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Single-cell assay for transposase-accessible chromatin by sequencing
(scATAC-seq) has emerged as a powerful tool for dissecting regulatory
landscapes and cellular heterogeneity. However, an exploration of systemic
biases among scATAC-seq technologies has remained absent. In this study,
we benchmark the performance of eight scATAC-seq methods across

47 experiments using human peripheral blood mononuclear cells (PBMCs)
asareference sample and develop PUMATAC, a universal preprocessing
pipeline, to handle the various sequencing data formats. Our analyses reveal
significant differences in sequencing library complexity and tagmentation
specificity, which impact cell-type annotation, genotype demultiplexing,
peak calling, differential region accessibility and transcription factor motif
enrichment. Our findings underscore the importance of sample extraction,
method selection, data processing and total cost of experiments, offering
valuable guidance for future research. Finally, our data and analysis pipeline
encompasses 169,000 PBMC scATAC-seq profiles and abest practices code
repository for scATAC-seq data analysis, which are freely available to extend
this benchmarking effort to future protocols.

Data quality in single-cell sequencing studies directly influences suc-  aninformed decision-making process on the choice of technology,
cessful interpretation. Technologies that generate high and accurate  systematic benchmarking efforts have been performed for sample
molecule counts allow for a precise characterization of cellsand can  preparation protocols’ and single-cell RNA-sequencing (scRNA-seq)
yield deep insights into the underlying tissue biology. To facilitate  technologies®. However, such efforts are still lacking for chromatin
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accessibility profiling technologies?, such as single-cell assay for
transposase-accessible chromatin by sequencing (scATAC-seq)*. Recent
technological advances enable large-scale studies and have established
SCATAC-seq asamajor pillarinsystematic profiling efforts®”. While tran-
scriptomic profiles based on scRNA-seq provide information to infer
cellular phenotypes, scATAC-seq detects accessible chromatin sites
that pinpoint genomicregionsinvolved in gene regulation. The latter
is particularly important to derive mechanistic insights into cell-type
development and differentiation or to identify drivers of cell state
dynamics following a stimulus, perturbations or disease (Table 1).

This work benchmarked eight scATAC-seq methods across 47
experiments, including technical and center replicates for Bio-Rad
ddSEQ, HyDrop, s3-ATAC and different variants of the 10x Genom-
ics sSCATAC-seq assay. Peripheral blood mononuclear cells (PBMCs)
served as areference sample to minimize technical variability related
tosample preparation, allowing the systematic evaluation of method
performance across multiple quality control metrics. PUMATACS, our
pipeline for universal mapping of ATAC-seq data, further reduced vari-
ability in data preprocessing and enabled systematic benchmarking
of the presented data, also allowing the extension to future technolo-
gies. Differences between methods were driven by sequencing library
complexity and tagmentation specificity, with consequences on the
performance of key features for data analysis and interpretation and
theintegration of datasets into joint cellular atlases.

Results

We performed a systematic, multicenter benchmarking study of eight
different scATAC-seq protocols. Our benchmarkincludes all variants
of 10x Genomics scATAC-seq (v1 (ref. 9), v1.1, v2, multiome and mito-
chondrial scATAC (mtscATAC)™°) as well as Bio-Rad ddSEQ", HyDrop™
and s3-ATAC". A reference sample of PBMCs from two adult donors
(male and female) mixed at a 1:1 ratio was used to simulate complex
sample composition (containing multiple cell types and conditions)
and minimize sample preparation complexity. This reference sample
was distributed for a multicenter benchmarking study and was used
for allexperiments, with the exception of the indicated replicate data-
sets (Fig. 1a). Each experiment was performed in technical replicates
across centers with a target of 3,000 cells per sample to recover all
major PBMC cell types, such as T and B cell subtypes, natural killer
(NK) cells, monocytes and dendritic cells (DCs). In total, we gener-
ated 47 datasets (Fig. 1b), including replicates across at least three
centers with two technical replicate experiments for all methods,
except s3-ATAC and 10x v1.

PUMATAC: ageneric and automated analysis pipeline

To compare different protocols in a unified manner, all sequencing
datawere analyzed using PUMATAC (pipeline for universal mapping of
ATAC-seq data)®, anewly developed scATAC-seq preprocessing pipeline
(Fig. 1c). Briefly, PUMATAC takes scATAC-seq data and applies a set of
uniform preprocessing steps, including cell barcode error correction,
adapter trimming, reference genome alignment and mapping qual-
ity filtering (Methods). We chose bwa-mem2 for read alignment as
bwa-mem was used in the original manuscripts describing the eight
technologies. PUMATAC then records aligned chromatin fragments
in the ubiquitous bed-like ‘fragments file’ format, a tab-separated
text file providing the start and end positions of each fragment and
its corresponding cell barcode. On average, across samples, 97% of
aligned fragments by PUMATAC shared their barcodes and coordinates
with their counterparts aligned by CellRanger (10x Genomics; Supple-
mentary Fig. 1a). PUMATAC currently includes workflows for the eight
technologies described in this benchmark study but allows for the
modular addition of new scATAC-seq sequencing methods by modify-
ing existing templates™. PUMATAC also features areimplementation of
bap2 (ref.15), which detects and merges barcodes with significant frag-
ment identity overlap. This step is necessary to merge bead doublets

Table 1| Estimated costs per experiment of 5,000 cells

10xv2 10x Bio-Rad s3-ATAC HyDrop
multiome ddSEQ

Sequenced 55,000 68,000 19,000 1,467,000 10,000
reads per cell at
saturation
Expected unique 22,427 10,155 5,249 66,130 1,884
fragments per cell
Expected unique 13,680 6,398 2,992 12,565 76
fragments in
peaks per cell
Assay price per $1,565 $2,843 $1,100 $800 $100
5,000 cells
Sequencing cost $791 $978 $273 $21,088 $144
Total cost percell ~ $0.471 $0.764 $0.275 $3.80 $0.049

Saturation sequencing depth is defined as the depth at which 50% of fragments in cells

are duplicates. The expected number of unique fragments was calculated as the expected
number of unique fragments at saturation sequencing depth, interpolated or extrapolated
using a Langmuir model, and multiplied by the median FRIP score per technique to achieve
the expected in peaks count. The price per 5,000 cells is for one 10x lane, one ddSEQ lane,
four s3-ATAC plates (1,440 cells each, for 5,760 cells in total) or one HyDrop ATAC run.
Sequencing cost is defined as the price of sequencing 5,000 cells to saturation depth,
calculated at a cost of $2.875 per 1 million reads, using NovaSeq S2 100 cycles (10x v2, 10x
multiome and HyDrop) or 200 cycles (ddSEQ and s3-ATAC; 4,000 million reads sequenced at
$10,000 to $11,000 total cost). The sequencing cost for 10x multiome RNA component was
not included.

(inherent to Bio-Rad ddSEQ data) and was performed onall techniques
for uniformity (Supplementary Fig. 1c). Asexpected, between 55% and
92% of Bio-Rad-filtered cell barcodes were the result of such merging
events due to the method’s bead overloading strategy, as opposed to
amedian of 1.5% for non-Bio-Rad samples (Supplementary Fig. 1b).

After preprocessing, the fragments files were postprocessed using
cisTopic'. High-quality cells were separated from background noise
barcodes and low-quality cells using sample-specific, algorithmically
defined minimum thresholds on the number of unique fragments and
transcriptionstart site (TSS) enrichment (Fig. 1d, Extended Data Fig. 2
and Methods). Background noise barcodes are barcodes enriched with
trace amounts of fragments through three mechanisms: (1) ambient
accessible chromatin fragments may initiate barcoding reactions
inside cell-free droplets, (2) unbound barcodes in the bead stock solu-
tions may contaminate legitimate barcoding reactions, or (3) barcode
impurities onthe beads may lead to ambivalent labeling of chromatin
fragments from a single nucleus”. Nucleosome-free fragments from
viable cells show enrichment around TSSs, a hallmark used to exclude
low-quality cells from subsequent analysis*". All original sequencing
datasets were then downsampled to 40,796 reads per cell, the high-
est common number of reads available across all samples (hereafter
referred to asthe 40k dataset). Finally, the downsampled datasets were
processed again using PUMATAC and cisTopic and subset to the original
set of filtered cell barcodes, ensuring that the number of reads per cell
remained constant. All downstream analyses were performed on the
40k dataset or further downsampled sets derived thereof.

To generate a preliminary count matrix, fragments were first
countedinthe ENCODE SCREEN regions'®. Cell doublets were detected
and removed based on cell-type identity using Scrublet” and donor
genotype identity using Freemuxlet*® (Methods). Next, cells were
clustered using cisTopic and annotated through an automated label
transfer from independently annotated scRNA-seq PBMC reference
data® using Seurat®. For each sample, cell-type-specific chromatin
accessibility peaks were detected using MACS2 (ref. 23) and aggre-
gated into a high-quality set of sample-specific consensus peaks. This
strategy was used to discover peaks specific to smaller cell populations.
Each sample’s fragments were then recounted in its own consensus
peak set, generating a consensus peak count matrix before a second
round of cisTopic clustering and Seurat label transfer was performed.
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The resulting 47 annotated and clustered datasets were used for all
downstream analyses and comparisons. Finally, a third round of con-
sensus peak sets was generated from all samples and aggregated into
one master set of PBMC consensus peaks, whichwas used to generate
amerged count matrix containing cells from all experiments. This
strategy was used to generate three distinct benchmarking datasets
containing (1) all cells at original sequencing depth (Extended Data
Fig. 3), (2) all cells at 40k sequencing depth (Fig. 4b) and (3) an equal
number of cells per cell type at 40k sequencing depth (Extended Data
Fig.4a). We also generated randomly sampled sets (2,500, 2,000,1,500,
1,000 and 500 cells) toinvestigate potential effects of total cell counts
onlabel transfer and differentially accessible region (DAR) calling. All
merged benchmarking datasets and allindividual samples are available
inSCope, our public single-cell viewer (https://scope.aertslab.org/#/
SCATAC-seq_Benchmark/scATAC-seq_Benchmark/welcome).

Chromatin fragment capture and sequencing efficiency

The PUMATAC analysis workflow discarded sequencing reads at several
filtering steps throughout preprocessing. The fraction of reads that ulti-
mately remainsin the filtered count matrix is animportant measure of
assay quality asitis inversely related to sequencing costs. Furthermore,
understandingthe causes of read loss can shed light on how such losses
affect downstream analyses and how toimprove reaction chemistries
or sample preparation workflows. We therefore calculated the fraction
of total reads lost at each filtering stage and quantified differences in
these metrics between samples (Fig. 1e). The first loss occurred when
barcode reads were corrected based on a barcode sequence whitelist
and when mapped to the reference genome. More specifically, reads
without a valid cell barcode or those that could not be aligned with a
Phred mapping quality score of >30 were discarded. Both steps com-
bined accounted for relatively small losses, ranging from 10.4% for
10xv2t022.7% for HyDrop. Filtering true cells from background noise
and low-quality cells resulted in significantly larger losses for some
methods. Between 7% (10x v2) and 60% (s3-ATAC) of mapped fragments
were discarded at this stage. Notably, fluorescence-activated cell sort-
ing (FACS) of live cells before nuclei extraction reduced such losses to
below 6% for two mtscATAC-seq experiments (samples mt* Brl and
mt*Br2) compared to 36% in mtscATAC-seqwithout FACS (samples mt
M1, mt M2, mt C1and mt C2), suggesting that the additional FACS step
removes significantamounts of ambient chromatinand damaged cells.
Because diploid cells can produce a maximum of two unique fragments
originating fromagiven accessible region and the fact that sScATAC-seq
data are sparse compared to all possible accessible sites, accessibil-
ity in peak regions is usually binarized within a single cell. Out of the
quality-filtered fragments, alarge fractionincludes duplicates result-
ing from fragment amplification steps during sample preparation,
which are discarded instead of quantified. The fraction of duplicate
readsinour datasets ranged from 5% for s3-ATAC to more than 70% for
HyDrop whensequenced at 40,000 reads per cell. Finally, asignificant
portion of unique fragments in each cell did not overlap with peak
regions and was thus not considered in analysis methods based on peak
countmatrices. The proportion of such fragments varied between 39%

(10xv2) and 82% (s3-ATAC) of allunique reads in cells. As aconsequence
of the above filtering steps, the fraction of original sequencing reads
that are ultimately associated with cells, not duplicated and located
within peak regions, can be surprisingly low, ranging between 28%
(10x v2) and below 4% (s3-ATAC and HyDrop). These findings sug-
gest that sequencing scATAC-seq experiments are generally highly
inefficient, and protocol optimization steps should be performed to
maximize cell quality and library complexity and minimize ambient
chromatin contamination and PCR duplication. While both s3-ATAC and
HyDrop attaina markedly lower sequencing efficiency than commercial
assays, this reduced sensitivity was caused by different mechanisms;
s3-ATAC samples contained many fragments outside of peak regions,
whereas HyDrop fragments were highly duplicated.

Sensitivity and specificity
After initial filtering steps, the remaining cells exhibited stark differ-
ences in quality metrics across techniques. In terms of sensitivity,
10xv2 performed best, recovering, on average, 10,021 unique fragments
in peaks per cell, which was significantly higher than Bio-Rad ddSEQ
(4,228), HyDrop (1,180) and s3-ATAC (1,203; Fig. 1f and Extended Data
Fig.1d). TSS enrichment was also significantly stratified across meth-
ods with 10x v1.1, mtscATAC and s3-ATAC scoring 21.7 or lower, 10x v1,
v2, multiome and HyDrop samples scoring between 25.2 and 27.6 and
Bio-Rad ddSEQ scoring, on average, 32.6 (Fig. 1g and Extended Data
Fig. 1f). The fraction of reads in peaks (FRIP) was significantly lower
in HyDrop (38.5%), mtscATAC-seq (37.3%) and s3-ATAC (18.9%) than
in Bio-Rad ddSEQ and the other 10x methods (57.3-62.7%; Fig. 1h and
Extended Data Fig. 1e). Whereas the same method of nuclei extrac-
tion was used for all 10x and HyDrop samples (except for mtscATAC
where Tween 20 and digitonin were omitted from the cell lysis buffer to
retain mitochondrial chromatin), Bio-Rad ddSEQ and s3-ATAC experi-
ments used a lysis buffer without NP-40 or Dounce homogenizationin
NIB-HEPES with 0.1% Tween and 0.1% NP-40 to extract nuclei, respec-
tively. To investigate whether differences in FRIP, TSS enrichment or
number of unique fragments between 10x/HyDrop, Bio-Rad ddSEQ
and s3-ATAC could be attributed to differences in nuclei extraction,
we performed the following three additional 10x vl.1 experiments: (1)
in control experiment 1 (sample 10x vl.1c C1), we used a custom lysis
buffer without NP-40 (asin Bio-Rad ddSEQ); (2) in control experiment 2
(sample 10x v1.1c C2), we extracted nuclei using Dounce homogeni-
zation (as described in s3-ATAC); and (3) in control experiment 3
(sample 10x v1.1C3), we used the standard 10x v1.1 nuclei extraction
protocol. Both control runs (Cl1and C2) generated cells with FRIP and
TSS enrichment scores on par withstandard 10x vl.1runs butretrieved
ahigher than average number of unique fragments. This suggests that
the nuclei extraction method was not the sole driving factor causing
reduced performance (for example, fragment numbers, FRIP and TSS
enrichment) in Bio-Rad ddSEQ and s3-ATAC samples. Finally, we found
that Bio-Rad ddSEQ samples had a higher median fragment length than
all other techniques (Extended Data Fig. 1h).

With increasing sequencing depth, the number of unique frag-
ments increased but saturated at different levels across techniques.

Fig.1| Overview of experimental design and low-level quality control
metrics. a, Schematic overview of the experimental design; CNAG-CRG, Centro
Nacional de Analisis Genomico; EPFL, Ecole Polytechnique Fédérale de Lausanne;
OHSU, Oregon Health & Science University; MDC, Max Delbriick Center for
Molecular Medicine in the Helmholtz Association; UCSF, University of California
San Francisco; VIB, Vlaams Instituut voor Biotechnologie. b, Bar chart of the
number of experiments performed per technology colored by institute of
origin. ¢, Diagram of the universal PUMATAC data analysis pipeline and further
downstream analyses; QC, quality control. d, Distribution of TSS enrichment,
FRIP and total unique fragment counts for all barcodes across all technologies.
Theblue, green and yellow color scale denotes local density. Saturated colors
mark barcodes identified as cells. The distributions for individual samples

areshownin Extended Data Fig. 2. e, Stacked bar plot showing the fraction of
reads lost across each step of data processing. ‘Unique, in cells, in peaks’ is the
final fraction of sequencing reads retained in count matrices. Asterisk among
technology names indicates mtscATAC-seq samples performed on PBMC that
were viability FAC-sorted prior to tagmentation. f-h, Distributions of unique
fragments in peaks (f), TSS enrichment (g) and fraction of unique fragments
in peaks (h) infiltered cell barcodes. The scale was shifted to accommodate
lower fragment counts in s3-ATAC and HyDrop, indicated by ared line denoting
avalue of 6,000; n=178,453 cells (before doublet filtering) examined over

47 independent experiments. Median values are indicated by central white
dots, quartiles are indicated by black boxes, and minima/maxima/centers are
notindicated.
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For example, at lower sequencing depths, ddSEQ samples performed
better than10x v1, vl.1and multiome, an effect that was reversed at a
higher sequencing depth (Fig. 2a). TSS enrichment was also depend-
ent on sequencing depth but saturated rapidly (Fig. 2b). Sequencing
efficiency decreased with higher sequencing depths due to theincrease
induplicate reads (Fig. 2c).

We also investigated the performance of the scRNA-seq compo-
nentof the six 10x multiome experiments. Therefore, we first analyzed
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andidentified the same barcodes. However, in two replicates (samples
MO Cland MO C2), almost 4,000 barcodes were exclusively identified
in the RNA component (Extended Data Fig. 5¢c), suggesting that cell
filtering based onboth scRNA-seqand scATAC-seq metrics can gener-
ate false-negative cell callsin at least one modality.

Doublet counts and cell-type label transfer efficiency
We identified doublets (two cells with the same cell barcode) using
simulated dataor genotype information with Scrublet and Freemuxlet,
respectively (Methods). Scrublet’s doublet score linearly decreased
with median unique fragments in peaks (Fig. 2f), and Freemuxlet’s
confidence (that s, difference in log likelihood between doublet and
singlet assignments) increased with these metrics (Fig. 2g), suggesting
that the number of fragmentsisacritical factor behind doublet detec-
tion. Outlier results for s3-ATAC O1, mtscATAC M1 and mtscATAC M2
could be explained by the increased read lengths (and thus increased
single-nucleotide polymorphism (SNP) recovery) of 74 base pairs (bp)
and 150 bp, respectively, as opposed to 50 bp for the other samples.
Next, we annotated cell types by inferring gene activities using
chromatin accessibility in agenomic window around the TSS and sub-
sequentlabel transfer from annotated scRNA-seq reference datasets
using Seurat®. When assigning cell-type annotations, Seurat returns
a confidence score to each assignment representing the majority
percentage of a weighted vote based on cell types present in the ref-
erence. Onaverage, aSeurat label transfer score of 0.7 corresponded
toan 82% concordance between cell-typeidentities assigned to ATAC
and RNA components of multiome samples, although this effect was
cell-type dependent (Extended Data Fig. 6a,b). Similar to Scrublet and
Freemuxlet, Seurat’s confidence was strongly dependent on sequenc-
ingdepth (Fig. 2d and Extended Data Fig. 7a) and the number of unique
fragments per cell (Fig. 2h), confirming the number of fragments to
beastrong predictor for the quality of downstream analyses. Conse-
quently, both10x and Bio-Rad ddSEQ methods attained high median
label transfer scores, while HyDrop and s3-ATAC scored markedly
lower (Fig. 2k and Extended Data Fig. 1g). The most common PBMC
types, includingB cells, T cellsand CD14" monocytes, were recovered
by alltechniques. However, the differences between methods became
evident when focusing on rare cell types, such as DCs and NK cells,
showing the lowest assignment scores across techniques (Fig. 2l and
Extended Data Fig. 6). For the latter cell types, s3-ATAC and HyDrop
recovered alower fraction or no cells, suggesting that increased sen-
sitivity isrequired for comprehensive cell-type annotation. Following
cell-type assignment, we aggregated high-quality cell-type-specific
peaks into consensus peaks. Across all samples and techniques, the
fraction of reads within these consensus peaks was strongly correlated
with TSS enrichment, affirming that TSS enrichment can be used as
a predictor of signal-to-noise ratio before and independent of peak
calling (Fig. 2i).

DARs

Similar to scRNA-seq, scATAC-seq datainterpretation largely relies on
theidentification of signature features between cell types and states.
Therefore, we calculated DARs between cell types within each of the
47 samples and evaluated each method’s performance by comparing
the number and median fold enrichment strength of DARs recovered
across methods. These metrics strongly varied by cell type. In CD14*
monocyetes, a cell type that was identified in all 47 samples, 10x meth-
ods recovered between 26,000 and 30,000 DARs and HyDrop recov-
ered 29,000, whereas s3-ATAC and ddSEQ only recovered 17,000 and
15,000, respectively (Fig. 2m). A similar contrast was observed in the
strength of these DARs; the top 2,000 CD14* monocyte DARs recov-
ered by 10x methods were a median of 17.7- to 23.5-fold enriched in
CD14* monocytes compared to the other cell types, while this fold
enrichmentwas10.6-fold, 7.5-fold and 4.9-fold in ddSEQ, HyDrop and
s3-ATAC, respectively (Fig. 2n). Of note, DAR strength was positively

dependent on sequencing depth (Fig. 2e and Extended Data Fig. 7c),
while the number of DARs recovered was not (Extended Data Fig. 7b).

Total cell counts and cell counts within each cell type were not
equal across all 47 samples (Fig. 21 and Supplementary Fig. 2c). To
investigate the effect of total cell count on Seurat label transfer scores
and DAR strength, we downsampled each experimentto 2,500, 2,000,
1,500,1,000 and 500 total cells. Here, both Seurat label transfer scores
and DAR strength were positively affected by higher cell counts
(Fig. 3a and Extended Data Fig. 8a,c), but the total number of DARs
recovered remained largely unaffected (Extended Data Fig. 8b). To miti-
gate count-dependent biases, we recalculated cell-type-specific DARs
in eight technology-exclusive sets sampled from the initially merged
169,000 cells. Each technology-exclusive set contained the lowest
number of cells available for each cell type across technologies: 555 B
cells, 747 CD14" monocytes, 1,008 naive T cells, 1,769 cytotoxic T cells,
83 DCs, 126 NK cells and 144 CD16" monocytes (Extended Data Fig. 4a).
Inthis cell count-balanced analysis, 10x methods recovered more DARs
than ddSEQ and HyDrop across all cell types (Fig. 3b). s3-ATAC also
recovered alarge number of DARs but of strongly decreased strength
compared to other techniques (Fig. 3a). In terms of DAR strength,
10xvlandv2 performed best, with ddSEQ performing on par with the
remaining 10x methods.

Additionally, we calculated cell-type-specific DARs on a merged
dataset containing all eight aforementioned cell-type-balanced sub-
sets. A comparison of the scATAC-seq signal at the strongest DAR
(Fig. 3d) or across the top 2,000 strongest DARs per cell type (Sup-
plementary Fig. 3) showed general agreement in signals between the
10x methods and Bio-Rad ddSEQ. Both s3-ATAC and HyDrop showed
weaker signals around DARs. Specifically, the signal was more broadly
distributed around the DAR peripheryins3-ATAC, whereas the absolute
signal was weaker but more specificin HyDrop. This observation agreed
withearlier quality metrics indicating higher fragment count and lower
FRIP for s3-ATAC and the inverse for HyDrop. We then calculated the
overlap between these consensus DARs and the DARs recovered by each
of the eight cell-type-balanced sets. Both 10x and Bio-Rad ddSEQ largely
agreed with the strongest consensus peaks, sharing between 85% and
97% of these regions (Fig. 3e and Extended Data Fig. 4b). s3-ATAC and
HyDrop recovered 60% and 70%, respectively. However, ddSEQ recov-
ered asignificantly lower number of DARs from the consensus DAR set
(40%; Fig. 3f). Across all eight individual ddSEQ samples, DARs were
also positioned closer to TSSs than in all other techniques (Fig. 2j and
Extended Data Fig. 4c). Combined with ddSEQ’s significantly higher
TSS enrichment across all fragments, this suggests that ddSEQ recov-
ers TSS-proximal DARs in agreement with 10x but lacks enrichment
in TSS-distal fragments. In the merged set, we also calculated DARs
between cell populations of the same cell type but originating from dif-
ferent techniques. Here, only s3-ATAC returned significantly enriched
regions, finding a total 0of 193,913 regions that were more accessible in
s3-ATAC thanin the other techniques.

To evaluate the biological relevance of the DARs identified by each
protocol, we performed amotif enrichment analysis on each cell type’s
top 2,000 strongest DARs by using pyCisTarget®* ¢, Acrossall cell types,
DARs from 10x methods scored highest in normalized enrichment
scores of transcription factor motifs, with mean scores of higher than
10 across the top 50 most enriched motifs. ddSEQ, s3-ATAC and HyDrop
scored significantly lower, with meanscores of 6-8. This stratification
was conserved when examining cell-type-specific enriched motif's
(Fig.3g).

Interpretation, integration and validation

Above, we calculated DARs between cell types within a sample. For
biological discoveries, often different samples are compared to identify
genomic regions with differential accessibility in certain conditions
(forexample, disease versus healthy and knockout versus control). To
compare each method’s ability to detect variation between samples,
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Fig.2 | Differences in automated cell-type annotation accuracy and
differential region calling between techniques. a-e, Line graphs showing
the effect of sequencing depth (x1,000 reads per cell) on unique fragments in
peak regions (a), TSS enrichment (b), sequencing efficiency (fraction of reads
that are associated with filtered cells, not duplicated and located within a peak
region; ¢), median Seurat label transfer score (d) and fold change enrichment
of Bcell DARs (e). f, Scatter plot of mean Scrublet score and median unique
number of fragments in peaks across cells. g, Scatter plot of the median LLK
(loglikelihood) of Freemuxlet’s per cell doublet classification and median
unique number of fragments across cells. h, Scatter plot of median Seurat score
and median log,, of unique fragments in peaks in cells. i, Scatter plot of median
FRIP and median TSS enrichment across cells in each sample. j, Scatter plot

oflog, (fold change) (log, (FC)) enrichment of the top 2,000 DARs across cell
types and median distance of DARs to the nearest TSS (bp). Sample s3 02
isomitted due to it being an outlier with a median distance of >300,000 bp;
kbp, kilobase pairs. In f-j, each point represents one experiment, and points
are colored by technique. k, Distributions of Seurat scores across samples.

1, Fraction of cell types recovered in cells from individual samples; n = 169,156
cells (after doublet filtering) examined over 47 independent experiments.
Median values are indicated by central white dots, quartiles are indicated by
black boxes, and minima/maxima/centers are not indicated. m, Number of
DARs recovered per cell type across samples. n, log, (fold change enrichment)
of the top 2,000 DARs colored by cell type.
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Fig.3 | Performance differences in detection of motif enrichment and sexual
dimorphisms. a, Dependency of Seurat label transfer scores and average

log, (fold change) of the top 2,000 DARs in selected cell types on the total
number of cellsin selected cell types. b,c, Heat map of the number of DARs (b)
and heat map of the fold change enrichment (c) of the top 2,000 DARs sourced
fromthe cell-type fair merged sets for every technique across cell types. Colors
are scaled per column; mono, monocytes. d, Fragment coverage within each cell
type’s strongest common DAR found in the merged set. Each cell type contains
an equal number of cells across technologies. All tracks are scaled to the same
absolute coverage. The 10x vl track is slightly truncated to accommodatej.

e f, Fraction of the top 20% and bottom 20% peaks and DARs found by the

merged cell-type fair set recovered in subsets fromindividual technologies.

g, Heat map of the normalized enrichment score of cell-type-specific
transcription factor motifs. Colors are scaled per row. h, Scatter plot of median
Freemuxlet donor assignment log likelihood difference to second-best guess
and median number of unique fragments. i, Scatter plot of the ratio of naive

T cells to cytotoxic T cells in male and female subpopulations and median
number of unique fragments. Inh and i, each point represents one experiment,
and points are colored by technique. j, Heat map of the number of sex-specific
DARs. Colors are scaled per column. k, Heat map of fold change enrichment of
the 200 strongest sex-specific DARs. Colors are scaled per column.
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Fig.4 | Overview of the merged dataset. a, Genome tracks of sex-specific
DARsin B cells and cytotoxic and naive T cells showing coverage in male and
female subpopulations. Coverage uses acommon scale across techniques

within each cell type and is cell count normalized (cell counts are equal for

each sex within techniques); Chr, chromosome. b, Top, ¢-distributed stochastic
neighbor embedding (t-SNE) projection of all 167,000 filtered cells across all 47
experiments colored by technology and cell type. Bottom, batch-corrected t-SNE
using technology of origin as the batch variable. Data points were randomly

shuffled before plotting. c, First two principal components of all experiments
based on 15 basic quality metrics. Red links indicate same day replicate
experiments. Caption denotes technique followed by center of sample origin
(Bfor BioRad, Br for Broad, C for CNAG-CRG, E for EPFL, H for Harvard, M for
MDC, O for OHSU, Sa for Sanger, St for Stanford, T for 10x Genomics, U for
UCSF, and V for VIB), and finally anindex (either A or B) to denote the replicate
setif more than one set of replicates was performed at the same center. d, Local
inverse Simpson index values before and after Harmony batch correction.

where differences can be more subtle than between cell types, we
focused on differences observed between male and female samples.
For donor identification, we first applied Freemuxlet for genotype
demultiplexing® (Supplementary Fig. 2a—c) before assigning each
sample’s sex through count numbers on the X and Y chromosomes
(Extended DataFig.2b). Similar to the previously applied doublet call-
ing, Freemuxlet’s donor assignment confidence was strongly correlated
withthe number of fragments (Fig. 3h). From abiological perspective,
the ratio of naive to cytotoxic T cells was higher in the female sample
than in male cells across all techniques, an effect dependent on the
number of unique fragments recovered per cell (Fig. 3i). Sensitivity will
thusdirectly impactstudies that assume correct donor identification.
Wethen used the aforementioned cell count-balanced strategy to cal-
culate DARs between male and female samples for each cell type. Here,
differences were markedly more subtle than between cell types, with
median DAR enrichments of around 2-fold (Fig. 3k) as opposed to 5-fold
in DCs or 50-fold in B cells (Fig. 3c). The strongest sexual dimorphism
was observed in cytotoxic T cells, where sex-specific DARs were strongly
enriched and highest in number (Figs. 3j,k and 4a). In agreement with

these findings, sex differencesin T cellabundance and chromatinacces-
sibility have been previously reported in the context of naive/cytotoxic
T cell counts and distinct response to extrinsic stimulation®. Similar
toresults obtained for cell-type-specific DARs, ddSEQ captured fewer
and weaker DARs than the 10x methods, although the differences were
less pronounced. Both s3-ATAC and HyDrop recovered even fewer and
weaker or no sex-specific DARs (Fig. 3j,k).

Next, we tested each method’s ability to be integrated into joint
datasets, a key requirement for decentralized multicenter projects,
such asthe Human Cell Atlas project. From the peak sets of the 47 indi-
vidual downsampled samples, we derived a consensus set of 198,421
peaks and recounted all downsampled data in this common peak set
togenerate acomplete merged dataset of 178,502 cells. After filtering
for doublets, we performed dimensionality reduction on the remain-
ing 169,227 cells using cisTopic (Fig. 4b). We then quantified each
technology’s ability to cocluster with other techniques using the local
inverse Simpson’s index, depicting the average number of technolo-
giesinacell’sneighborhood (Fig. 4d)*. Before batch effect correction,
cells clustered by technology, even across the different 10x variants.
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After data integration using Harmony, differences were par-
tially remediated, although ddSEQ and HyDrop integrated worse
than the other methods (Fig. 4b-d). Additionally, we performed a
principal-component analysis on 15 key quality metrics (Fig. 4c). This
dimension-reduced representation exhibited a radial axis of ‘quality’
centered around the bottom lefthand corner and showed that technical
replicate experiments produced highly similar datasets.

In addition to the systematic benchmarking using PBMCs, we
applied our universal dataanalysis strategy to publicly available adult
mouse cortex sCATAC-seq data for each of the eight technologies.
Therefore, the raw sequencing data were aligned to the mouse refer-
ence genome, downsampled to equal cellnumbers and clustered using
cisTopic before generating consensus peak sets for each sample. We
thencalculatedbasic quality metrics, such as unique fragment numbers
inpeaks, and repeated these steps for several sequencing depth down-
sampling levels. In all metrics, 10x and ddSEQ performed markedly
better than HyDrop and s3-ATAC (Extended DataFig. 9a,b). However, in
this tissue context, s3-ATAC recovered more unique fragments in peaks
than HyDrop at all levels of downsampling. Surprisingly, considering
previousresults,10x vlrecovered more unique fragmentsin peaks than
10xv2, thelatter of which now performed on par with the best Bio-Rad
ddSEQsamples. While our PBMC benchmark sought to systematically
eliminate sample preparation effects by using cells in suspensionas a
reference sample, we cannot entirely disentangle the effect of sample
(nuclei) preparation differences on technology performance in more
complex tissues, such as the mouse cortex. Here, tissue excision and
nuclei extraction require more complex procedures and expertise,
which may be amore defining factor for data quality than the intrinsic
sensitivity of each technology.

Protocol economics

To compare costs per sample across the tested methods, weiteratively
downsampled the fragments files for each sample and calculated the
fraction of duplicate fragments per iteration. We then calculated
the average sequencing depth at which a duplication rate of 50%
was attained and quantified the number of fragments at this depth
(including non-peak fragments; Extended Data Fig.10). These findings
provided an estimated total cost for a 5,000-cell experiment for each
technique. In this regard, the costs per cell were fivefold and tenfold
cheaper for HyDrop than for Bio-Rad ddSeq and 10x v2, respectively;
10x multiome was more expensive (1.5-fold) than the stand-alone assay
10x v2but was markedly less sensitive and less efficient in sequencing.
Thus, the matched gene expressioninformation of the multiome assay
results in a considerable additional cost, which has to be taken into
account in designs for which scATAC-seq is the primary focus of astudy.
The cost per experiment for s3-ATAC ($800) ranged between HyDrop
($100) and Bio-Rad ddSEQ ($1,100), but the high library complexity
resulted in high sequencing costs and the highest overall costs per cell.
However, several variables can be tuned to reduce cost or to increase
efficiency. For example, 10,000 cells (instead of 5,000 cells) can be
loaded on the same microfluidic lane to double cost efficiency in the
droplet-based methods (10x, Bio-Rad ddSEQ and HyDrop) or s3-ATAC
samples canbe sequenced atlower depths to reduce sequencing costs.
All technologies can be sequenced at increased depths to improve
sensitivity at the expense of cost efficiency.

Discussion

Technology benchmarking studies with multicenter designs require
thorough experimental planning to limit variability to the tested pro-
tocols, while keeping other factors constant. In this regard, we used
PBMCs as a reference sample, which is ideal for multicenter bench-
marking studies as cells canbe aliquoted, stored, shipped and thawed
without major losses in sample quality and composition. However,
although such unified reference samples allowed us to include expert
laboratories and companies around the world, we cannot exclude

different performances of the methodsin other tissues. Although the
analysis of mouse brain datasets pointed to largely consistent method
performance, a protocol could outperform other methods depending
on the cell type and tissue context. Data analysis represents an addi-
tional variable inbenchmarking studies, as protocol-specific pipelines
harbor quality control and filtering steps that challenge compara-
tive results if not synchronized. Therefore, we developed PUMATAC,
aunified data preprocessing pipeline, whichwas used to process data
types from all methods tested here. Importantly, its modular design
allows the extensionto future technologies and assay variants, making
it a valuable software resource to benchmark the next generation of
SsCATAC-seq methods.

Our reference sampleresource and unified data processing pipe-
line allowed a systematic comparison of different scATAC-seq meth-
ods. Methods broadly agreed on cell-type identity and transcription
factor activities but showed stark differences in sequencing library
quality and tagmentation specificity to open chromatin sites. In gen-
eral, HyDrop and s3-ATAC performed markedly lower in most qual-
ity control metrics. HyDrop captured significantly fewer fragments
than 10x and Bio-Rad methods. s3-ATAC fragments were less likely to
be enriched around TSSs, and high duplicate rates were observed in
HyDrop, suggesting room for optimizationin PBMC samples for these
non-commercial technologies. Although the 10x protocols we tested
apply similar chemistries, we see variable performance between vari-
ants and replicates. While the former points to the potential impact
of buffer composition (for example, specific to mtscATAC and 10x
multiome), the latter suggests differences due to sample handling.
Nevertheless, despite the difference in number of unique fragments
detected, 10x vland v2 scored equally across higher-level quality met-
rics, such as label transfer and motif enrichment scores, attesting to
the high specificity and signal-to-noise ratio of the 10x vl scATAC-seq
kits. Bio-Rad ddSEQ samples returned weaker and fewer DARs, whichin
turnrecovered weaker transcription factor motif signatures. Bio-Rad
ddSEQ fragments were also less specific to TSS-distal accessible sites,
which could also contribute to reduced integration capacity with other
methods, an effect that could only partially be resolved using batch
effect correction algorithms.

Wefound sequencingefficiency tobe generally low for scATAC-seq
experiments. Two strategies could mitigate this issue: optimized
sample preparation and nuclei extraction protocols to minimize the
amount of ambient chromatin in samples, potentially applying FACS
for sample cleanup, and sequencing below library saturation to limit
the number of duplicate reads. Generally, before embarking into
large-scale production, the higher reagent costs of commercialized
methods have to be considered in light of lower complexity and accu-
racy for non-commercial variants. The aforementioned factors plusa
method’s accessibility and dataset integrability across studies should
eventually drive the technology selection process. It is important to
state that non-commercialized methods have not gone through a
rigorous optimization process. Time and budget constraints of aca-
demic labs often limit excessive protocol optimization procedures.
However, their open-source character and low reagent costs make them
available for community-driven improvements and low-budget data
generation effort, respectively. Therefore, we encourage researchers
to continue striving for new creative solutions as the driving force for
next-generation technologies.

In addition to evaluating different scATAC-seq methods, this
work provides resources for the single-cell genomics community.
Our PUMATAC pipelineis openly available tobe used as an open-source
alternative to commercial software and is flexible to analyze current
and future data types. All code to reproduce all of our analyses and
graphsisincluded with the pipeline. Allbenchmarking datasets can be
downloaded in raw and processed formats for the testing and devel-
opment of computational algorithms, for example, data integration
tools. Finally, the here-derived set of consensus DARs across different
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technologies represents a high-confidence set of candidate enhanc-
ers and promoters underlying cell identity as a resource for further
exploration.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability areavailable at https://doi.org/10.1038/s41587-023-01881-x.
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Methods
Sample preparation
Human PBMC thawing and nuclei isolation. Cryopreserved human
PBMCs from one male donor and one female donor were purchased
from AllCells and distributed across institutes to generate the following
samples:v1Vl,v1V2,v1.1C1-v1.1C3,v1.1St1,v1.15t2,v1.1cCl,vl.1c C2,
v2Vl1,v2V2,v2(Cl,v2C2,MO Sal, MO Sa2, MO C1, MO C2,MO V1, MO
V2, mt M1, mt M2, mt C1, mt C2, mt* Brl, mt* Br2,ddSH1,ddSH2,s3 01,
Hy E1-Hy E4, Hy V1, Hy V2 and Hy C1-Hy C3. For the remaining samples
(V1.1T1,v2T1,v2T2,ddS Bil-ddS Bi4,ddS U1, ddS U2 and s3 02), locally
available cryopreserved PBMCs were used. In these short identifiers,
thefirst partindicates the technology used, the second partindicates
the first one or two letters from the center where the experiment was
performed, and the number identifies each technical replicate.
Unless specified otherwise in technology-specific methods
sections (for Bio-Rad ddSEQ, mtscATAC-seq, 10x v1.1 control runs
and s3-ATAC), cryopreserved PBMCs were thawed according to the
10x Genomics demonstrated protocol CGO0039 (‘Fresh Frozen Human
Peripheral Blood Mononuclear Cells for Single Cell RNA Sequencing’).
Briefly, 1 ml of frozen cells was rapidly thawed in a water bath at 37 °C
andtransferred toa50-mltube usingal,000-pl wide-bore tip. Next,1 ml
of medium prewarmed to 37 °Cand supplemented with10% fetal bovine
serum (FBS; Thermo Fisher Scientific) was added dropwise with gentle
swirling of the sample. After 1 min ofincubation at room temperature, 2,
4,8and 16 mlof medium with10% FBS were added dropwise with1 min
ofincubation at room temperaturein between. The cell suspension was
then centrifuged at300gfor 5 minatroomtemperature. The pellet was
resuspendedin 10 mlof medium supplemented with 10% FBS, and cells
were counted. Unless specified otherwise in the technology-specific
methods sections, the isolation of nuclei was performed according
to the 10x Genomics demonstrated protocol ‘Nuclei Isolation for Sin-
gle Cell ATAC Sequencing’. Briefly, 1 million cells from the cell mix
were transferred to a 1.5-ml microcentrifuge tube and centrifuged at
500gfor5 minat4 °C. The supernatant was removed without disrupt-
ing the cell pellet, and 100 pl of chilled lysis buffer (10 mM Tris-HCI
(pH7.4),10 mM NacCl, 3 mM MgCl,, 0.1% Tween 20, 0.1% NP-40 substi-
tute, 0.01% digitonin and 1% bovine serum albumin (BSA)) was added
and mixed by pipetting ten times. Samples were thenincubated onice
for 3 min. Following lysis, 1 ml of chilled wash buffer (10 mM Tris-HCI
(pH 7.4),10 mM NaCl, 3 mM MgCl,, 0.1% Tween 20 and 1% BSA) was
added and mixed by pipetting. Nuclei were centrifuged at 500g for
5min at 4 °C, and the supernatant was removed without disrupting
the nuclei pellet. Based on the starting number of cells and assuming
a50% loss during the procedure, nuclei were resuspended into the
appropriate volume of chilled diluted Nuclei Buffer (10x Genomics)
to achieve a concentration of 925-2,300 nuclei per pl, suitable for a
target recovery of 3,000 nuclei. This combination of PBMC thawing
and nucleiisolation was used for all 10x samples (except mtscATAC-seq
protocols, vl.1 control runs and v1.1 Stl and v1.1 St2 samples) and all
HyDrop samples, but not for s3-ATAC and Bio-Rad ddSEQ samples. The
method of cell counting was performed differently depending on the
center of origin. For all samples generated in VIB, cells and nuclei were
counted usinga LUNA automated cell counter (Logos Biosystems). For
Stanford and Sanger samples, cells and nuclei were counted manually
using a hemocytometer. For all Bio-Rad ddSEQ and s3-ATAC and all
CNAG samples, cells and nuclei were counted using a TC20 cell counter
(Bio-Rad). For Broad samples and samples generated by the company
10x Genomics, cells and nuclei were counted using a Countess Il or 11
FL automated cell counter (Thermo Fisher).

10x ATAC v1 (short identifiers vl V1and v1 V2). PBMCs were thawed,
and nuclei wereisolated as described above. Two technical replicates
were generated on the same day starting from the same freshly thawed
nucleisuspension. scATAC-seq libraries were prepared according to the
Chromium Single Cell ATAC reagent kits v1.0 user guide (10x Genomics,

CG000001 Rev D). Briefly, the transposition reaction was prepared by
mixing the desired number of nuclei with ATAC Buffer (10x Genomics)
and ATAC Enzyme (10x Genomics) and incubated for 60 min at 37 °C;
4,590 nuclei were loaded with the goal of recovering 3,000 nuclei.
Nuclei were partitioned into Gel Bead-in-Emulsions (GEMs) by using
the Chromium Controller (Chip E). DNA linear amplification was then
performed by incubating the GEMs under the following thermal cycling
conditions: 72 °Cfor 5 min, 98 °Cfor30 sand 12 cycles of 98 °Cfor10s,
59 °C for 30 s and 72 °C for 1 min. GEMs were broken using Recovery
Agent (10x Genomics), and the resulting DNA was purified by sequen-
tial Dynabeads and SPRIselect reagent beads cleanups. Libraries were
indexed by PCR using a Single Index kit (Plate N) and incubating under
the following thermal cycling conditions: 98 °Cfor 45 sand tencycles
of98°Cfor20s, 67 °Cfor30 sand 72 °Cfor 20 swith a final extension
of 72 °C for 1 min. Sequencing libraries were subjected to a final bead
cleanup with SPRIselect reagent.

SamplesvlVland vlV2weresequenced onaNovaSeq 6000 using
a NovaSeq SP kit (100 cycles; 20028401, lllumina), and sequencing
was performed using the following read protocol: 50 cycles (read 1),
8cycles (i7indexread), 16 cycles (i5index read) and 49 cycles (read 2).

10x ATAC v1.1 (short identifiers v1.1 C1-v1.1 C3, v1.1 T1, v1.1 St1 and
v1.1 St2). PBMCs were thawed, and nuclei were isolated as described
above for samples v1.1 C1-v1.1C3 and v1.1 T1. For samples v1.1Stl and
v1.1St2, a different thawing/isolation protocol was used. Here, each
cryopreserved PBMC sample was thawed in 50 ml of thaw medium
(IMDM, 10% FBS and 200 Kunitz U ml™* DNase) preheated to 37 °C
andincubated for 15 min at 37 °C. DNase was ordered from Worthing-
ton Biochem (LS002007) and resuspended in HBSS at 20,000 U ml™*
(100x stock). Cells were pelleted at 300g (1,200 r.p.m.), resuspended
in 5 ml of thaw medium and layered over 5 ml of Ficoll in a 15-ml coni-
caltube. Cells were then spunat 500g (1,500 r.p.m.) with no brake for
30 minatroom temperature in a swinging-bucket centrifuge. 2 mL of
the mononuclear celllayer was collected and diluted with 10 ml of room
temperature PBS. Cells were put onice and maintained at 4 °Cuntil use.

Technical replicates were generated on the same day starting from
the same freshly thawed nuclei suspension. scATAC-seq libraries were
prepared according to the Chromium Single Cell ATAC reagent kit v1.1
user guide (10x Genomics, CGO00209 Rev D). Briefly, the transposi-
tion reaction was prepared by mixing the desired number of nuclei
with ATAC Buffer (10x Genomics) and ATAC Enzyme (10x Genomics)
and was then incubated for 60 min at 37 °C; 4,590 nuclei were loaded
with the goal of recovering 3,000 nuclei. For sample ‘10x v1.1V2’, 9,180
nucleiwereloaded instead of 4,590 due to acounting error. Nuclei were
partitioned into GEMs by using a Chromium Controller with Chip H.
DNA linear amplification was then performed by incubating the GEMs
under the following thermal cycling conditions: 72 °C for 5 min, 98 °C
for30sand12cyclesof 98 °Cfor10s,59 °Cfor30 sand 72 °C for1 min.
GEMs were broken using Recovery Agent (10x Genomics), and the
resulting DNA was purified by sequential Dynabeads and SPRIselect
reagent beads cleanups. Libraries were indexed by PCR using a Single
Index kit N set A (10x Genomics, PN-1000212) and incubated under
the following thermal cycling conditions: 98 °C for 45 sand ten cycles
of 98 °Cfor20s, 67 °Cfor 30 sand 72 °C for 20 s with a final extension
of 72 °C for 1 min. Sequencing libraries were subjected to a final bead
cleanup with SPRIselect reagent.

Samplesv1.1Stland vl.1St2 were sequenced on an Illumina Next-
Seq 500 machine using a high-output flow cell with 34 bp paired-end
reads. Samples v1.1 C1-v1.1 C3 and v1.1 T1 were sequenced on an Illu-
minaNovaSeq 6000 with the following sequencing conditions: 50 bp
(read 1), 8 bp (i7 index), 16 bp (i5index) and 49 bp (read 2).

10x ATAC v2 (short identifiers v2 V1,v2V2,v2T1,v2T2,v2 Cl1and
v2 C2). PBMCs were thawed, and nuclei were isolated as described
above. Technical replicates were generated on the same day starting
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from the same freshly thawed nucleisuspension. scATAC-seq libraries
were prepared according to the Chromium Single Cell ATAC reagent
kits v2 user guide (10x Genomics, CGO00496 Rev B). Briefly, the trans-
positionreaction was prepared by mixing the desired number of nuclei
with ATAC Buffer (10x Genomics) and ATAC Enzyme (10x Genomics)
and was then incubated for 30 min at 37 °C; 4,590 nuclei were loaded
with a goal of recovering 3,000 nuclei. Nuclei were partitioned into
GEMSs by using a Chromium Controller with Chip H. Sample v2 T1 was
the only sample for which Chromium X was used. DNA linear amplifi-
cation was then performed by incubating the GEMs under the follow-
ing thermal cycling conditions: 72 °C for 5min, 98 °C for 30 s and 12
cycles of 98 °C for 10 s, 59 °C for 30 s and 72 °C for 1 min. GEMs were
broken using Recovery Agent (10x Genomics), and the resulting DNA
was purified by sequential Dynabeads and SPRIselect reagent beads
cleanups. Libraries were indexed by PCR using a Single Index kit N set
Aandincubated under the following thermal cycling conditions: 98 °C
for 45 s and eight cycles of 98 °C for 20 s, 67 °C for 30 s and 72 °C for
20 swith afinal extension of 72 °C for 1 min. Sequencing libraries were
subjected to a final bead cleanup with SPRIselect reagent.

Samples v2 vl and v2 v2 were sequenced on an lllumina NextSeq
2000 under the following sequencing conditions: 50 bp (read 1), 8 bp
(i7 index), 16 bp (i5 index) and 50 bp (read 2). Samples v2 C1,v2 C2,v2
Tlandv2 T2 were sequenced onanlllumina NovaSeq 6000 under the
following sequencing conditions: 50 bp (read 1), 8 bp (i7 index), 16 bp
(i5index) and 49 bp (read 2).

10x multiome (short identifiers MO Sa1, MO Sa2, MO C1, MO C2, MO
V1and MO V2). PBMCs were thawed as described above. The isolation
of nucleiwasslightly different, including the use of RNase inhibitors to
ensure RNA quality. Briefly, two pools of cells (technical replicates) were
generated from the two donors by mixing 500,000 cells per donor,
totaling 1 million cells per pool. Cells were pelleted for 5 min at 300g
and 4 °Cand were washed twice in 1 ml of wash buffer (10 mM Tris-HCI
(pH7.4),10 mM NaCl, 3 mM MgCl,, 1% BSA, 0.1% Tween 20, 1mM DTT
and1U pl'RNaseinhibitor). After the second wash and final centrifu-
gation, cells were resuspended in 0.1 ml of chilled lysis buffer (10 mM
Tris-HCI (pH7.4),10 mM NaCl, 3 mM MgCl,, 0.1% Tween 20, 0.1% NP-40,
0.01% digitonin, 1% BSAand1 mM DTT) and incubated for 3 min onice.
Nuclei were washed three times in1 ml of wash buffer (10 mM Tris-HCI
(pH 7.4),10 mM NaCl, 3 mM MgCl,, 1% BSA, 0.1% Tween 20, 1mM DTT
and1U plRNase inhibitor) by centrifuging at 500g for 5 min.

After the last centrifugation, cells were resuspended in chilled
NucleiBuffer (1x Nuclei Buffer,1 mMDTT and 1 U pl ™ RNaseinhibitor)
calculated and loaded according to the Chromium Next GEM Single
Cell Multiome ATAC + GEX user guide (protocol CGOO0338 Rev A);
4,590 nuclei were loaded with the goal of recovering 3,000 nuclei.
For loading onto 10x chips, we sought to recover 3,000 nuclei. Fol-
lowing the isolation of nuclei and transposition, GEMs were gener-
ated using GEM ChipJ. GEM cleanup and preamplification PCR were
performed as per the user guide. For the ATAC-seq library, eight cycles
of PCRwere run, while seven cycles of PCR were performed for cDNA
amplification. Of the amplified cDNA, 25% of the material was used
for gene expression library construction with 15 cycles of PCR for
both technical replicates.

For samples MO Sal, MO Sa2, MO C1 and MO C2, ATAC libraries
were sequenced on an lllumina NovaSeq 6000 using the following
read protocol: 50 cycles (read 1), 8 cycles (i7 index read), 24 cycles
(i5indexread) and 49 cycles (read 2). ATAC libraries from MO V1 and
MO V2 were sequenced according to the same parameters but on a
NextSeq2000. For samples MO Sal, MO Sa2, MO Cland MO C2,RNA
libraries were sequenced on an Illumina NovaSeq 6000 using the fol-
lowing read protocol: 28 cycles (read 1), 10 cycles (i7 index read), 10
cycles (i5 index read) and 90 cycles (read 2). RNA libraries from MO
Vland MO V2 were sequenced according to the same parameters but
onaNextSeq2000.

10x mtscATAC (short identifiers mt M1, mt M2, mt C1, mt C2, mt*
Br1 and mt* Br2). Cryopreserved PBMCs were thawed as described
above. For samples mt* Brl and mt* Br2, cells were also washed, and
250,000 live cells were sorted using SytoxBlue at a1:1,000 dilution as
alive/dead cell stain. Samples mt M1, mt M2, mt C1and mt C2 were not
sorted. Cells from each donor were subsequently pooled ata 1:1ratio,
and, after washing, cells were fixed in1% formaldehyde (Thermo Fisher,
28906) in PBS for 10 min at room temperature, quenched with glycine
solution to a final concentration of 0.125 M and washed twice in PBS
via centrifugation at 400g for 5 min at 4 °C. Cells were subsequently
treated with lysis buffer (10 mM Tris-HCI (pH 7.4), 10 mM NaCl, 3 mM
MgCl,, 0.1% NP-40 and 1% BSA) for 3 min onice, followed by the addition
of 1 ml of chilled wash buffer and inversion (10 mM Tris-HCI (pH 7.4),
10 mM NacCl, 3 mM MgCl, and 1% BSA) before centrifugation at 500g
for5 minat4 °C. The supernatant was discarded, and cells were diluted
in 1x diluted Nuclei Buffer before counting using trypan blue and a
Countess Il FL automated cell counter. Subsequently, mtscATAC-seq
libraries were generated using the Chromium Next GEM Single Cell
ATAC Library & Gel Bead kit (v1.1,1000175) according to the manu-
facturer’s instructions (CG000209); 4,590 nuclei were loaded with
the goal of recovering 3,000 nuclei. Briefly, following tagmentation,
cellswere loaded onto a Chromium Controller Single Cell instrument
to generate single-cell GEMs, followed by linear PCR, as described in
the protocol using a C1000 Touch thermal cycler with the 96-Deep
Well Reaction Module (Bio-Rad). After breaking the GEMs, barcoded
tagmented DNA was purified and further amplified to enable sample
indexing (11 cycles of PCR) and enrichment of mtscATAC-seq libraries.
Thefinallibraries were quantified using a Qubit double-stranded DNA
high-sensitivity assay kit (Invitrogen) and a high-sensitivity DNA chip
run on a Bioanalyzer 2100 system (Agilent).

Samples mt Cland mt C2were sequenced on anIllluminaNovaSeq
6000 under the following sequencing conditions: 50 bp (read 1), 8 bp
(i7 index), 16 bp (i5 index) and 49 bp (read 2). Samples mt M1 and mt
M2 were sequenced onanIllumina NovaSeq 6000 under the following
sequencing conditions: 150 bp (read 1), 8 bp (i7 index), 16 bp (i5index)
and 150 bp (read 2). Samples mt* Brl and mt* Br2 were sequenced on
anllluminaNextseq 550 with paired-end reads (2 x 72 cycles), 8 cycles
forindex1and16 cycles forindex 2.

Bio-Rad SureCell ATAC (short identifiers ddS Bi1-ddS Bi4, ddS H1,
ddS H2, ddS U1 and ddS U2). Cryopreserved PBMCs were quickly
thawedinawaterbath at 37 °C, rinsed with culture medium (RPMI sup-
plemented with 15% FBS) and treated with 0.2 U pl” DNase I (Thermo
Fisher Scientific) in 5 ml of culture medium at 37 °C for 30 min. After
DNase I treatment, cells were washed once with medium and twice
with ice-cold 1x PBS supplemented with 0.1% BSA. Cells were then
filtered with a 35-um cell strainer (Corning), and cell viability and
concentration were measured with trypan blue on a TC20 automated
cell counter (Bio-Rad).

For a detailed description of tagmentation protocols and buffer
formulations, refer to the SureCell ATAC-Seq Library Prep kit user guide
(17004620, Bio-Rad). Collected cells and tagmentation buffers were
chilled onice. Lysis was performed simultaneously with tagmentation.
After washing, equal numbers of cells from each donor were mixed
with Whole-Cell Tagmentation Mix containing 0.1% Tween 20, 0.01%
digitoninand 1x PBS supplemented with 0.1% BSA, ATAC Tagmentation
Buffer and ATAC Tagmentation Enzyme (ATAC Tagmentation Buffer
and ATAC Tagmentation Enzyme are both included in the SureCell
ATAC-Seq Library Prep kit (17004620, Bio-Rad)). The mix was split
into two technical replicates, and cells were then mixed and agitated
on a ThermoMixer (5382000023, Eppendorf) for 30 min at 37 °C.
Tagmented cells were kept onice before encapsulation.

Tagmented cells were loaded onto a ddSEQ Single-Cell Isolator
(12004336, Bio-Rad). For samples ddS H1, ddSH2, ddS Ul and ddS U2,
5,000 nuclei were loaded with the goal of recovering 3,000 nuclei.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-023-01881-x

SscATAC-seq libraries were prepared using aSureCell ATAC-Seq Library
Prepkit (17004620, Bio-Rad) and SureCell ddSEQ Index kit (12009360,
Bio-Rad). Bead barcoding and sample indexing were performed ina
C1000 Touch thermal cycler with a 96-Deep Well Reaction Module
(1851197, Bio-Rad). The following PCR conditions were used: 37 °C for
30 min; 85 °C for 10 min; 72 °C for 5 min; 98 °C for 30 s; eight cycles
of 98 °C for 10 s, 55 °C for 30 s and 72 °C for 60 s and a single 72 °C
extension for 5 min to finish. Emulsions were broken, and products
were cleaned up using Ampure XP beads (A63880, Beckman Coulter).
Barcoded amplicons were further amplified using a C1000 Touch
thermal cycler with a 96-Deep Well Reaction Module. The following
PCR conditions were used: 98 °C for 30 s and seven cycles of 98 °C for
105, 55°C for 30 s and 72 °C for 60 s and a single 72 °C extension for
5 min to finish. PCR products were purified using Ampure XP beads
and quantified on an Agilent Bioanalyzer (G2939BA, Agilent) using a
high-sensitivity DNA kit (5067-4626, Agilent).

For samples ddS H1, ddS H2, ddS Bi3, ddS Bi4, ddS Uland ddS U2,
libraries were sequenced on a NextSeq 550 (SY-415-1002, lllumina)
using a NextSeq High-Outputkit (150 cycles; 20024907, lllumina) and
the following read protocol: 118 cycles (read 1), 8 cycles (i7 index) and
40 cycles (read 2). For ddS Bil and ddS Bi2, samples were sequenced
on a NovaSeq according to the same protocol. A custom sequencing
primer was required for read1(16005986, Bio-Rad; included in the kit).

HyDrop ATAC (short identifiers Hy E1-Hy E4, Hy V1, Hy V2 and Hy
C1-Hy C3). PBMCswere thawed, and nuclei were isolated as described
above. HyDrop was performed as previously described” but with an
updated barcoded hydrogel bead design and minor improvements
in nuclei handling. Briefly, barcoded hydrogel beads were produced
asdescribed previously but using 384 x 384 combinations of primers
instead of the original method using 96 x 96 x 96 combinations, result-
inginabarcode sequence of 30 bp instead of 50 bp. One million PBMCs
were counted, pelleted and resuspendedin 200 pl of ATAC Lysis Buffer
(1% BSA, 10 mM Tris-HCI (pH 7.5), 10 mM Nacl, 0.1% Tween 20, 0.1%
NP-40,3 mM MgCl,, 70 uM Pitstop in DMSO and 0.01% digitonin) for
Sminonice.One milliliter of ATAC Nuclei Wash Buffer (1% BSA,10 mM
Tris-HCI (pH 7.5), 0.1% Tween 20, 10 mM NaCl and 3 mM MgCl,) was
added, and nuclei were pelleted at 500g at 4 °C for 5 min. The result-
ing pellet was resuspended in 100 pl of ice-cold PBS and filtered with
a40-pm strainer (Flowmi); 25,000 PBMC nuclei were resuspended in
25 pl of ATAC Reaction Mix (10% dimethylformamide, 10% Tris-HCI (pH
7.4),5 mMMgCl,, 5 ng pl* Tn5, 70 pM Pitstop in DMSO, 0.1% Tween 20
and 0.01% digitonin) and incubated at 37 °C for 1 hwithout shaking. To
recover atarget of 3,000 nuclei, 5,625 tagmented nuclei were added to
48 pl of PCR mix (1.3x Phusion HF buffer, 15% OptiPrep,1.3 mM dNTPs,
39 mMDTT, 0.065 U pl ™ Phusion HF polymerase, 0.065 U pl ™ Deep Vent
polymerase and 0.013 U pl ™ ET SSB). PCR mix was coencapsulated with
35 pl of freshly thawed HyDrop ATAC beads in hydrofluoroether 7500
Novac oil with EA-008 surfactant (RAN Biotech) on an Onyx microfluid-
ics platform (Droplet Genomics). The resulting emulsion was collected
in aliquots of 25 pl in total volume and thermocycled according to
the linear amplification program (72 °C for 15 min; 98 °C for 3 min; 12
amplification cycles of 98 °Cfor10s, 63 °Cfor30 sand 72 °C for 1 min
and a final hold at 4 °C). One hundred and twenty-five microliters of
Recovery Agent (20% perfluorooctanol in hydrofluoroether 7500),
55 plof guanidinium thiocyanate buffer (5 Mguanidinium thiocyanate,
25 mM EDTA and 50 mM Tris-HCI (pH 7.4)) and 5 pl of 1M DTT were
addedtoeachseparate aliquot of 50 pl of thermocycled emulsion and
incubated onice for 5 min. Five microliters of Dynabeads was added to
theaqueous phase and incubated for 10 min. Dynabeads were pelleted
on aneodymium magnet and washed twice with 80% ethanol. Elution
was performedin 50 pl of elution buffer (10 mM Tris-HCI, pH 8.5) sup-
plemented with 10 mM DTT and 0.1% Tween 20. A 1x Ampure bead
purification was performed according to manufacturer’s recommenda-
tions. Elution was performed in 30 pl of elution buffer supplemented

with 10 mM DTT. Eluted library was further amplified in 100 pl of PCR
mix (1x KAPA HiFi,1 pMindexi7 primer and 1 pMindex 5 primer). The
final library was purified in a 0.4-1.2x double-sided Ampure purifica-
tion, eluted in 25 pl of elution buffer supplemented with 10 mM DTT
and quality controlled onan Agilent Bioanalyzer high-sensitivity chip
(Agilent Technologies).

Samples Hy V1, Hy V2 and Hy E1-Hy E4 were loaded at 750 pM on
a NextSeq 2000 using a NextSeq 2000 P2 kit (100 cycles; 20046811,
Illumina), and sequencing was performed using the following read
protocol: 49 cycles (read1),10 cycles (i7index read), 31 cycles (i5index
read) and 48 cycles (read 2). Samples Hy C1-Hy C3 were sequenced on
aNovaSeq 6000 using the same parameters.

s3-ATAC (short identifiers s3 O1 and s3 02). Samples s3 Ol and
s3 02 were generated on different days according to the following
protocol. Only sample s3 O1 was performed on the reference PBMC
sample of two donors. The PBMC pellet was thawed and suspended
in NIB-HEPES (pH 7.2; 10 mM HEPES-KOH (BP310-500 (Fisher Scien-
tific) and 1050121000 (Sigma-Aldrich), respectively), 10 mM NaCl,
3 mM MgCl, (Fisher Scientific, AC223210010), 0.1% (vol/vol) IGEPAL
CA-630 (Sigma-Aldrich,13021) and 0.1% (vol/vol) Tween (Sigma-Aldrich,
P-7949)) before Dounce homogenization. s3-ATAC was then performed
asdescribed previously”. Two plates were prepared for a total of 2,880
nuclei per sample. Briefly, nuclei were flow sorted viaaSony SH800 to
remove debris and attain an accurate count per well before PCR in 1x
TD buffer. Immediately following sorting completion, the plate was
sealed and centrifuged for 5 min at 500gand 4 °Cto ensure that nuclei
were within the buffer. Nucleosomes and remaining transposases were
thendenatured with the addition of 1 pul of 0.1% SDS (roughly 0.01% final
concentration) per well. Then, 4 pl of NPM (Nextera XT kit, [llumina)
per well was subsequently added to perform gap-fill on tagmented
genomic DNA, with an incubation at 72 °C for 10 min. Next, 1.5 pl of
1M A14-LNA-ME oligonucleotides was added to supply the template
for adapter switching. The polymerase-based adapter switching was
then performed under the following conditions: initial denaturation
at98°Cfor30sandtencyclesof 98 °Cfor10s,59 °Cfor20 sand 72 °C
for 10 s. The plate was then held at 10 °C. After adapter switching, 1%
(vol/vol) Triton X-100 in ultrapure water (Sigma, 93426) was added to
quench persisting SDS. The following was then combined per well for
PCR:16.5 pl of sample, 2.5 pl of indexed i7 primer at 10 pM, 2.5 pl of
indexed i5 primer at 10 uM, 3 pl of ultrapure water, 25 pl of NEBNext
Q5U 2x master mix (New England Biolabs, M0597S) and 0.5 pl of 100x
SYBR Green I (Thermo Scientific, S7563) for atotal of 50 pl of reaction
per well. Real-time PCR was performed on a Bio-Rad CFX under the
following conditions measuring SYBR fluorescence every cycle: 98 °C
for 30 s and 16-18 cycles of 98 °C for 10 s, 55 °C for 20 s and 72 °C for
30 s, fluorescent reading and 72 °Cfor 10 s. After fluorescence passed
an exponential growth and began to inflect, the samples were held at
72 °Cforanother 30 s and stored at 4 °C. Amplified libraries were then
cleaned by pooling 25 pl per well into a15-ml conical tube and cleaning
viaa QIAquick PCR purification column following the manufacturer’s
protocol (Qiagen, 28106). The pooled sample was eluted in 50 pl of
10 mM Tris-HCI (pH 8.0). Library molecules then went through size
selection via SPRI selection beads (Mag-Bind TotalPure NGS Omega
Biotek, M1378-01). Next, 50 pl of vortexed and fully suspended room
temperature SPRI beads was combined with the 50-pl library (one
cleanup) and incubated at room temperature for 5 min. The reaction
was thenplaced onamagneticrack, and, once cleared, the supernatant
was removed. The remaining pellet was rinsed twice with 100 pl of fresh
80% ethanol. After the ethanol was pipetted out, the tube was spun
down and placed back on the magnetic rack to remove any lingering
ethanol. Next, 31 pl of 10 mM Tris-HCI (pH 8.0) was used to resuspend
the beads off the magnetic rack, followed by an incubation for 5 min
at room temperature. The tube was again placed on the magnetic
rack, and, once cleared, the full volume of supernatant was moved
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to a clean tube. DNA was then quantified by Qubit double-stranded
DNA high-sensitivity assay following the manufacturer’s instructions
(Thermo Fisher, Q32851). Libraries were diluted to2 ng pl ™" and runon
anAgilent Tapestation 4150 D5000 tape (Agilent, 5067-5592). Library
molecule concentration within the range of 100 to 1,000 bp was then
used for final library dilution of 1 nM.

Samples s3 Oland s3 02 were sequenced on aNovaSeqS2 flow cell
following the manufacturer’srecommendations (Illumina, 20028315)
as paired-end libraries with 10 cycle index reads and 85 cycles (O1) or
90 cycles (02) forreads1and 2.

10x v1.1 control runs (short identifiers v1.1c C1 and v1.1c C2). Two
additional control runs were performed on the same day as v1.1 C3.
Control run vl.1c C1 was performed using the standard 10x nuclei
extraction lysis buffer with the omission of NP-40 to simulate the
whole-cell protocol used in Bio-Rad ddSEQ experiments. Control run
vl.1c C2 was performed using the Dounce homogenization protocol
as described in the s3-ATAC experiments but without FACS. Starting
from permeabilized cells or Dounce-extracted nuclei, both control runs
were performed exactly according to the standard 10x v1.1 protocol
simultaneously with vl.1C3.

Samplesvl.lc Cland vl.1lc C2were sequenced onaNovaSeq 6000
with 50 cycles for read 1, 49 cycles for read 2, 8 cycles for index 1and
16 cyclesforindex 2.

10x scRNA-seq. Cryopreserved PBMCs were thawed as described
above, and equal numbers of cells from each donor were mixed. The
cell mix was partitioned into GEMs by using the Chromium Control-
ler system (10x Genomics), with atarget recovery of 5,000 total cells.
We generated three technical replicates by loading three channels of
Chip G with the same cell mix. cDNA sequencing libraries were pre-
pared using the Next GEM Single Cell 3’ reagent kit v3.1 (10x Genomics,
PN-1000268), following the manufacturer’sinstructions. Briefly, after
GEM-RT cleanup, cDNA was amplified during 12 cycles, and cDNA qual-
ity control and quantification were performed on an Agilent Bioana-
lyzer high-sensitivity chip (Agilent Technologies). cDNA libraries were
indexed by PCR using the PN-220103 Chromium i7 Sample Index Plate.
Size distribution and concentration of 3’ cDNA libraries were verified
onanAgilent Bioanalyzer high-sensitivity chip (Agilent Technologies).

Sequencing of cDNA libraries was performed on an Illumina
NovaSeq 6000 using the following sequencing conditions to obtain
approximately 40,000 reads per cell: 28 bp (read 1), 8 bp (i7 index),
O bp (i5index) and 89 bp (read 2).

Data preprocessing

Unified scATAC-seq data analysis pipeline (PUMATAC). We devel-
oped PUMATAC, a unified Nextflow v21.04.3 (ref. 29) pipeline, to align
samples from multiple technologies to the reference genome and write
fragments files from these reference genome alignments (https://
github.com/aertslab/PUMATAC). The stepsimplemented in PUMATAC
are described briefly in the text below and in detail with examples at
https://github.com/aertslab/scATAC-seq_benchmark. All code neces-
sary to reproduce our analyses and graphics is present in notebooks
inthis repository.

Barcode correction and FASTQ processing (singlecelltoolkit in
PUMATAC). Each barcode was compared to the whitelist barcodes
and kept (with bam tag ‘CB’) if it was a perfect match or if changing
any of the bases by 1 bp resulted in a match (Hamming distance of 1).
Barcodes that were unable to be corrected were retained with the ‘CR’
bamtag. The barcode taginformation, including the original barcode
quality scores (‘CY’), was added to the comments field in each of the
two paired-end FASTQ files. Adapter trimming was then performed
using TrimGalore (version 0.6.6)*° with the ‘—paired’ option, whichin
turn runs Cutadapt®.

Reference genome alignment and fragments writing (bwa-mem
in PUMATAC). We first aligned full sequencing datasets of all samples
to the GRCh38 or mm10 reference genome using PUMATAC. We then
filtered cells (described later) and downsampled all sequencing data
toacommonsequencing depth of 40,796 reads per cell and realigned
these downsampled FASTQ files. In PUMATAC, alignment was per-
formed using bwa-mem2 (v2.2.1)** with the ‘mem’ method and default
mapping parameters. The -C’ option was used to copy the barcode tag
information from the FASTQ file to the resulting bam file. Read group
information was taken from the FASTQ namefieldin thefirstline of each
input file and added with the -R’ option in bwa-mem2. The ‘fixmate’
tool from SAMtools (version 1.12)* was used to add mate coordinates
andinsertsizestothefile. Reads were aligned to the GRCh38reference
for the PBMC samples and to mm10 for mouse public data. From the
resulting aligned reads in .bam format, fragments were written in the
bed-like fragments.tsv.gz format using a combination of SAMtools**
and AWK, according to the base pair shift rules described in the Cell-
Ranger manual (https://support.10xgenomics.com/single-cell-atac/
software/pipelines/latest/output/fragments).

Barcode multiplet detection (barcard in PUMATAC). For each sam-
ple, we detected barcode multiplets using barcard, our own reimple-
mentation of bap (https://github.com/caleblareau/bap). Similar to
bap, barcard subsets fragments files to barcodes associated with at
least1,000 unique fragments. For each remaining barcode, the number
of unique fragments that share their beginning and end coordinates
between the two barcodes divided by the total number of barcodes
found in both barcodes combined is calculated with every other bar-
code. TheJaccard indices for these barcode pairs are then ranked and
thresholded using Otsu’s algorithm to identify barcode multiplets.
Following the identification of barcode multiplets in each sample, a
newtag (‘DB’) wasadded tothe bam file to represent droplet barcodes.
This tag contained either the original corrected barcode from the CB
tag (in the case of singlets) or anunderscore-separated concatenation
of each corrected barcode that forms the multiplet. This step, and oth-
ers, was parallelized using GNU Parallel®. Similarly, fragments.tsv.gz
files were rewritten to merge detected barcode multiplets. While this
step is only necessary for Bio-Rad ddSEQ samples, we detected and
merged multipletsin all samples.

PUMATAC validation using CellRanger. We realigned all10x v1,v1.1,
v2and multiome datausing CellRanger-arc. We then subset fragments
files generated by CellRanger and PUMATAC onbarcodes identified as
cell barcodes. For each pair of barcodes, we then calculated the num-
ber of unique fragments that were attributed to that barcode by both
CellRanger and PUMATAC based on beginning and ending coordinates.
TheJaccard index was calculated based on this number.

Downstream analyses. Starting from the fragments files generated
by PUMATAC and merged using barcard, we then performed further
analyses such as clustering, cell-type annotation, differential region
calling and transcription factor motif analysis using a combination of
bioinformatics packages.

Single-cell-level quality control and barcode filtering (pycisTopic).
We used the Pythonimplementation of cisTopic' (pycisTopic; https://
github.com/aertslab/pycisTopic) to collect single-cell-level quality con-
trol statistics and filter barcodes starting from the PUMATAC fragments
files. For quality control purposes, we considered all barcodes with at
least ten unique fragments. We used the GRCh38 or mm10 BioMart**
gene annotation to calculate TSS enrichment. We followed the current
ENCODE recommendationsin calculating TSS enrichment by examin-
ingread depthina2,000-bp window on each side of the TSS (https://
www.encodeproject.org/data-standards/terms/#enrichment). Cells
were then filtered from barcodes using Otsu algorithm-defined
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thresholds on TSS enrichment and number of unique fragments per
cell. In the first pass, we counted fragments in SCREEN regions'®. This
count matrix was then used to annotate cells with known cell types,
after which consensus peaks could be called over all cell types present
(see later). We then used this consensus peak set to recount the frag-
ments and perform further downstream analyses in the second pass.

Donor identification (Freemuxlet in VSN/PUMATAC). We used Free-
muxlet to identify barcodes belonging to each of the two mixed indi-
viduals in each sample and simultaneously identify doublets on the
basis of barcodes with mixed genotypes. We first ran a prefiltering step
to filter the bam file for only the selected cells after the initial quality
control. We then used the popscle suite of tools (https://github.com/
statgen/popscle), first ‘dsc-pileup’ to quantify reads overlapping known
variants and then Freemuxletto callsample and doubletidentityin each
barcode. Freemuxlet requires a list of known variants in the genome
along with their allele frequencies. To obtain this, we used the 1000
Genomes Phase 3 dataset® and applied filtering steps to keep only SNPs
with aminor allele frequency of at least 10%. This step was automated
using VSN/PUMATAC™.

Doublet identification (Scrublet). We used the Python implementa-
tion of Scrublet” to identify doublets among the barcodes selected
based onthe fragments/regions count matrix during the initial quality
control steps. Doublet thresholds for each sample were set manually,
and doublets were removed for downstream analysis.

Sequencing depth downsampling (seqtk). After the initial quality
control steps to select cells, we identified the sample with the fewest
number of reads per cell and used this sample as the reference to which
the others were downsampled. After identifying the target number of
reads per cell in the reference sample (ddS Bi3, with 40,796 reads per
cell), each of the FASTQ files for the other samples were downsampled
tothatdepth. Downsampling was performed with seqtk (https://github.
com/lh3/seqtk, version 1.3-r106). The seed parameter (‘-s’) was set to
the same value for all files to ensure that the reads remained paired
across the paired-end and barcode files. Following downsampling
of each FASTQ file, the mapping procedure was repeated to produce
new downsampled fragments and bam files. This was repeated for
35,000,30,000, 25,000,20,000,15,000,10,000 and 5,000 reads per
cell,and these FASTQ files were further processed as described earlier
and later.

Cell-type identification (Seurat). Label transfer was performed using
anannotated PBMCreference dataset™ consisting of nine independent
technology types and batches. We used Seurat (v4.0.3) to perform the
label transfer steps in an R (v4.1.0) environment. Label transfer was
performed using methods outlined in the Seurat vignettes and asso-
ciated®. In brief, each of the nine already annotated PBMC reference
datasets was compared pairwise to find cells that serve as anchors
betweenthem and then used to generate anintegrated reference that
minimized technical differences.

For the scATAC-seq data, we used thisintegrated PBMC reference
to predict cell types. A gene activity matrix was first estimated, and
label transfer was performed by assigning query cells based on the
local neighborhood around each anchor in the integrated reference,
with the highest scoring cell type being assigned. Following prediction
of the scATAC-seq cell types, we refined these classifications by using
the clusters identified in the scATAC-seq data. Clustering was first
performed on cells withthe Leiden algorithm using a high resolution to
generate many fine-grained clusters. For each cluster, we then assigned
aconsensus cell-typeidentity to the entire cluster based on the majority
celltypeidentified by label transfer. In this way, the ATAC-based clusters
were labeled with the most likely cell type, while peak information was
retained for later analysis. Where multiple clusters existed for one cell

type, these were merged and used to generate cell-type-specific peak
setsin downstream steps.

Two-pass dimensionality reduction (pycisTopic). Fragments were
first counted in ENCODE SCREEN regions to generate a preliminary
count matrix. This count matrix was used to filter cells based on TSS
enrichment and number of unique fragments. The SCREEN regions
count matrix was then used totrain cisTopic’s latent Dirichlet allocation
models, and the model withan optimal number of topics was selected
as described in ref. 16. Based on Seurat cell-type identification and
high-resolution Leiden clustering, a consensus cell type was assigned
to each cell. Cell-type-specific peaks (see later) were called based on
these consensus cell types and aggregated into anew consensus peak
set. The fragments were recounted in this new peak set to generate a
consensus peak count matrix. This count matrix was used to retrain
cisTopic’s latent Dirichlet allocation models, and an optimal model
was chosen for the second pass and used to reduce the dimensionality
ofthe data.

Consensus peak calling (pycisTopic). In pyCisTopic, the ‘export_
pseudobulk’ function was used to create cell-type-specific fragments
and bigwig files using the consensus cell types. These were in turn
used to generate cell-type-specific consensus peaks for each sample
by recalling the subset of cells with MACS2 (ref. 23). Peak calling for
quality control purposes was performed using MACS2 with settings
specific to ATAC-seq experiments (‘genome_size = hs’, ‘shift = 73’,
‘ext_size =146’ and ‘q_value = 0.01'). We used ‘Version 2’ of the ENCODE
candidate cis-Regulatory Elements with blacklisted regions removed*®
(Supplementary Fig. 1b). These regions were used after the quality
control steps to create the cisTopic object, perform the first-pass
clustering and obtain consensus peaks. Duplicate rates were calcu-
lated for each barcode by dividing the number of unique fragments
by the total.

Cell-type-specific peak sets were generated for each sample. For
each sample, the cell-type-specific peak sets were then mergedintoa
final sample-specific consensus set. Each sample’s FRIP was calculated
using these final consensus peaks. The consensus sets of all 47 samples
were then merged into one master set, in which all data were counted
to form the merged datasets.

Region overlap calculation (HOMER). The mergePeaks function of
the HOMER suite (v4.11)*° with default parameters (adding -d given
-venn options) was used to find overlap between several region sets,
notably the overlap between consensus DARs and peaks recovered in
the merged cell-type fair set and in the individual cell-type fair sets.

DAR calling (pycisTopic). A Wilcoxon rank-sum test was used to calcu-
late significance of enrichment of regions (fold change) between each
specified contrast using cisTopic’simputed region accessibility based
on cell topic and topic region probabilities. We contrasted cell types
(type 1versus all), technologies (cells from cell type 1 from technique
Aversus cells from celltype 1from technique B) and donors (cells from
cell type 1 from donor A versus cells from cell type 1 from donor B).
Because high-quality samples produce many DARs that can skew the
distribution of DAR enrichment scores to lower numbers, we chose to
showthedistributions of the top 2,000 DARs for each cell type contrast
and the top 200 for male-female contrasts. For cell-type contrasts,
differential accessibility was thresholded at a minimum of 1.5% fold
change enrichment. For male/female contrasts, aminimum threshold
of 1.2x fold change enrichment was used.

Transcription factor motif enrichment analysis (cisTarget).
Cell-type-specific and male/female-specific DARs were analyzed for
transcription factor motifenrichmentusing cisTarget*** and standard
parameters and settings for the human genome.
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Price calculation and sequencing saturation. We calculated the
price of a hypothetical 5,000-cell experiment based on US list prices
for commercial methods and original manuscripts for open-source
methods as follows. The 10x scATAC-seq v2 assay was quoted as $1,750
for 48 Next Gem Chip H (1000161), $930 for 96 indices (1000212) and
$24,300 for 16 Chromium Next GEM Single Cell ATAC v2 (1000390)
for a weighted total of $1,565 per lane. For the 10x multiome assay,
the price was $1,750 for 48 Next Gem Chip ] (1000234), $930 for 96
indices (1000215) and $44,760 for 16 Chromium Next GEM Single Cell
Multiome ATAC + Gene Expression (1000283) for a weighted total of
$2,843 perlane. For Bio-Rad ddSEQ SureCell ATAC, the price was $8,800
for acomplete SureCell ATAC-Seq library prep kit (17004620), which
accommodates eight samples. For s3-ATAC, the cost per plateis -$200,
and each plate canaccommodate 1,440 cells. For HyDrop, the cost per
runis~$100 and can recover 8,000-10,000 cells.

Bio-Rad ddSEQ reports a doublet rate of 3.76% at a recovery of
5,000 cells (https://www.bio-rad.com/sites/default/files/webroot/
web/pdf/lsr/literature/ATAC-Seq_Poster.pdf). 10x Chromium sup-
ports a recovery of up to 10,000 cells but at a doublet rate of 8%. At
anexpected doublet rate of 4%, 5,000 cells can be recovered (https://
kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-m
aximum-number-of-cells-that-can-be-profiled-). HyDrop reports 6%
doublets on 8,000 recovered cells . These three microfluidic methods
use the same microfluidic concepts to encapsulate single cells, and
doublet rates are similar when correcting for the number of cells recov-
ered. We therefore reasoned that the most fair comparison would be
toassumearecovery of 5,000 cells per 10x and ddSEQ lane or HyDrop
run. For s3-ATAC, we assumed 1,440 cells per plate, for a total of 5,760
cellsacross four plates in s3-ATAC.

Full sequencing depth fragments files were subset to filtered cell
barcodes (before doublet filtering and minimum TSS enrichment
threshold, that is, only filtered by Otsu thresholding on minimum
number of reads). We then subsampled these fragments files using a
range of fractions and fitted aMichaelis—-Menten kinetic model on the
resulting duplication rate by the number of reads per cell. We defined
the saturation sequencing depth at which each technology is expected
toreach 50% duplicate fragments after sequencing.

scRNA-seq analysis (scanpy). After aligning scRNA-seq data to the
reference genome using CellRanger or CellRanger-arc, scanpy*® was
used to calculate single-cell quality control metrics for each sample.
True cells werefiltered from noise using Otsu-derived cutoffs on mini-
mum number of UMIs.

Public mouse brain data reanalysis. Public mouse scATAC-seq
data were downloaded from the following sources: 10x Genomics
SCATAC-seq v1.0 on Chromium (https://s3-us-west-2.amazonaws.
com/10x.files/samples/cell-atac/1.2.0/atac_vl_adult_brain_fresh_5k/
atac_vl_adult_brain_fresh_5k_fastgs.tar), 10x Genomics scCATAC-seq
v1.1 on Chromium (https://s3-us-west-2.amazonaws.com/10x.files/
samples/cell-atac/2.1.0/8k_mouse_cortex_ATACvlpl_nextgem_
Chromium_X/8k_mouse_cortex_ ATACvlpl_nextgem_Chromium_X_
fastqs.tar), 10x Genomics scATAC-seq v2 on Chromium X (https://
s3-us-west-2.amazonaws.com/10x.files/samples/cell-atac/2.1.0/8k_
mouse_cortex_ ATACv2_nextgem_Chromium_X/8k_mouse_cortex_
ATACv2_nextgem_Chromium_X_fastqs.tar), 10x Genomics SCATAC-seq
v2 on Chromium (https://s3-us-west-2.amazonaws.com/10x.files/
samples/cell-atac/2.1.0/8k_mouse_cortex_ATACv2_nextgem_Chro-
mium_Controller/8k_mouse_cortex ATACv2_nextgem_Chromium_
Controller_fastgs.tar), 10x Genomics Multiome ATAC (https://
s3-us-west-2.amazonaws.com/10x.files/samples/cell-arc/2.0.0/
el8_mouse_brain_fresh_5k/e18_mouse_brain_fresh_5k_fastqs.tar),
Bio-Rad ddSEQ (SRA accession number SRR14494477), s3-ATAC (SRA
accession number SRX10841853) and HyDrop (SRA accession number
PRJNA733185).

These data were reanalyzed in a similar manner as the PBMC
datasets. Briefly, cells were filtered from noise as described above. All
datasets were then downsampled to the highest common depth and
furtherintervals of 5,000 reads per cell. These downsampled sets were
realigned to the mm10 reference genome using PUMATAC and counted
inthe SCREEN regions. Cells were clustered, and per cluster peaks were
called and aggregated into a consensus peak set per sample. Datasets
were recounted in these consensus peak sets to produce the quality
metrics shown in our manuscript.

Reporting summary
Furtherinformation onresearch designisavailable inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Single-cell ATAC accessibility and gene expression data can be viewed
at https://scope.aertslab.org/#/scATAC-seq_Benchmark/scATAC-
seq_Benchmark. Single-cell ATAC coverage bigwigs and DAR/peak
BEDs can be downloaded at https://ucsctracks.aertslab.org/papers/
scatac_benchmark/ and viewed using University of California Santa
Cruz’s custom track hub. Sequencing data, fragments files and count
matrices are freely available at Gene Expression Omnibus under acces-
sionnumber GSE194028 (ref. 41). Summary quality metrics for all sam-
ples canbe foundin Supplementary Table 1. Source data are provided
with this paper.

Code availability

All data analysis scripts can be found at https://github.com/aertslab/
scATAC-seq_benchmark ref. 42. PUMATAC can be found at https://
github.com/aertslab/PUMATAC.
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seq_benchmark
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PUMATAC

PUMATAC uses the following packages:

seqtk version 1.3-r106
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ray 2.0.0
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scikit-image 0.19.3

scikit-learn 1.1.2

scipy 1.9.2

scrublet 0.2.3

seaborn 0.12.0

pycisTopic 1.0.1.dev21+g8aa75d8.d20221014

We also use R version 4.1.0. We only use Seurat v4.0.3. and its dependencies.

We also use the web version of cisTarget, which can be found here: https://gbiomed.kuleuven.be/apps/Icb/i-cisTarget/
For PUMATAC, Nextflow 21.04.03 was used.
We used HOMER (v4.11).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Single-cell ATAC accessibility and gene expression data can be viewed at https://scope.aertslab.org/#/scATAC-seq_Benchmark/scATAC-seq_Benchmark. Single-cell
ATAC coverage bigwigs and DAR/peak BEDs can be downloaded at https://ucsctracks.aertslab.org/papers/scatac_benchmark/ and viewed using UCSC’s custom
track hub. Sequencing data, fragments files and count matrices are freely available at GEO, under accession number GSE194028 (26). Summary quality metrics for
all samples can be found in Supplementary table 1.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not relevant to our study, since we do not attempt to draw biological conclusions pertaining to sex or gender. Rather, our
benchmark uses differences in chromatin accessibility between our male and female donor to validate each benchmarked
technology's ability to resolve such subtle differences. The terms "sex" and "gender" have not been confused in our
manuscript.

Reporting on race, ethnicity, or | Not relevant to our study, since we do not attempt to draw biological conclusions pertaining to sex or gender. Rather, our

other socially relevant benchmark uses differences in chromatin accessibility between our male and female donor to validate each benchmarked
groupings technology's ability to resolve such subtle differences.

Population characteristics Not relevant to our study, this information is unknown (2 anonymous, commercial PBMC donors were used).
Recruitment PBMC from 2 donors were purchased from AllCells.

Ethics oversight Only commercially available PBMC were used (AllCells)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Each center performed as many experimental replicates as feasible, and we aimed for at least 3
sets of 2 replicates per technology. This condition was achieved for all techniques except s3-ATAC (due to the low number of labs capable of
performing this protocol) and 10x v1.0 (since this kit has been surpassed by v1.1 and lately v2, and has been discontinued). We chose to
perform replicates to assess technical variability across experiments and to perform triplicates across center where a higher variance in
performance was expected. These sample sizes are sufficient for our study, since the Games-Howell test (which is more conservative than
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Bonferroni or Tukey tests) shows significance for the effects we discuss in our manuscript. Ideally we would have liked to include more s3-
ATAC samples, but the technique proved less robust/sensitive than we thought at the beginning of the study, so it was difficult to find more
labs both capable of and willing to perform this technology.

Data exclusions  No data generated for this study were excluded. Analysis scripts contain traces of PBMC Bio-Rad ddSEQ scATAC-seq samples that were
generated at CNAG, but not for the purpose of this study. These samples were candidate for inclusion in the study, but were not kept as their
cell counts were too low to qualify (700 cells only, and the design of our benchmark aimed for 3000 cells per sample).

Replication A total of 47 experiments were performed for this study. Across all samples, we performed 6 technical replicates for 10x v2, 2 for 10xv1, 6 for
10x v1.1 + 2 control runs with different sample preparation, 6 for 10x Multiome, 4 for mtscATAC-seq + 2 mtscATAC-seq + FACS experiments, 8
ddSEQ SureCell experiments, 2 s3-ATAC, and 9 for HyDrop. Sample preparation was standardized where possible (following the 10x
demonstated protocols for PBMC thawing and nuclei extraction, for example). We also performed control experiments for samples that did
not allow for this sample preparation (e.g Bio-Rad ddSEQ and s3-ATAC samples)

Randomization  We did not randomize the techniques across centres, as not all centres have the capabilities to perform all techniques. The original authors of
each technique were involved for all techniques to ensure that the most qualified operators were performing experiments, and we attempted
to incorporate as many techniques as possible across all the participating centres. For all techniques except s3-ATAC and 10x v1, at least 3
different centres were involved in performing experiments.

Blinding Blinding was not possible or practical for our study, since the technologies contain specific signatures in their data (e.g. barcode location and
whitelist). In theory, samples generated from the same technology, but in different centres, could have been blinded to the lead researcher

performing all analyses (FDR), but this would not be effective as all data was analysed on a running basis, and samples were added at several
time points during analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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