please note that the total numbers of ORFs detected per algorithm (y-axis) can differ by an
order of magnitude. These numbers are given for each line, with numbers reflecting the total ORFs with 100% similarity between replicates (i.e.,
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FIG. 4. An analysis of major noncanonical ORF databases. A, here, each dot reflects a dataset, and the Y-axis uses a log-10 scale to show
the number of ORFs included that are ≥16 amino acids long and contain an AUG start codon. The GENCODE catalog reflects the summation of
the studies by Ji et al. (19), Calviello et al. (61), Raj et al. (20), van Heesch et al. (9), Martinez et al. (21), Chen et al. (18) and Gaertner et al. (11)
datasets as described (16). B, the number of ORFs per dataset compared with the number of samples profiled by Ribo-Seq. C, the number of
ORFs per dataset compared with the number of unique cell types profiled by Ribo-Seq. D, the ratio of the number of ORFs per cell type
compared with the number of ORFs per number of samples for each dataset. E, a bubble plot integrating the number of samples, number of
different cell or tissue types, and the number of noncanonical ORFs found in each dataset.

the end of each curve). D, genomic view of a short upstream ORF (uORF) in the STPBN1 gene indicating that ORF callers have variable affinity for
certain types of ORFs. The top two tracks show the ribosomal P-site positions derived from the sequenced ribosome footprints, as processed
independently from the sequencing data by the deterministic ORF caller ORFquant (top; red shading) and the probabilistic ORF caller PRICE
(bottom; blue shading). The differently colored P-site bars indicate different reading frames (0, +1, and +2) on the same transcript, with bars in the
same color indicating a shared in-frame codon movement by the ribosome. For this visualization, newly found ORF variations of the annotated
CDS that could be assigned to predicted noncoding RNA isoforms (e.g., transcript biotype: “processed_transcript”), but matched CDS of
SPTBN1 is not displayed. E, genomic view of a near-cognate start codon ORF in TUG1. Image and track details as in (E) above. CDS, coding
sequence.
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do not encode proteins on the basis that they lack these
characteristics. To our knowledge, microproteins from
noncanonical ORFs also do not have paralogs within the
proteome that might enable inferred protein functions. How-
ever, we see two additional considerations. First, it may be
incorrect to assume that a protein that exists in the cell—even
one that is detectable by MS—is therefore a functional
molecule. It could be that the proteome contains a certain
amount of nonfunctional translational “noise.” While it is
difficult to prove the extent to which such translation occurs in
normal cells, evidence from cancer cells shows abundant
dysregulation of translation, exemplified by “aberrant” non-
canonical proteins that lack evidence for function under
normal physiological conditions (34, 35) as well as out-of-
frame peptide byproducts of oncogene activity (137).
Second, the classical definition of protein “function” in-

vokes the protein’s role in cellular processes that have been
derived over time through evolution, which has been sum-
marized as the maxim that “conservation = function.” This
maxim has been central—but not universally required—for
gene annotation projects, and the only canonical proteins
currently within GENCODE that can be inferred to have
evolved de novo in human or higher primates were initially
detected in cancer cells (e.g., MYEOV (138) and HMHB1
(139)). Even so, evidence for the existence and function of de
novo proteins under normal physiological conditions is
accumulating (57, 140–142). Nonetheless, it remains true that
most noncanonical ORFs display much higher rates of
intrinsic disorder, fewer structural features, and lack amino
acid constraint across evolution (17, 18, 140, 141, 143–149).
While these features may be observed in diverse annotated
proteins (e.g., intrinsically disordered regions of a given
protein), their presence is predominant in noncanonical
ORFs.
The absence of protein function as a criteria should not

determine whether noncanonical ORFs are categorized as
translational “noise.” Indeed, the function of many human
proteins remains obscure, motivating multi-institutional ef-
forts such as the Understudied Proteins Initiative (150) and
the HPP Grand Challenge to define “a function or functions
for every human protein” (151). In the case of noncanonical
ORFs, because many may only exist as unstable peptides
that are presented on the immunopeptidome, the question of
whether potential recognition by T cells constitutes a mo-
lecular “function” becomes a central and partly philosophical
debate for the research community. There is no current
precedent to regard major histocompatibility complex pre-
sentation as a central “function” of a protein—as opposed to
an ancillary observation for a protein that has additional roles
in cell biology—and therefore, in the absence of additional
experimental data on this question, we are disinclined to
consider major histocompatibility complex presentation as
proof that a noncanonical ORF has an intrinsic cellular role at
this time.
The Interpretation of Peptide-Level Evidence of Ribo-Seq
ORFs

How, then, should one interpret the peptide-level evidence
for some noncanonical ORFs? High-quality tryptic proteome
LC–MS/MS PSMs that survive rigorous manual inspection are
strong evidence of true translation of a noncanonical ORF.
With adequate evidence, therefore, tryptic proteome PSMs
supporting noncanonical ORFs do indicate the possible ex-
istence of a translated protein, and these cases may reason-
ably be considered to be part of the cell proteome, similar to
any other proteins.
When considering the larger number of noncanonical ORFs

with peptide-level evidence in HLA immunopeptidomics but
not tryptic proteome LC–MS/MS (18, 34, 36, 38, 152), firm
conclusions are more difficult to draw. These noncanonical
ORFs cannot be said to generate a true protein based on
immunopeptidomics alone, considering that the HLA system
is expected to present peptides resulting from translation
products that are unstable and rapidly degraded, alongside
those derived from canonical proteins. Yet, detection of an
HLA-presented peptide does verify RNA translation in these
cases, which distinguishes them from the majority of Ribo-
Seq-detected noncanonical ORFs that are detected in
neither tryptic proteome LC–MS/MS nor immunopeptidomics
experiments. Therefore, these noncanonical ORFs can at least
be said to be confirmed as both translated and presented by
the HLA, as opposed to an artifact of the Ribo-Seq protocol.
A related question is how to interpret PSMs matching

noncanonical ORFs that are not detected by Ribo-Seq, when
the same sample is interrogated using both technologies.
Because the sensitivity of Ribo-Seq is generally higher than
MS-based methods, and because Ribo-Seq provides
nucleotide-level precision for genomemapping, there are three
possibilities here: first, these peptides may be false-positive
identifications, second, the Ribo-Seq data exhibit a false-
negative identification, or third, they may be derived from
another source not included in the search space (e.g., aberrant
splicing). None of these hypotheses has been rigorously eval-
uated at this time. One challenge is that many proteomics and
immunopeptidomics experiments do not currently generate
matched Ribo-Seq data for their samples, and thus it cannot be
directly known if Ribo-Seq supports translation of that ORF.
When considering unmatched analyses, it is also noted that, at
present, proteomics and immunopeptidomics datasets cover a
broader range of tissue and cell types than Ribo-Seq datasets.
A PROPOSED FRAMEWORK TO CLASSIFY THE TRANSLATION OF
NONCANONICAL ORFs

Given the expanding volume of research on noncanonical
ORFs, a shared vocabulary for the interpretation of their
detection is a critical need in the genomics, translatomics,
proteomics, and immunopeptidomics communities. Notably,
there has been no formalized initiative to annotate
Mol Cell Proteomics (2023) 22(9) 100631 13
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noncanonical ORFs as protein-coding genes by major
genome databases, although recent collaborative work has
raised this point as a topic of interest (16). Historically, protein-
coding genes have been annotated one by one in a manual
process of careful data inspection, which may or may not have
included protein-level evidence. At this time, noncanonical
ORFs detected by tryptic proteome data would potentially be
eligible for manual annotation as protein-coding genes. Yet,
given the paucity of noncanonical ORFs in tryptic proteome
data and their much greater abundance in HLA immuno-
peptidomic datasets, there is uncertainty about whether most
noncanonical ORFs produce proteins in the classical sense,
and whether immunopeptidomic evidence is equivalent to
tryptic proteome data for the purposes of protein annotation.
We advocate both a cautious but open-minded approach to

noncanonical ORF classification, summarized in Table 2.
Notably, although most annotated proteins show evidence of
amino acid constraint across species and most noncanonical
ORFs do not, it is also unquestionably true that at least some
proteins are lineage- or species-specific. Thus, we propose
that de novo translations should be considered for annotation
as protein coding. While recognizing that evolutionary analysis
is a core part of gene annotation workflows in projects like
GENCODE, we have not included conservation or constraint
metrics as part of this proposed framework. The framework
itself is oriented toward harmonizing subsequent dataset
generation and analysis. In practice, it might be applied to
classifying published datasets, and it is intended as a helpful
tool for candidate prioritization rather than a guarantee that
certain ORFs will be annotated by a genome database. We
stress that researchers looking to move forward with potential
annotation of a protein encoded by a noncanonical ORF
should be able to provide the raw LC–MS/MS spectra for
review.

Our framework centers proposes these definitions for spe-
cific terminology:

• “Protein candidate”: a tier 1A noncanonical ORF can be
regarded as translated into a protein candidate if it sat-
isfies current HUPO/HPP guidelines for the detection of
≥2 uniquely mapping tryptic proteome peptides, as well
as having evidence of translation by Ribo-Seq. Such
candidates would be prioritized for further manual review
by annotation groups.

• “Presented”: A presented noncanonical ORF (tier 1B) is
one with multiple lines of evidence for its translation and
presentation on HLA molecules. These ORFs are
detected with multiple high-confidence peptides from
multiple distinct samples for HLA immunopeptidomics
data as well as having evidence of translation by Ribo-
Seq.

• “Detected”: A detected noncanonical ORF is one with
evidence of translation by Ribo-Seq as well as evidence
of protein production by either (tier 2A) tryptic proteome
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LC–MS/MS (1 peptide or >1 peptide not satisfying
HUPO/HPP guidelines for their spacing) or evidence of
protein production by HLA immunopeptidomics with a
single PSM (tier 2B).

• “Putative”: A putative noncanonical ORF (tier 3) is one
with evidence of translation with tryptic proteome LC–
MS/MS or HLA immunopeptidomics data but no evi-
dence of translation in Ribo-Seq data. This discrepancy
may alert to the possibility of false-positive MS identifi-
cations or false-negative absence in Ribo-Seq and
therefore requires more investigation.

• “Ribo-Seq ORF”: A noncanonical ORF that is only
detected in Ribo-Seq data but not elsewhere is consid-
ered a “Ribo-Seq ORF” (tier 4). These are likely to be the
majority of cases. The number of these ORF nominations
may be variable based on the stringency of the Ribo-Seq
analysis and/or the quality of the input data.

• “Predicted”: A predicted noncanonical ORF (tier 5) is one
that is computationally predicted in silico on an
expressed RNA transcript but without current evidence in
Ribo-Seq or MS datasets.
EXPERIMENTAL PROCEDURES

Benchmarking and Comparing ORF Caller Performance on
Replicate Ribo-Seq Datasets

Ribo-Seq Data Processing and Mapping–Ribosome profiling data
of late pancreatic progenitor cells obtained from six independent dif-
ferentiations of H1 human embryonic stem cells (11) were collected
from the Gene Expression Omnibus database (GSE144682). For all
analyses, the Ensembl primary DNA assembly (GRCh38) and the
Ensembl human reference transcriptome (Ensembl v102) were used as
reference. Quality control and trimming of the Ribo-Seq reads was
done using Trim Galore 0.6.6 with the options “–length 25” and “–trim-
n” (153). Next, contaminant RNA and DNA were removed using
Bowtie2 2.4.2 by aligning reads to a contaminant file using the default
options of Bowtie2 (154). The contaminant-depleted reads were
aligned using STAR with the options “–twopassMode Basic,” “–out-
FilterMismatchNmax 2,” “–outFilterMultimapNmax 20,” “–limit-
OutSJcollapsed 10,000,000,” “–alignSJoverhangMin 1000,” and
“–outSAMattributes All” (155). For PRICE, the option “–alignEndsType
EndToEnd” was set as well. Also, the individual bamfiles were filtered
using SAMtools 1.12 to exclude reads with a mapping quality lower
than 5 (156).

ORF Calling With ORFquant–The function RiboseQC_analysis
from RiboseQC 1.1 was run in R 4.1.2 with the options “read_subset”
and “fast_mode” set to false (157). The output was used by the
function run_ORFquant from ORFquant 1.02 in R with the default
options (10). ORF calling with PRICE: Before using PRICE, a reference
genome was created with the IndexGenome function of the Gedi
framework 1.0.2. After the creation of the reference genome, PRICE
1.0.3b was run (67). A filtered list of ORFs detected by PRICE and a list
of P-sites (called activity values by PRICE) were extracted from the
outputted “orfs.cit” files using the Gedi Nashorn and ViewCIT func-
tions, respectively. Because the start codon prediction is a separate
step in the PRICE program, ORF coordinates from both before and
after start codon prediction were available. We used the coordinates
after start codon prediction. PRICE can also be run in a multisample
mode by providing a text file with the bam file locations as input. This
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mode favors ORFs that occur in all samples during the ORF calling
process and would likely enhance the reproducibility of ORF calls
between replicates. To keep all ORF callers comparable, we did not
use this mode. ORF calling with Ribo-TISH: From Ribo-TISH 0.2.7, the
predict function was used to infer ORFs with the option “–longest” set
(66). The output file contained only the genomic start and end co-
ordinates and the transcript id of each ORF. The reference GTF was
used to determine the exons within each ORF. ORF calling with
Ribotricer: The Ribotricer 1.3.3 function prepare_orfs was first used
with the options “–longest” and “–min_orf_length 9” (69). The option
“–start_codons” was set to include all near cognate start codons with
one base difference compared with ATG. Afterward, the function
detect_orfs was used with the option “–phase_score_cutoff 0.440.”

Comparing ORF Callers–ORF calls were compared between al-
gorithms for the types of ORF categories that were found, in how
many replicates they were independently discovered, how ORF
differed in length, and how reproducible and similar their detection
was based on, for example, the percentage of ORF sequence overlap
between replicate ORF calls. Before the analyses, data were con-
verted to GRangesList objects in R with stop codons included in the
coordinates. ORF categories were determined by comparing the
start and end coordinates, and the transcript id of each ORF with the
CDSs in the “gtf.rannot” object created by the ORFquant function
“prepare_annotation_files.” ORFs were compared by their overlap,
with different thresholds set for the required percentage of overlap.
Two ORFs were considered to be similar if the exons of one ORF
were fully contained within the exons of a second ORF, both codons
had the same stop codon, and the first ORF covered at least the
required percentage of overlap of the length of the second ORF.
These overlap relations were recursive, such that a parent ORF could
be the child of another ORF, and all three would be counted as one
unique ORF.

Comparison of Published Ribo-Seq Datasets

We used publicly available datasets from GENCODE (16), Chothani
et al. (15), Ouspenskaia et al. (34), and Duffy et al. (123) for compari-
sons of published reports of noncanonical ORFs that might encode
microproteins. The GENCODE dataset itself is a metaanalysis of data
TABLE

A proposed framework to standardize lev

Tier Required supporting evidence

Tier 1A Tryptic proteome LC–MS/MS (≥2 peptides acco
HUPO/HPP criteria)

Ribo-Seqa

Tier 1B HLA immunopeptidomics MS (≥2 observations;
high-confidence peptides from multiple distinc

Ribo-Seqa

Tier 2A Tryptic proteome LC–MS/MS (≥2 peptides not s
HUPO/HPP spacing criteria)

Tryptic proteome LC–MS/MS (1 peptide)
Ribo-Seqa

Tier 2B HLA immunopeptidomics MS (1 observation)
Ribo-Seqa

Tier 3 Any HLA immunopeptidomics or tryptic proteom
MS evidence without Ribo-Seqa evidence

Tier 4 Ribo-Seqa evidence without any proteomic evid
Tier 5 In silico prediction of an ORF on an expressed t

without any Ribo-Seqa or proteomic evidence
aFrom credible Ribo-Seq data with quality metrics meeting the guide

aliquots of the same samples analyzed by proteomics.
from Ji et al. (19), Calviello et al. (61), Raj et al. (20), van Heesch et al.
(9), Martinez et al. (21), Chen et al. (18), and Gaertner et al. (11);
datasets employed are listed in supplemental Table S1. Source data
for these datasets are listed in supplemental Table S2. To facilitate
comparisons between studies, we extracted only noncanonical ORFs
with a length of ≥16 amino acids and had an AUG start codon. For
ORFs using a non-AUG start site, the first internal AUG start codon
was identified and the amino acid sequence starting with that internal
AUG was included for analysis if the resulting ORF was ≥16 amino
acids long. ORFs were then analyzed for their replication across pri-
mary datasets. Since the GENCODE list represents a meta-analysis of
other individual datasets, the presence of an ORF in the GENCODE list
was not used as part of the analysis for ORF replication across primary
datasets. Next, ORF calls were associated with one of the following
six categories: lncRNA-ORF, uORF, uoORF, internal ORF, doORF, or
dORF, according to the schema by Mudge et al. (16). Duffy et al. used
the nomenclature “external” for doORF, and these ORFs were
reclassified as doORF for this analysis; they used “internal” for
intORFs, which were reclassified as intORFs for this analysis. For
lncRNAs, Duffy et al. used the term “noncoding,” which included the
biotypes “noncoding,” “lncRNA,” “antisense_RNA,” “misc_RNA,”
“TEC,” and “processed_transcript,” which were included as part of the
lncRNA-ORF designation for this study. For Ouspenskaia et al., we
analyzed ORFs according to the authors’ designation of ORF “plot-
Type,” reflecting their final classification. Ouspenskaia et al. used the
term “3′ dORF” for dORF, “3′ overlap dORF” for doORF, “5′ overlap
uORF” of uoORF, “5′ uORF” for uORF, “lncRNA” for lncRNA-ORF, and
“out-of-frame” for intORF. Chothani et al. reported final ORF types of
“dORF,” “doORF,” “ncORF,” “overlap_uORF,” “intORF,” and “uORF.”
For Chothani et al., Duffy et al., and Ouspenskaia et al., ORFs that had
a final classification of pseudogene were excluded from this analysis;
however, these datasets variably reclassified some ORFs on pseu-
dogene transcript biotypes as noncoding or lncRNA, and we did not
refilter these ORFs beyond the original reclassifications provided by
the authors. ORFs that switch a classification corresponding to a small
RNA, tRNA, or rRNA species, such as “rRNA,” “snoRNA,” “tRNA,”
“snRNA,” or “miRNA,” were excluded from this analysis. The number
of cell types and/or tissue types for analyses of each ORF dataset was
extracted from the source publication.
2
els of evidence of noncanonical ORFs

Standardized outcome

rding to “Protein candidate.” Consider
discussing research findings with
genome annotation databases for
possible annotation.

multiple
t sources)

“Presented”

atisfying “Detected”

“Detected”

e LC–MS/ “Putative,” consider alternative sources

ence “Ribo-Seq ORF”
ranscript “Predicted”

lines suggested in this article. Ribo-Seq need not be performed on
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LIMITATIONS

With this work, we have endeavored to clarify how Ribo-Seq
can be used for noncanonical ORF research. Yet, our focus
has several important limitations. First, the vast majority of—
but not all—translated peptides can be traced back to an RNA
sequence. There may be peptides that derive from amino acid
splicing within the proteasome during protein degradation
(158), which would not be detectable in Ribo-Seq data. Sec-
ond, there are also well-established protein CDSs that are
difficult to resolve with Ribo-Seq and do not have optimized
computational methods for their quantification. For example,
translated pseudogenes, retroviruses, retrotransposons, and
paralogous protein-coding genes may have high sequence
homology that precludes unique mapping of the short ~30 bp
reads from a Ribo-Seq experiment, although multimapping
reads will provide evidence of translation. These cases are not
discussed here. This issue of short Ribo-Seq sequencing
reads also highlights the potential role for emerging long-read
sequencing technologies to enhance detection of noncanon-
ical ORFs on alternative transcript forms (159), which we do
not discuss. Finally, each individual’s genome (and particularly
each cancer’s genome) has a unique range of germline or
somatic single nucleotide variants that will impact the prote-
ome: in this article, we have not addressed the importance of
generating personalized reference genomes and proteomes
for the analysis of microproteins and noncanonical ORFs.
CONCLUSIONS

The widespread description of noncanonical ORFs has
sparked a paradigm shift in the perception of both the human
genome and the proteome. Yet, as a field still in its infancy, this
area of investigation is plagued by a lack of standardization,
which may lead to imprecise analyses, ultimately leading to
self-injurious confusion. While the proportion of noncanonical
ORFs that encode a functional protein remains to be seen, a
large fraction of them can be verified as translated by both MS-
based and Ribo-Seq-based approaches. A central effort for the
research community is now to build reputable databases and
analysis pipelines to ensure rigor in this quickly expanding—
and highly exciting—field while also enabling functional studies
to proceed with confidence. Here, we have considered the
technologies used to detect noncanonical ORFs and attempted
to provide a framework for categorizing differing levels of evi-
dence for them. Our work aims to coalesce the research com-
munity around a common terminology and shared set of
database resources for noncanonical ORFs. Ultimately, we
believe that the study of noncanonical ORFs, if pursued with
proper precision, will prove invaluable to the global community
of biomedical researchers.
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