
Article https://doi.org/10.1038/s41467-023-40068-5

Robust phenotyping of highly multiplexed
tissue imaging data using pixel-level
clustering
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Sricharan Reddy Varra 1 & Michael Angelo 1

While technologies for multiplexed imaging have provided an unprecedented
understanding of tissue composition in health and disease, interpreting this
data remains a significant computational challenge. To understand the spatial
organization of tissue and how it relates to disease processes, imaging studies
typically focus on cell-level phenotypes. However, images can capture biolo-
gically important objects that are outside of cells, such as the extracellular
matrix. Here, we describe a pipeline, Pixie, that achieves robust and quanti-
tative annotation of pixel-level features using unsupervised clustering and
show its application across a variety of biological contexts and multiplexed
imaging platforms. Furthermore, current cell phenotyping strategies that rely
on unsupervised clustering can be labor intensive and require large amounts
of manual cluster adjustments. We demonstrate how pixel clusters that lie
within cells can be used to improve cell annotations. We comprehensively
evaluate pre-processing steps and parameter choices to optimize clustering
performance and quantify the reproducibility of our method. Importantly,
Pixie is open source and easily customizable through a user-friendly interface.

The advancement of multiplexed tissue imaging technologies over the
last few years has enabled the deep phenotyping of cells in their native
tissue context1–9. Investigating the relationship between tissue structure
and functionusingmultiplexed imaginghas led to important discoveries
in many fields, including cancer, infectious disease, autoimmunity, and
neurodegenerative disease10–17. As imaging studies continue to grow in
number and size, so does the need for robust computational methods
for analyzing these data. In most multiplexed imaging studies, cells are
the objects of interest that are quantified and investigated in down-
stream analyses. As such, development of methods for accurate cell
annotation is an active area of research18–21. Unlike assays that measure
dissociated single cells such as single-cell RNA-sequencing, imaging data
is not inherently measuring single cells and can capture substantial
information content outside of cells. These extracellular features can
have important biological functions. For example, the extracellular

matrix is increasingly being recognized as an important modulator of
the tissuemicroenvironment in cancer andother disease contexts22–25. In
addition, protein aggregates can form as extracellular deposits and have
been implicated in many neurological disorders26. These important
acellular objects are captured inmultiplexed images but are typically not
the focus in multiplexed imaging studies.

One important consideration when analyzing imaging data is that
the tissue sections that are captured in the images are two-dimensional
cross sections of complex three-dimensional objects. Depending on
the plane of tissue sectioning, what is observed in the images can be
highly variable (Supplementary Fig. 1a). For example, depending on if
the cell body or dendrites are in the plane of imaging, dendritic cell
markers can take on a typical round cellular shape or might only be
present as small spindle-like projections (Supplementary Fig. 1b).
While cell segmentationmethods for accurately defining the boundary
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of cells have recently been developed27–29, signal along the edges of
cells can be misassigned to neighboring cells, particularly in
dense tissues where cells are packed close together (Supplementary
Fig. 1c, d). Furthermore, cells that are elongated or shaped distinctly
from spherical cells, or anucleated cells, are difficult to capture using
cell segmentation (Supplementary Fig. 1e). Identifying phenotypes at
the pixel-level can address many of these issues that confound high-
dimensional image analysis.

Due to these challenges with analyzing multiplexed imaging data,
we developed a pipeline, Pixie, for the quantitative annotation of pixel-
level features that captures phenotypes independent of traditional cell
segmentation masks. We perform extensive evaluation of pre-
processing steps and parameter choices to optimize clustering per-
formance, as well as comprehensively assess stochasticity, an often-
ignored aspect of high-dimensional data analysismethods. In addition,
we show the application of Pixie across various tissue contexts and
imaging platforms, including mass-based, fluorescence-based, and
label-free technologies. Finally, we show how pixel clusters can be
utilized to improve the identification of cell phenotypes. Taken toge-
ther, Pixie is a complete pipeline for generating both pixel and cell-
level features that is scalable, cross-platform, and publicly accessible in
Jupyter notebooks that include user-friendly graphical user interfaces
(GUI) for cluster adjustment and annotation.

Results
Overview of pixel clustering using Pixie
We created a full pipeline, Pixie, for the generation of quantitative
pixel-level features from multiplexed images, with the goal of design-
ing a pragmatic workflow that balances automation and unbiased
analysis with human curation (Fig. 1). We aimed to create a robust and

scalable pipeline that is user-friendly and easily extensible. After a
multiplexed imaging dataset has been generated, the output is a series
of images, each corresponding to a different marker of interest. The
first step is to decide which markers to include in the clustering pro-
cess. Typically, phenotypic markers are included, while functional
markers that can be expressed across various cell types are excluded.
After the user has specified the subset of markers relevant for phe-
notyping, we perform a series of pre-processing steps, described in
detail below (Fig. 2a, Supplementary Fig. 2a). A common practice in
high-dimensional data analysis is to first cluster observations into a
large number of clusters (such as 100), thenmetacluster these clusters
into biologically relevant groups10–12,15,17,30. This allows for the capture
of rare phenotypes and more precise clusters. In Pixie, we use a self-
organizing map (SOM)31, an unsupervised clustering algorithm, to
cluster all pixels into a large number of clusters (typically 100). We
then combine these into metaclusters using consensus hierarchical
clustering. If necessary, the final clusters can be manually refined and
annotated with biologically relevant labels using a custom-built GUI in
Pixie (SupplementaryMovie 1). Thesephenotypes canbemappedback
to the original images and quantified in downstream analysis. Pixie is
publicly available as user-friendly Jupyter notebooks that perform all
pre-processing steps and clustering, starting frommultiplexed images
through generation of pixel phenotype maps, where the value of each
pixel corresponds to its pixel cluster.

Pixie captures the major immune phenotypes in lymph node
tissue
To test Pixie and optimize parameters, we used a dataset of lymph
nodes stained with a panel of immune markers (Supplementary
Table 1) and imaged using multiplexed ion beam imaging by

Fig. 1 | Pixie robustly captures pixel-level and cell-level phenotypes in multi-
plexed imaging datasets. After acquiring multiplexed images, single-pixel
expression profiles are extracted from the multi-channel imaging dataset and
clustered to identify pixel-level phenotypes. This method can be used to generate

quantitative, reproducible annotations not captured by traditional cell segmenta-
tion, and is cross-platform and applicable across a variety of biological contexts.
Finally, pixel-level phenotypes can be combined with traditional cell segmentation
to improve the annotation of cell-level phenotypes.
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Fig. 2 | Pixie identifies accurate and consistent pixel-level features in lymph
node tissue. a Overview of pixel clustering in Pixie. Individual pixels are clustered
using a self-organizing map (SOM) based on a set of phenotypic markers. The
clusters output by the SOM are metaclustered using consensus hierarchical clus-
tering. If necessary, users canmanually adjust themetaclusters, then annotate each
metacluster with its phenotype based on its expression profile using our easy-to-
use GUI. b Heatmap of mean marker expression of pixel cluster phenotypes for an
example dataset of lymph node samples. Expression values were z-scored for each

marker. c Multi-channel MIBI-TOF image of a representative field-of-view (FOV)
(left), the corresponding pixel phenotype map (middle), and representative insets
(right). Colors in the pixel phenotypemap correspond to the heatmap in (b). d The
FOV in C colored according to the cluster consistency score. e Distribution of
cluster consistency score across all pixels in the dataset. f Comparison of cluster
consistency score across different pre-processing steps. Boxplots show median as
the center and 25th and 75th percentiles as the bounds of the box. n = 12,515,748
pixels from 12 images. **** indicates p value < 2e-16 using a two-sidedWilcoxon test.
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time-of-flight (MIBI-TOF). In addition to T and B lymphocytes, lymph
nodes contain many dendritic cells, follicular dendritic cells (FDCs),
and macrophages that are difficult to capture using cell segmentation
(Supplementary Fig. 1b). Lymph nodes are also densely packed tissues,
which confounds cell phenotyping (Supplementary Fig. 1d). Therefore,
we chose this lymph node MIBI-TOF dataset for proof of principle to
evaluate our method.

Using Pixie, we were able to capture the major immune pheno-
types that would be expected in a lymph node (Fig. 2b).We found that
automated metaclustering was able to generate accurate features and
required only a small amount of manual adjustment (Supplementary
Fig. 2b). Importantly, we were able to capture more fine-grained fea-
tures at the pixel-level that are grouped together at the cell level. For
example, CD209 +CD206+ pixels clustered separately from CD163 +
CD206+pixels (Fig. 2b), whichwere all assigned tomacrophages at the
cell level (Fig. 5b, Supplementary Fig 16j). Mapping these pixel clusters
back to the original images, we can see that the pixel clusters accu-
rately recapitulate underlying spatial trends in protein expression
(Fig. 2c, Supplementary Fig. 3).We could clearly delineate the germinal
center, B cell follicle, and surrounding T cell zone in the lymph node
(Fig. 2c). Thus, we were able to quantify high dimensional phenotypes
at a pixel-level using Pixie.

Evaluating reproducibility
Many algorithms commonly used to analyze high-dimensional data-
sets—including unsupervised clustering methods and dimensionality
reduction techniques such as tSNE (t-distributed stochastic neighbor
embedding) and UMAP (uniform manifold approximation and pro-
jection)—are stochastic, meaning that there is randomness inherent to
the algorithms. Similarly, a SOM is stochastic. Therefore, running the
same method on the same dataset using a different random seed will
generate distinct results. Good clustering results that reflect true bio-
logical phenotypes should be reproducible across different random
initializations. Here, we evaluated the stochasticity of our pipeline and
defined a metric, which we termed the cluster consistency score, for
quantifying reproducibility (Methods). In an ideal situation, we would
simply evaluate how consistently pixels were assigned to the same
phenotype across replicates. However, like many unsupervised clus-
tering approaches, Pixie relies on manual annotation using expert
knowledge to assign each cluster to a phenotype. Given that this
process would need to be repeated for each replicate in each experi-
ment, direct evaluation of consistency in this manner would not be
feasible for large numbers of tests. The cluster consistency score
allows us to measure reproducibility in an automated way and quan-
titatively compare different parameter choices.

To calculate the cluster consistency score, we run pixel clustering
on the same dataset and the same parameters five times, each time
with a different random seed, then quantify how stable the cluster
assignments are for each pixel across replicate runs (Methods). The
cluster consistency score can be roughly interpreted as the number of
different clusters a given pixel was assigned to across replicates. Lower
scores indicate higher reproducibility, with a score of 1 being the best
possible score. A score of 1 would indicate that in all the replicates, the
same pixels were always grouped together in the same cluster. In
contrast, a high score indicates bad reproducibility, meaning that the
pixel was assigned to clusters that may have contained many other
pixel types. We calculated this cluster consistency score for each pixel
in the lymph node dataset (Fig. 2d, e), which had an overall cluster
consistency score of 2.07 ±0.32 (mean± SD). Despite the stochastic
nature of the algorithm, by viewing the pixel phenotype maps across
replicate runs,wecan see that themajority of pixel cluster assignments
were stable across replicates (Supplementary Fig. 4a), demonstrating
the reproducible nature of this method. Here, we developed a quan-
titative metric that can be used to assess the reproducibility of Pixie
across different parameter choices.

Optimization of Pixie for accurate pixel classification
When developing Pixie, we optimized a series of pre-processing steps
that leads to more accurate, reproducible pixel clustering results
(Supplementary Fig. 2a). First, we apply a Gaussian blur to the data.
Akin to dropout in single-cell RNA-sequencing data where genes are
not detected due to low amounts of mRNA in individual cells and
inefficient mRNA capture32, multiplexed images do not capture all of
the protein expressed in the tissue. Analogous to compensating for
dropouts, we use a Gaussian blur to smooth the signal to make the
distribution more reflective of the true underlying data. We assessed
four different standard deviations for the Gaussian blur and balanced
resolution of features and cluster consistency by visualizing the clus-
ters and evaluating the cluster consistency score (Supplementary
Fig. 5). We determined that a standard deviation of 2 was optimal, as it
resulted in good cluster definition (Supplementary Fig. 5a, b) aswell as
a low overall cluster consistency score with the smallest variance
(Supplementary Fig. 5c–e).

Next, we apply a pixel normalization step, in which for each
individual pixel, we divide the signal of eachmarker by the total signal
in that pixel, such that the sum total of that pixel is 1. The intuition
behind this step is that when performing phenotyping, we are inter-
ested in the ratio between the phenotypic markers. The absolute
intensity of pixels across images can be different, for example due to
biological differences (such as downregulation of T cell receptors
upon activation) or technical differences (such as drifts in instrument
sensitivity or variation in tissue fixation and staining). While the
underlying cause for the differences in intensity can be different, the
resulting differences in absolute intensity of individual pixels con-
founds the phenotyping. The ratio of marker expression within each
pixel contains the important phenotyping information. Without this
key pre-processing step, the results contained one dominating pixel
cluster that was poorly defined (low expressing for all the markers)
(Supplementary Fig. 6, 7). After pixel normalization, we apply a 99.9%
marker normalization step, where each marker is normalized by its
99.9th percentile value. When this step was excluded, the results
contained poorly defined clusters that expressed many markers
(Supplementary Fig. 8). Importantly, when either the pixel normal-
ization or the 99.9% marker normalization steps were excluded, the
cluster consistency score was significantly worse (Fig. 2f), indicating
that these pre-processing steps are vital for generating consistent
clusters.

Pixel-level data analysis can introduce significant computational
demands. When training a SOM, all the pixels must be read into
memory at the same time. For very large datasets, this is a computa-
tional bottleneck. To ensure that this approach is scalable, we wanted
to see if a subsampling approach could yield equally valid results. We
hypothesized that for large datasets, a random subset of pixels is a
representative sample and provides the SOMwith enough information
to generate accurate clusters. Using a large dataset of around 800
million total pixels33, we trained the SOMusing a random 10% subset of
pixels (Supplementary Fig. 11). We found that the results of sub-
sampling were highly concordant with the results from the whole
dataset, and the cluster consistency score was consistent as well.
Furthermore, we performed a similar subsampling experiment using a
cyclic immunofluorescence (CyCIF) whole-slide tonsil image (27,299
pixels × 20,045 pixels)34. Training with a 10% subset of pixels showed
highly concordant results to training with 100% of pixels (Supple-
mentary Fig. 12). In this whole-slide image, subsampling was able to
cover the data variation to generate similar clusters as training with all
pixels.Wehave shown that for large datasets, using a randomsubset of
pixels to train the SOM is more computationally efficient and leads to
concordant results. Therefore, this approach is scalable to large
datasets. Taken together, we optimized a set of pre-processing steps
and parameters for consistency, biological interpretability, and
scalability.
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Pixie captures extra-cellular information in multiplexed images
While cells are important features to annotate inmultiplexed images, a
large amount of information is captured outside of cells (Fig. 3). The
extracellular matrix (ECM), blood vessels, and extracellular protein
aggregates are examples of objects that can exist outside of the cel-
lular space. The biological relevanceof these objects can vary based on
tissue type and disease context. For example, in immune tissue such as
lymph nodes (Fig. 3a), cells are densely packed within the tissue and
therefore most pixels fall within cells. However, for ductal carcinoma
in situ (DCIS) or triple negative breast cancer (TNBC) that contain large
amounts of extracellular matrix and structural proteins (Fig. 3b, c),
pixel clustering is useful for generating a quantifiable metric for
extracellular features. For these tissue types, pixels that lie outside of
cells that express phenotypic markers make up a majority of the total
pixels in the image (Fig. 3d). Pixie assigns a phenotype to each of these
pixels, which can then be quantified and analyzed in downstream
analysis.

To demonstrate how these extracellular features can be quanti-
fied, we calculated the percentage of ECM in each image of the TNBC
dataset by dividing the number of pixels belonging to the ECM by the
total number of pixels (Supplementary Fig. 13c, d). By comparing with
MIBI-TOF images, we can see that the Pixie clusters capture different
amounts of ECM in the images.We also show that there is a differential
composition of ECM pixel clusters across the images. These quantifi-
cations can then be linked to various patient metadata in further
downstream analysis. Importantly, pixel clustering using Pixie allows
us to utilize a larger percentage of the pixels captured using multi-
plexed imaging technologies than cell-level analysis only.

Pixel-level features from Pixie are reproducible across replicate
MIBI-TOF runs
For multiplexed imaging approaches to be used in large translational
studies and eventually in clinical diagnostics, not only must the ima-
ging technology be robust, workflows for analyzing these datamust be
reproducible and accurate. In recent work by our group, we undertook
a validation study to demonstrate the reproducibility of MIBI-TOF in
which we assessed concordance across a dozen serial sections of a
tissue microarray (TMA) of 21 cores that consisted of disease-free
controls aswell asmultiple types of carcinomas, sarcomas, and central
nervous system lesions35. Here, we demonstrate the reproducibility of
Pixie on replicate serial sections (Supplementary Fig. 14a).

Using this pipeline, we clustered the pixels across all images into
12 phenotypes (Supplementary Fig. 14b). Because we had six serial
sections per tissue core in theTMA,wecouldassess the reproducibility
of Pixie by finding the correlation between serial sections of the same
tissue core. Because true biological replicates are not possible, we
compared serial sections of each tissue core as a proxy. As a result, we
would expect some true biological differences between serial sections.
Despite these differences, the overall Spearman correlation was high,
with R2 of 0.92 ± 0.03 (mean± SD) (Supplementary Fig. 14c), demon-
strating the reproducibility of pixel clustering using Pixie. This high
reproducibility was obtained despite the intensity differences across
experiments, showing that our normalization pipeline is robust to
technical variation and batch effects (Supplementary Fig. 14d). Here,
we show that despite differences in absolute pixel intensity, Pixie is
able to capture reproducible pixel phenotypes, demonstrating that
pixel clustering can generate biologically meaningful annotations
across entire cohorts.

Applications of Pixie across biological contexts and imaging
platforms
In one example, we used pixel-level analysis to capture biologically
meaningful phenotypes in the myoepithelial layer in DCIS. In previous
work, our group used MIBI-TOF to characterize the transition from
DCIS to invasive breast cancer (IBC) using a 37-plex panel11. DCIS is a

pre-invasive lesion that is itself not life-threatening, but if left
untreated, will progress to IBC in up to 50% of cases36. The myoe-
pithelial layer surrounding the ductal cells is an important histological
feature that is known to undergo transformations during the pro-
gression to IBC. Normal breastmyoepithelium is a thick, highly cellular
layer between the stroma and ductal cells. In DCIS, themyoepithelium
becomes stretched out in a thin layer with few, elongated cell bodies.
In IBC, complete loss of this layer is accompanied by local invasion of
tumor cells. Therefore, understanding the changes in ductal myoe-
pithelium may shed light on what drives the progression of DCIS to
IBC. Classical cell phenotyping strategies, which rely on detecting cells
with a strong nuclear signal and are often optimized for conventional
cell shapes, fail to capture the myoepithelial phenotype. To be able to
quantify features of this important histological region,weused Pixie to
identify discrete myoepithelial phenotypes (Fig. 4a). We identified
seven myoepithelial phenotypes that could be quantified and com-
pared across clinical subgroups: CK7+, CK5+, ECAD+, PanKRT+, VIM+,
CD44+, SMA+. Here, we used Pixie to quantify distinct phenotypes in a
small, but clinically relevant histological region that would not be
captured using classical cell segmentation.

Another setting in which analyzing high-dimensional images has
been challenging is in studies of the human brain. Studying the brain
has historically been difficult due to the strong inherent auto-
fluorescence of brain tissue, limiting the use of traditional
fluorescence-based imaging techniques. We used MIBI-TOF to image
neuronal and immune protein targets in the human brain37. Due to the
abnormal shapes of neuronal objects and the complex spatial con-
formations of features such as dendrites, cell bodies, and axons, clas-
sical cell segmentation techniques have limited efficacy, and detection
of neuronal objects is an ongoing area of research13. Using Pixie, we
were able tomap the full neuronal landscape of thehumancerebellum,
including neurons, axons, vessels, astrocytes, and microglia (Fig. 4b).
For example, NEFH (neurofilament heavy chain)-expressing gray mat-
ter axons could clearly be identified as a pixel cluster. Therefore, pixel
clustering using Pixie allows for the retention and classification of
pixels that are independent of cell segmentation masks and can be
used in downstream analysis, such as spatial analysis.

In addition, we applied Pixie to another human brain MIBI-TOF
dataset, of the human hippocampus (Supplementary Fig. 15)13. We
identified pixel cluster phenotypes corresponding to microglia,
astrocytes, neurons, oligodendrocytes, vasculature, and proteopathy.
Todemonstrate howpixel clusters can be used in quantitative analysis,
we quantified the total number of pixels of the identified Pixie clusters
out of the total pixels in expert-annotated regions of human hippo-
campus (Supplementary Fig. 15d). Wewere able to observe differential
pixel cluster composition across the hippocampal regions. For exam-
ple, the VGLUT1hiCD56loTaulo pixel cluster (light blue) was higher in the
CA1 region, reflecting the high number of excitatory synaptic terminals
in this area38. TheMFN2hiHH3hi pixel cluster (purple) was highest in the
dentate gyrus (DG), whichmay reflect amoremetabolically active state
of DG granular neurons39. MFN2-positive neurons were also identified
recently as a potential protective phenotype in the context of pro-
teopathy development13, demonstrating how Pixie can be used in
downstream analysis to discover biological insights.

To test the cross-platform compatibility of Pixie, we applied it to a
publicly available CODEX (co-detection by indexing) multiplexed
imaging dataset of colorectal cancer17. In contrast to MIBI-TOF which
usesmetal-labeled antibodies, CODEX is a fluorescence-basedmethod
and achieves multiplexing by using DNA-barcoded antibodies and
multiple cycles of imaging fluorescent nucleotides1. Pixel clustering
using Pixie enabled us to capture the major structural and phenotypic
features in the tissue, including vasculature, epithelia, lymphatics, and
immune cells (Fig. 4c). Because CODEX uses fluorescence imaging,
there are significant levels of autofluorescence in the images. By
including images of the empty cycles in the pixel clustering, we were
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Fig. 3 | Pixie captures more information in multiplexed images than cell seg-
mentation masks alone. Representative FOVs from (a) lymph node, (b) ductal
carcinoma in situ (DCIS), and (c) triple negative breast cancer (TNBC), showing
MIBI-TOF overlays (left) and pixel phenotype maps (right). Cells identified using
cell segmentation are overlaid on the pixel phenotype maps in gray. Colors of the

pixel phenotype maps correspond to the phenotypes indicated on the right.
dComparisonof the average fraction of quantifiedpixels (pixels thatwere included
in pixel clustering) that were outside of the cell segmentation masks across the
three datasets.
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able to ameliorate the effect of autofluorescence on the phenotyping
by defining an autofluorescence-specific cluster. Here, we have shown
the applicability of Pixie to fluorescence-based imaging approaches.

Furthermore, we applied Pixie to a previously published MALDI-
IMS (matrix-assisted laser desorption ionization-imaging mass spec-
trometry) dataset of pancreatic ductal adenocarcinoma40. MALDI-IMS

is a label-free imaging approach, meaning antibodies are not used to
target specific epitopes, and can be used to assess the distribution of
complex carbohydrates in tissue, typified by N-linked glycans de novo.
MALDI-IMS has been used to map N-glycan distribution across multi-
ple cancer types41–43. Unlike MIBI-TOF, CODEX, and other antibody-
based approaches,MALDI-IMSwas used tomap glycosylation patterns
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andnot protein expression in this dataset, so traditional image analysis
techniques that rely on detecting cellular objects are not applicable.
Here, we used pixel clustering in Pixie to annotate discrete phenotypes
in the tissue based on glycosylation patterns (Fig. 4d). Importantly, the
pixel clusters identified here were reflective of the tissue features that
weremanually identified in the original publication40. For example, the
pixel cluster localized to the center of the tissue, cluster 1 (purple-blue
cluster), corresponded to the necrotic region of the tissue as deter-
mined by H&E in the original publication. One of the defining glycans
in this pixel cluster was Hex6HexNAc5 (m/z 2028.7136), which was
identified in the original publication as being localized to necrotic
tissue. Similarly, adenocarcinoma and normal pancreatic regions were
captured using pixel clustering and were defined by glycans identified
in the original publication, such as Hex7dHex1HexNAc7 (m/z
2742.9831) and Hex6dHex1HexNAc5 (m/z 2174.7715), respectively.
Therefore, despite the fact that MALDI-IMS is a completely different
type of imaging technology that quantifies a different type ofmolecule
on different feature scales, Pixie was able to identify histologically
relevant features in an automated fashion, as well as identify glycans
that were commonly co-occurring. Through these case studies, we
have shown that pixel clustering can be useful across biological con-
texts and imaging platforms to capture pixel-level features indepen-
dent of cell segmentation masks.

Using pixel clusters to improve cell-level annotations in Pixie
Since cells are the building blocks of tissue, it is important to generate
accurate annotations of cells, in addition to the pixel features descri-
bed above. Development of methods for accurate cell annotations is
an active area of research18,19. The current paradigm for annotating
cells in images is to use unsupervised clustering, where the input fea-
tures are the sum of the expression of each marker for each cell, in a
manner similar to analysis offlowormass cytometry data1,10–12,15,17,44.We
rely on cell segmentation to generate accurate cell masks, then inte-
grate the expression of each marker within each cell mask to generate
the expression profile for each cell. However, as discussed above,
imaging data is not measuring dissociated single cells. Bright signal
present along the perimeter of a cell canbe inaccurately assigned to its
neighboring cells, particularly in dense tissue where the cells are
packed close together (Supplementary Fig. 1c, d). Therefore, cell
clusters using integrated expression values can have poor cluster
definition due to noisy signal. In this paradigm, clusters with poor
definition are usually manually inspected and compared against the
images,which is a time-consumingprocess.Often,manual gating steps
areneeded to identify cells that cannot be clustered using thismethod.
Therefore, cell phenotyping using the integrated expression of each
cell requires a significant amount of manual work to visually inspect
the images and adjust the clustering.

In Pixie, we use the pixel clusters resulting from the workflow
described above to improve cell classification. After generating single
cell masks using cell segmentation, instead of integrating the expres-
sion of each marker, we tabulate the number of pixels that belong to
each pixel cluster in each cell. The number of pixel clusters in each cell
is then used as the feature vector into a SOM, followed by consensus
hierarchical clustering andmanual cluster adjustment and annotation,
as described above for pixel clustering (Fig. 5a). We hypothesized that

this method would improve cell annotation because it quantifies dis-
cretized pixel phenotypes. When simply integrating the expression
over the cell, misassigned pixels could have a large impact on the
clustering, if their expression is very bright. Even though there may be
bright pixels fromaneighboring cell or from features such as dendrites
that seem like they are protruding into the cell in a 2D image, the
number of those pixels should be low. Because there should be few of
these pixels that are misassigned to the cell of interest, the real signal
should drive the clustering in this method. Furthermore, this method
also quantifies the degree of protein co-expression at a pixel-level,
which is information that is lost when integrating expression for
each cell.

To test cell clustering using Pixie, we used the lymph node dataset
described above. We compared the cell expression profiles from using
integrated expression and pixel composition for cell clustering
(Fig. 5b, c).Whenusing integrated expression,while themajor immune
phenotypes could be identified, there was one cluster that was unas-
signed, which was also the largest cluster (Supplementary Fig. 16c).
Under this paradigm, this unassigned cluster would usually require
manual comparisons with the images to determine the true pheno-
types of these cells. In comparison, there was no unassigned cluster
when using pixel composition to performcell clustering. Therefore, by
using pixel clusters to perform cell clustering in Pixie, we obtained cell
clusters with better cluster definition and less amount of manual
cluster adjustments, saving the researcher considerable time. Impor-
tantly, using pixel composition for cell clustering also resulted in sig-
nificantly higher Silhouette scores, which measures how well cells are
clustered with other cells that are similar, a commonly usedmetric for
evaluating clustering performance (Fig. 5d). Furthermore, the cluster
consistency score was lower when using pixel composition to perform
cell clustering (Supplementary Fig. 16d, e). Interestingly, after applying
the same preprocessing steps (i.e., Gaussian blur, pixel normalization,
99.9% normalization) to the images before data extraction followed by
clustering using integrated expression, clustering using pixel compo-
sition still resulted in a higher Silhouette score and lower cluster
consistency score (Supplementary Fig. 17). While there was no unas-
signed cluster that was lowly expressing for all markers using the
preprocessed data for integrated expression, thereweremany clusters
that expressed ambiguous combinations of markers that would need
to be further inspected (Supplementary Fig. 17a).

Upon closer inspection of the images, we can identify various
examples where using pixel composition to cluster cells in Pixie was
advantageous to using integrated expression (Fig. 5e). In the first
example, a cell was erroneously assigned as a CD8 T cell. The
neighboring cell had clear CD8 expression, and the CD8 signal from
this neighboring cell was confounding cell annotation. By using
pixel composition, the cell was correctly assigned as a CD4 T cell. In
the second example, a cell that had clear CD3 signal and was likely a
T cell was beingmisassigned as a CD163+macrophage, due to sparse
CD163 signal that could be due to a neighboring macrophage being
sectioned in 2D. Using pixel composition, this cell was assigned as a
T cell. In the third example, a cell that was unassigned when using
integrated expression, possibly due to noisy expression from
neighboring cells, was correctly assigned as a CD68+ macrophage
using pixel composition. Finally, in the fourth example, cells that

Fig. 4 | Applications of Pixie across imaging platforms and biological contexts.
a Pixel-level phenotyping using Pixie of themyoepithelial layer in ductal carcinoma
in situ (DCIS) imaged usingMIBI-TOF11. Heatmap of meanmarker expression of the
pixel clusters (left), MIBI-TOF overlay of a representative FOV (middle), and cor-
responding pixel phenotypemap and inset (right). In the pixel phenotypemap, the
black region represents the myoepithelial layer. b Identification of pixel-level
neuronal and immune features in MIBI-TOF images of the human cerebellum37.
Heatmap of mean marker expression of the pixel clusters (left), pixel phenotype
map of a tiled image of the cerebellum (middle), and comparison of an inset with

single-marker images (right). c Pixel clustering in a CODEX dataset of colorectal
cancer using Pixie17. Heatmapofmeanmarker expressionof the pixel clusters (left),
pixel phenotype map of a CODEX image (middle), and comparison of insets with
single-marker images (right). d Pixel-level annotation of a MALDI-IMS dataset of
pancreatic ductal adenocarcinoma using Pixie40. Heatmap of mean glycan expres-
sion of the pixel clusters (top). Expression values were z-scored for each marker.
The rows correspond to pixel clusters and columns correspond to glycans. Pixel
phenotype maps (colors correspond to the heatmap) and comparison with selec-
ted glycans (bottom).
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were unassigned when using integrated expression were assigned as
B cells and FDCs using pixel composition. Because B cells and FDCs
are closely packed and often interacting in a lymph node follicle, it
can be difficult to correctly assign phenotypes to these cells,
emphasizing the ability of Pixie to perform well on traditionally
challenging phenotypes.

While these examples demonstrate areas where Pixie is advanta-
geous, we could also identify examples where the accuracy of the Pixie
outputwas ambiguous (Supplementary Fig. 16h). In thefirst example, a
cell that looked like it had clear CD3 expression (and identified as a T

cell using integrated expression), also looked like it had CD20
expression, likely due to surrounding B cells, and therefore identified
as a B cell using pixel composition. In the second example, while the
CD20 expression was weak, the CD11c signal was strong (but more
punctate), which resulted in the cells being called as dendritic cells by
Pixie. Finally, there are cells in which the cells look positive for two
markers that are usually not co-expressed, and the two cell clustering
methodsdifferedon the cell phenotype, suchas in this exampleofCD4
and CD8. Taken together, while Pixie can offer advantages over the
classical cell phenotyping techniques that use integrated expression,
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there are still examples in which the annotation is ambiguous,
reflecting the difficulty of this task.

Since there is nowidely accepted gold standard dataset where the
cell phenotypes in an image are known, tomore thoroughly assess the
accuracy of cell clustering in Pixie, we created an expert-labeled
dataset, where we manually annotated 8068 cells across three MIBI-
TOF images (Supplementary Fig. 19). Comparing with this manually
annotated dataset, we showed that clustering using pixel composition
in Pixie resulted in a F1 score of 0.90, while clustering using integrated
expression resulted in a F1 score of 0.66. Therefore, Pixie out-
performed clustering using integrated expression when comparing
with human annotations.

In addition, we used Pixie to perform cell annotation of the TMA
dataset described in Supplementary Fig. 14, where we assessed the
concordance between serial sections of a TMA that was randomized
with respect to staining and imaging day. Using the pixel clusters
shown in Supplementary Fig. 14b, we classified cells into ten cell
phenotypes, then assessed concordance between serial sections by
calculating the average Spearman correlation between serial sections
of the same tissue core (Supplementary Fig. 21). Overall, the Spearman
correlation was high, with R2 of 0.93 ±0.05 (mean± SD). Similar to
pixel-level features, Pixie was able to capture reproducible cell phe-
notypes despite differences in absolute pixel intensity between ima-
ging runs (Supplementary Fig. 21d).

Here, we have shown the utility of pixel clusters for improving cell
phenotyping. By using pixel cluster composition to perform cell
clustering in Pixie, we obtain accurate cell clusters that require fewer
manual cluster adjustments than when using integrated expression.

Discussion
Here, we present Pixie, a complete pipeline for identifying pixel-level
and cell-level features from multiplexed imaging datasets and
demonstrate its utility across a variety of tissue types and imaging
platforms. Using an example dataset of lymph nodes imaged using
MIBI-TOF, we demonstrate the robustness of our method. We also
show applications of Pixie in DCIS and brainMIBI-TOF datasets, as well
as CyCIF, CODEX, andMALDI-IMS datasets. Finally, we show how pixel
clusters can be used to improve cell classification. Importantly, Pixie is
available as user-friendly Jupyter notebooks that perform all steps of
the pipeline and include a GUI for manual adjustment and annotation
of clusters.Our notebooks are open sourcecanbe easily customized to
each user’s requirements.

Using pixel clusters to annotate features in images has been pre-
viously performed in various contexts in multiplexed imaging as well
as spatial transcriptomics. In Gut et al., the authors also use a SOM to
cluster pixels in iterative indirect immunofluorescence imaging (4i)
images and relate these pixel features to cells, terming them Multi-
plexed Cell Units6,45. In spatial transcriptomics, pixel-level features
have been used to perform cell annotation and infer tissue
substructures46–49. Furthermore, in the spectral imaging field (e.g.,
mass spectrometry imaging), unsupervised pixel-level analysis has
been widely used because the resolution often does not enable single-

cell segmentation50. Here, we show that the same preprocessing steps
andpipeline that canbe used to identify features inmass spectrometry
imaging can also be used to identify subcellular and cellular features in
other imaging technologies. Taken together, these methods demon-
strate the utility of pixel-level analysis. Here, we build-upon this pre-
vious work by providing a comprehensive evaluation of the pre-
processing steps and parameter choices that optimize clustering per-
formance, show use cases across imaging platforms and biological
questions, and present a user-friendly pipeline for running this
method.

First, we illustrate the beneficial effect of each of the pre-
processing steps in the Pixie pipeline—Gaussian blurring, pixel nor-
malization, and 99.9% marker normalization. While we have deter-
mined an optimal parameter space for each of these pre-processing
steps using multiple datasets, these parameters may need to be tuned
for each individual dataset. For example, we determined a lower
Gaussian blur was appropriate when analyzing the smaller myoe-
pithelial area in DCIS and that no Gaussian blur was needed when
analyzing MALDI-IMS data. There are many other parameters of the
SOM that could be tuned, such as the learning rate, initialization of the
cluster centers, and distance function. We found that the default
parameters of the SOM (see Methods) worked well for all of our
example use cases captured using different technologies (i.e., MIBI-
TOF, CODEX, CyCIF, MALDI-IMS) and at different resolutions. How-
ever, if necessary, these could be easily changed in our pipeline. We
encourage users to visualize the resulting pixel clusters alongside
marker expression images to assess the best parameter choices for
their own datasets. Furthermore, while we have shown that a sub-
sampling approach for dataset sizes up to 800 million total pixels is
able to generate highly concordant clusters as training with the full
dataset, as the size of imaging datasets continue to grow, further
subsampling experiments may be necessary.

It is important to note that Pixie is intended for images that have
been pre-processed to remove as many imaging artifacts as possible.
Since imaging artifacts can be technology-specific, many imaging
technologies have developed platform-specific image pre-processing
pipelines1,51–53. Pixie is not intended for background subtraction or
noise removal, and is instead intended for the detection of acellular
and cellular objects from images with a high signal-to-noise ratio.
Furthermore, because of the pixel normalization step, Pixie cannot
detect phenotypes characterized by differential expression of the
same marker. To be able to detect phenotypes with differential
expression, one possibility is to do a second clustering step after Pixie.
For example, after identifying a CD4+ pixel cluster using Pixie, users
can do an additional clustering step on just the pixels within this pixel
cluster to identify a high and low population.

In Pixie, the user specifies the number of metaclusters for con-
sensus hierarchical clustering and can manually adjust these
metaclusters (Supplementary Fig. 2b). While there have been various
methods developed to computationally determine what the algorithm
predicts is the optimal number of metaclusters, we found that manual
inspection of the cluster expression profiles is a fast and accurate

Fig. 5 | Pixel clusters can be used to improve cell annotations in Pixie.
a Overview of cell-level phenotyping using pixel clusters. After pixel clusters have
been identified and annotated, the frequency of each pixel cluster within each cell
boundary (identified using cell segmentation) is used as the feature vector for cell
clustering. Cells are clustered using a SOM and clusters are metaclustered using
consensushierarchical clustering.Themetaclusters are thenmanually adjusted and
annotated by the user. b Using the same dataset as shown in Fig. 2, heatmap of
mean marker expression of cell phenotypes obtained from cell clustering using
integrated marker expression for each cell. Clusters were manually adjusted and
annotated. c Using the same dataset as displayed in Fig. 2 and in (b), heatmap of
mean pixel cluster frequency of cell phenotypes obtained fromcell clustering using
pixel cluster composition for each cell in Pixie, as outlined in (a). Clusters were

manually adjusted and annotated. Expression valueswere z-scored for eachmarker.
d Comparison of Silhouette score for cell clusters obtained using integrated
expression or pixel composition. Five replicates were performed for each method.
Redbar indicates the average Silhouette score. P valuewas determined using a two-
sided Wilcoxon test. n = 41,646 cells from 12 images. e Comparison of cell pheno-
type maps colored according to cell phenotypes obtained using either integrated
expression (left) or using pixel composition (middle), and a MIBI-TOF overlay
(right) for one representative FOV. Colors in the cell phenotype maps correspond
to the heatmaps in (b) and (c), respectively. Four representative examples of the
advantage of using pixel composition over integrated expression for cell clustering
(bottom).
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method for determining the number of relevant phenotypes. The
number of relevant phenotypes, although subjective, may vary based
on the biological question of interest and is best understood by the
researchers leading the study. For example, for a study that is focused
on granular subsets of myeloid cells, it may be important to stratify
populations that are expressing combinations of CD206, CD209,
CD163, CD68, CD14, and CD16 within the monocyte/macrophage
lineage. However, for another study that is interested in mapping the
general immune landscape, these markers may be grouped together
into the macrophage population. Analogous to human-in-the-loop
approaches in the fields of machine learning and artificial intelligence,
themanual annotation step allows us to utilize the biological expertise
of the user to improve the results more quickly. Furthermore, one of
the reasons that it has previously been difficult to manually adjust
clustering results is that there was no good way to manually interact
with the clustering outputs. Importantly, manual adjustments and
annotations can be easilymade using a custom-built GUI in our Jupyter
notebooks (Supplementary Movie 1).

While we used a SOM as the clustering algorithm in our pipeline,
there are many other unsupervised clustering algorithms that have
been developed for a similar purpose54–57. We chose to use a SOM
because it is accurate, fast, and scalable, which is particularly impor-
tant for thismethodbecausewe are clustering a large number of pixels
in which the number of observations can approach 1 billion. In con-
trast, the number of cells from single-cell RNA-sequencing or cyto-
metry by timeofflight (CyTOF) experiments areusually on the order of
thousands or millions. One popular clustering algorithm is the Leiden
algorithm, which is built upon the Louvain algorithm, both often used
in transcriptomic analysis and implemented in the popular Seurat
package58,59. PhenoGraph, another popular clustering algorithm, is a
graph-based method that identifies communities using Louvain. We
performed a time comparison of a SOM (implemented in FlowSOM),
Leiden (implemented in Seurat), and PhenoGraph (implemented in
Rphenograph) and observed that a SOM has the fastest runtime
(Supplementary Fig. 22). If the user wishes to use another clustering
algorithm, the modular nature of our code allows the clustering
algorithm to be easily replaced.

Additionally, we have shown that Pixie can quantify biologically
meaningful features that are not captured by traditional cell segmen-
tation across disease contexts and imaging platforms. In one example,
we used Pixie to define a clinically meaningful feature in DCIS that
could stratify patient groups. One of the defining features of DCIS is
that the myoepithelium becomes stretched out as the tumor cells
proliferate and expand. We found that normal breast myoepithelium
exists in a luminal, E-cadherin (ECAD)-positive phenotypic state, which
transitions to a more mesenchymal, vimentin-positive state in DCIS,
which aligns with an analogous shift in tumor cell differentiation. In
previouswork fromour group,webuilt a random forest classifier using
433 parameters for predicting which DCIS patients would progress to
IBC, including the pixel-level features11. Importantly, a high abundance
of the ECAD+ myoepithelium pixel cluster was the number one pre-
dictor of IBC recurrence in this study, highlighting the utility of this
pixel clustering method for discovering biological insights.

Lastly, we demonstrate the utility of using pixel clusters to
annotate cell-level features and show its improvement over using
integrated marker expression for cell annotation. While difficult to
quantify in an automated manner, in our group’s experience, using
pixel clusters to perform cell clustering requires fewer manual cluster
refinement steps. While we offer one improvement to the traditional
cell clustering methodology, there are many other algorithms that
have been developed to address similar problems. Reinforcement
Dynamic Spillover EliminAtion (REDSEA) improves cell assignments by
correcting for spillover signal at cell boundaries20. While the pixel
clustering method described here similarly accounts for spillover sig-
nal from neighboring cells, Pixie also accounts for pixels that may not

be at the cell boundary that are confounding accurate classification,
such as noisy pixels or pixels from objects actually not associated with
the cell of interest, such as dendrites from nearby cells or the extra-
cellular matrix. Furthermore, while Pixie relies on unsupervised clus-
tering, another class of algorithms that can perform cell type
assignment relies on feeding the algorithm prior knowledge18,19,21,47,60.
Astir is a probabilistic model that uses prior knowledge of marker
proteins to assign cells to cell types in multiplexed imaging datasets18.
Recently published algorithms, CELESTA and STELLAR, identify cell
types in multiplexed images by utilizing spatial information19,21. One of
the inputs of CELESTA is a user-defined cell type signature matrix and
STELLAR relies on annotated reference datasets. Methods that rely on
a priori knowledge limit the potential for discovery of cell states and
rely on an accurate reference list of marker expression. Although we
currently do not make use of the spatial location of pixels or cells for
performing phenotype annotation, this represents an exciting new
avenue for future work.

As the amount of multiplexed imaging datasets continues to
grow, automated, fast, and scalable approaches for analyzing these
data are needed. Pixie is a simple, fast method that can generate
quantitative annotations of features both independently and in con-
junction with cell segmentation that will enable the comprehensive
profiling of various tissues across health and disease.

Methods
Ethical statement
All samples were acquired, and all experiments were approved by
Institutional Review Board (IRB) protocol #46646 “Assessing Normal
Expression Patterns of Immune and Non-Immune Markers Across
Tissue Types With Multiplexed Ion Beam Imaging” at Stanford Uni-
versity. All experiments followed all relevant guidelines and
regulations.

Pixel clustering methodology
The pixel clustering method in Pixie is illustrated in Supplementary
Fig. 2a and described above. Single pixel expression profiles were
extracted from single-channel TIFs—all pixels from all fields-of-view
(FOVs) in adataset are run in aggregate. Pixels thathadzeroexpression
for all clustering markers were excluded. The data was then Gaussian
blurred with a standard deviation of 2 (unless otherwise noted), pixel
normalizedbydividing by the total pixel expression, and99.9%marker
normalized by dividing by each marker’s 99.9th percentile. The 99.9%
normalization step is necessary because markers that are system-
atically brighter would otherwise likely drive the clustering. By nor-
malizing all markers to their 99.9th percentile, markers have a more
even contribution to the clustering results. Next, we used a SOM to
cluster all pixels into 100 clusters. Unless otherwise noted in the
manuscript, we used the following parameters of the SOM for all
clustering: grid size = 10 × 10, start learning rate = 0.05, end learning
rate = 0.01, initialization function = random, distance function =
Euclidean, training passes = 10. Next, the mean expression profile of
each of the 100 clusters was determined, z-scored for each marker,
then z-scores were capped to amaximum value of 3. The clusters were
then metaclustered using consensus hierarchical clustering using the
z-scored expression values. Metaclusters were manually adjusted and
annotated using a custom-built GUI (Supplementary Movie 1). These
final phenotypes weremapped back to the original images to generate
pixel phenotype maps. To generate expression heatmaps, we calcu-
lated the mean expression for each cluster and found the z-score for
each marker.

All processingwas performedon aGoogle CloudCompute Engine
instance. The machine type, number of cores, and available memory
were adjusted based on the size of the dataset.

There are many parameters in the SOM that can be tuned. As
described above, Pixie uses a SOM to first overcluster the pixels, then
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metaclusters. For the lymph node dataset, we tested using a SOM to
directly cluster pixels into 15 clusters (Supplementary Fig. 9). This
resulted in poor pixel cluster definition for some clusters, as well as a
worse cluster consistency score, indicating that initial overclustering is
a critical step for accurate results. Furthermore, the number of passes
through the dataset that is used to train the SOM is another tunable
parameter. For this dataset, we compared training the SOM using 1
pass, 10 passes, and 100passes (Supplementary Fig. 10).We found that
10 passes were sufficient to achieve accurate clusters (Fig. 2b, c), and
that increasing the number of passes up to 100 did not change the
clustering results.

We also compared our unsupervised clustering method to image
thresholding using Otsu’s method. For the lymph node dataset, we
used Otsu’s method to classify each pixel as positive or negative for
each of the markers. We show that counting the number of positive
markers in each pixel leads to a very large number of possible phe-
notypes. For example, if using 16 markers, pixels that are defined by
one positive marker have 16 possible phenotypes (i.e., each of the
markers). However, pixels that are defined by three positive markers
(e.g., CD14 + CD11c + CD20+) have 473 total phenotypes, while pixels
that are defined by six positive markers (e.g., CD14 + CD4 +CD3 +
CD68 +CD8 +CD206+) have 991 total phenotypes (Supplementary
Fig. 20c). It is not trivial to assign each pixel to a small set of pheno-
types using thresholding. In contrast, the output of Pixie is a small,
defined set of phenotypes, where eachpixel is assigned to one of these
phenotypes.

Cell clustering methodology
Cell segmentation for all datasets was performed using the pre-trained
Mesmer segmentation model27. We used histone H3 as the nuclear
marker, and a combination of CD45, CD20, and HLA-II as the mem-
brane marker. For each cell in the image that was identified using
Mesmer, we counted the number of each pixel cluster in each cell. We
normalized these values by the total cell size and applied a 99.9%
feature normalization (features here were the pixel clusters). Cells
were then clustered using a SOM, and metaclustered using consensus
hierarchical clustering, analogously to pixel clustering as
described above.

In addition, we alsoperformed segmentation using a combination
of ilastik and CellProfiler as described previously (Supplementary
Fig. 18)52. We show that using these segmentationmasks, there is still a
large low-expressing unassigned cluster using integrated expression
for clustering. We also show that clustering using pixel composition
had a higher Silhouette score.

Cluster consistency score
To assess the stochasticity of Pixie, we created the cluster consistency
scoremetric. Acrossdifferent replicate runs of the same inputdata, the
same phenotype may be output as a different cluster number, so
assessing reproducibility by comparing the number of pixels belong-
ing to the same phenotype is not easily automated and instead
requires significant amounts of manual annotation. For example, the
pixel cluster that is defined by CD20 may be pixel cluster 1 in the first
run and pixel cluster 2 in the second run. Manual annotation of each
cluster is infeasible for large numbers of tests when assessing pre-
processing steps and different parameter choices. To measure repro-
ducibility quickly and quantitatively, we created the cluster con-
sistency score. Cluster consistency score is calculated as follows:
1. For one set of parameters, we run the entire pipeline using the

same input data five times, each time with a different random
seed. We call these replicates 1–5.

2. For each replicate, for each cluster, we quantify the minimum
number of clusters in another run that it takes to get to 95% of the
pixels in that cluster. For example, if there are 1000 pixels
belonging to cluster 1 of replicate 1, for these pixels, we count the

number of pixels in each cluster of replicate 2. We then rank this
count table and determine the minimum number of clusters in
replicate 2 it takes to get to 950 pixels in cluster 1 of replicate 1.

3. For a single replicate, we calculate this number in a pairwise
manner with all other replicates. For example, for replicate 1, we
calculate this number for replicate 1-replicate 2, replicate
1-replicate 3, replicate 1-replcate 4, replicate 1-replicate 5. These
numbers are averaged.

4. Steps 2 and 3 are repeated for each cluster in each replicate. The
result is that each pixel cluster in each replicate has a score
associated with it.

5. These scores are mapped back to the pixel assignments. For
example, if a pixel was assigned as pixel cluster 1 in replicate 1, the
corresponding score determined in the previous step is assigned
to that pixel. Each pixel is assigned 5 features, corresponding to
the score from each replicate. These five features are averaged for
each pixel, resulting in one score for each pixel.

See code for full implementation. A low score indicates good
reproducibility while a high score indicates bad reproducibility,
meaning that the pixel was assigned to clusters that may have con-
tainedmany other pixel types. At the cell level, the same paradigmwas
used, but instead of pixel clusters, we assessed cell clusters.

We selected 95% when calculating the cluster consistency score
because we determined that it was a good benchmark value. As
expected, lowering this threshold resulted in lower cluster consistency
scores, and raising this threshold resulted inhigher cluster consistency
scores (Supplementary Fig. 4b).

To demonstrate that the cluster consistency score calculated
using five replicates is a stable measurement, we performed 100 tests
of this calculation, where each test consisted of five replicates (Sup-
plementary Fig. 4f). Across the 100 tests, we found that the mean
cluster consistency score was 2.18 ± 0.12, showing that the mean
cluster consistency score was stable across the 100 tests.

While it is computationally prohibitive to compute the cluster
consistency score using a large number of replicates, to show an
example of the reliability of the cluster consistency score, we ran the
Gaussian blur standard deviation comparison using 100 replicates
(Supplementary Fig. 5e). As explained above, we perform pairwise
comparisons, so 100 replicates equates to 4950 comparisons. Com-
pared to the calculation done using five replicates, the conclusions are
the same when performing the calculation with 100 replicates. The
cluster consistency score was highest for no Gaussian blur, while a
Gaussian blur of 2 had a low cluster consistency score as well as the
smallest variance.

Benchmarking cluster consistency score with reference cell
datasets
To benchmark the cluster consistency score using high-dimensional
datasets that are commonly analyzed using stochastic methods, we
used two publicly available single cell datasets, a CyTOF dataset of
whole blood and single-cell RNA-sequencing dataset of peripheral
blood mononuclear cells (PBMCs) (Supplementary Fig. 4c–e)61,62.
Since imaging data is not inherently single cell, there can be spatial
overlap between neighboring cells (Supplementary Fig. 1c, d) and
can be confounded by segmentation inaccuracies. Pixels can also be
thought of as sparse samples of a whole cell, because it is only a
fraction of the total cell volume. Therefore, we would expect better
reproducibility for single-cell datasets generated using dissociated
single cells than for image-based features. Even for these single cell
datasets clustered using FlowSOM and Leiden respectively, the
cluster consistency score was above 1, showing that stochasticity is
an inherent feature of various unsupervised clustering algorithms
used in multi-dimensional data analysis that should be taken into
account.

Article https://doi.org/10.1038/s41467-023-40068-5

Nature Communications |         (2023) 14:4618 12



The CyTOF dataset contained 1,140,035 cells from whole blood
and was downloaded from: https://doi.org/10.5281/zenodo.3951613.
We randomly subsampled 5000 cells from the dataset and clustered
the cells into 100 clusters using FlowSOM and metaclustered into 15
metaclusters using consensus hierarchical clustering. The single-cell
RNA-sequencing dataset was downloaded from the Seurat tutorial
website. The Seurat dataset contained 2700 PBMCs and was down-
loaded from: https://cf.10xgenomics.com/samples/cell/pbmc3k/
pbmc3k_filtered_gene_bc_matrices.tar.gz. The data was processed as
outlined here: https://satijalab.org/seurat/articles/pbmc3k_tutorial.
html. The data were log normalized and the first 10 PCs from PCA
were used as the input features.We constructed a KNNgraph based on
the Euclidean distance in PCA space and used the Leiden algorithm to
cluster cells. For both CyTOF and RNA-seq datasets, the cluster con-
sistency score was calculated as outlined above.

Lymph node MIBI-TOF dataset
Lymph nodes from six individuals were imaged using a MIBI-TOF
instrument with a Hyperion ion source using 36 markers (Supple-
mentary Table 1)63. 12 FOVs were imaged at a field size of 500μm×
500μm at 1024 × 1024 pixels. All samples used in this study were
archival tissue and no tissue was acquired prospectively for this study.
Sex and genderwere not considered since the results are not impacted
by these variables.

Replicate serial section TMA dataset
The dataset assessing the reproducibility of TMA serial sections was
previously published in ref. 35. The dataset included 21 different tissue
cores, including various disease-free tissue, carcinomas, sarcomas, and
central nervous system lesions. 165 FOVs were imaged at a field size of
500μm×500μmat 1024 × 1024 pixels. The processed imaging data is
available at https://doi.org/10.5281/zenodo.5945388. Imaging para-
meters and pre-processing methodology (background subtraction,
denoising) are described in the manuscript. Pixel clustering and cell
clustering were performed as described above. Markers included in
the clustering are indicated in Supplementary Fig. 14b.

Decidua MIBI-TOF dataset
The decidua MIBI-TOF dataset was previously described in ref. 33. The
dataset contained 222 FOVs imaged at a field size of 800μm×800μm
at 2048 × 2048 pixels. The processed imaging data is available at
https://doi.org/10.5061/dryad.v15dv41zp. Imaging parameters and
pre-processing methodology (background subtraction, denoising) are
described in the manuscript. To compare the full dataset against a
subset dataset, we randomly subsampled 10% of the total number of
pixels for each replicate run. Subsequent steps (Gaussian blur, pixel
normalization, 99.9% marker normalization) were performed as
described above. Markers included in the clustering are indicated in
Supplementary Fig. 11a, b.

Tonsil CyCIF dataset
Thewhole-slide tonsil CyCIF dataset was previously described in ref. 34.
The whole slide image was 27,299 × 20,045 pixels. The data was
downloaded at https://www.synapse.org/#!Synapse:syn24849819/wiki/
608441. To compare the full dataset against a subset dataset, we ran-
domly subsampled 10% of the total number of pixels for each replicate
run. Subsequent steps (Gaussian blur, pixel normalization, 99.9% mar-
ker normalization) were performed as described above. Markers
included in the clustering are indicated in Supplementary Fig. 12a, b.

DCIS MIBI-TOF dataset
The DCIS MIBI-TOF dataset was previously published in ref. 11. The
dataset contained 168 FOVs imaged at a field size of 500 μm×
500 μm at 1024 × 1024 pixels. The processed imaging data is avail-
able at https://data.mendeley.com/datasets/d87vg86zd8/3. Imaging

parameters and pre-processing methodology (background sub-
traction, denoising) are described in the manuscript. Processing
steps (Gaussian blur, pixel normalization, 99.9% normalization)
were performed as described above. Markers included in the clus-
tering are indicated in Supplementary Fig. 13a.

For the myoepithelial analysis in Fig. 4a, masks of just the myoe-
pithelial zone were generated as described in the manuscript. Images
were first subset for pixels within the myoepithelial masks, then pixels
within themyoepitheliummaskwere further subset for pixels with SMA
expression >0. Upon inspecting clustering results for a few different
standard deviations (sigma) for the Gaussian blur, we determined that a
Gaussian blur of 1.5 was more appropriate for this use case, since we
were interested indiscretepixel features in a small histological regionof
the full image. Subsequent steps (pixel normalization, 99.9% marker
normalization) were performed as described above.

TNBC MIBI-TOF dataset
TNBC samples were imaged using a MIBI-TOF instrument. The dataset
used in this manuscript contained 31 FOVs imaged at a field size of
800μm×800μm at 2048 × 2048 pixels. Processing steps (Gaussian
blur, pixel normalization, 99.9% normalization) were performed as
described above. Markers included in the clustering are indicated in
Supplementary Fig. 13b.

To generate the manually labeled dataset for benchmarking cell
clustering, we selected three representative FOVs from the TNBC data-
set. For each cell, wemanually called each cell as positive or negative for
each marker using the QuPath software. A total of 8068 cells were
labeled for 21 markers. From these, we manually assigned each cell to a
cell phenotype.We used scikit-learn in Python to calculate the F1 scores.

TNBC data will be provided within a week upon request to the
corresponding author Michael Angelo (mangelo0@stanford.edu).

Cerebellum MIBI-TOF dataset
This dataset was described in ref. 37. Raw data was provided upon
request by Dr. Dunja Mrdjen and Dr. Sean Bendall. Human cerebellum
samples were imaged using a MIBI-TOF instrument. Each FOV was
700μm×700μm at 1024 × 1024 pixels, and 42 FOVs were tiled to
generate the final cerebellum image. Processing steps (Gaussian blur,
pixel normalization, 99.9% normalization) were performed as descri-
bed above. Markers included in the clustering are indicated in Fig. 4b.

Hippocampus MIBI-TOF dataset
The hippocampus MIBI-TOF dataset was previously published in
ref. 13. 196 FOVs imaged at a field size of 400μm×400μm were tiled
together to form an image of 11,264 pixels × 8704 pixels. The pro-
cessed imaging data is available at https://doi.org/10.25740/
tx581jb1992. Imaging parameters and pre-processing methodology
(background subtraction, denoising) are described in the manuscript.
Processing steps (Gaussian blur, pixel normalization, 99.9% normal-
ization) were performed as described above. Markers included in the
clustering are indicated in Supplementary Fig. 15b.

Colorectal cancer CODEX dataset
The CODEX dataset was previously published in ref. 17. The processed
imaging data was obtained from The Cancer Imaging Archive at
https://doi.org/10.7937/tcia.2020.fqn0-0326. We selected 20 repre-
sentative FOVs from CRC_TMA_A: reg012_X01_Y01_Z09,
reg039_X01_Y01_Z08, reg059_X01_Y01_Z11, reg046_X01_Y01_Z09,
reg015_X01_Y01_Z08, reg052_X01_Y01_Z09, reg047_X01_Y01_Z08,
reg027_X01_Y01_Z09, reg035_X01_Y01_Z09, reg018_X01_Y01_Z09,
reg042_X01_Y01_Z08, reg041_X01_Y01_Z09, reg069_X01_Y01_Z09,
reg063_X01_Y01_Z08, reg068_X01_Y01_Z09, reg024_X01_Y01_Z09,
reg019_X01_Y01_Z09, reg064_X01_Y01_Z10, reg061_X01_Y01_Z10,
reg045_X01_Y01_Z10. Images were 1440 pixels × 1920 pixels. Proces-
sing steps (Gaussian blur, pixel normalization, 99.9% normalization)
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were performed as described above. In addition to the markers indi-
cated in Fig. 4c, empty cycle TIFs were also included in the clustering.

Pancreatic ductal adenocarcinoma MALDI-IMS dataset
TheMALDI-IMSdatasetwaspreviously published in ref. 40. RawMALDI-
IMS data (corresponding to Fig. 3 in the original publication) was pro-
vided upon request byDr. RichardDrake. Datawas provided asmis, bak
and tsf files, which were imported into SCiLs Lab 2022a imaging soft-
ware. In SCiLs Lab, N-glycan spectra were normalized by total ion count
and converted to vendor-neutral imzML format64. The imzML and ibd
files were parsed using pyimzML in Python, and the expression at each
m/z peak was extracted as single-channel TIF images corresponding to
each extracted m/z peak. The images were 670 pixels × 438 pixels.
These m/z peaks were then mapped to glycans by accurate mass as
annotated in the original paper. These single-channel TIFs were then
processed and clustered as described above for single-markerMIBI-TOF
images. Upon inspecting clustering results for a few different standard
deviations (sigma) for the Gaussian blur, we determined that no Gaus-
sian blur was necessary for pixel clustering of MALDI-IMS data. This is
expected because MALDI-IMS data is lower resolution than MIBI-TOF
data. Subsequent steps were performed as described above.

Visualization
Plots were created using the ggplot2 and pheatmap R packages and
the matplotlib Python package. Schematic representations were cre-
ated with premium Biorender (https://biorender.io/). Figures were
prepared in Adobe Photoshop and Adobe Illustrator.

Statistics and reproducibility
Datasetswere chosen to represent awide range of tissue types, disease
states, and imaging technologies. No statistical method was used to
predetermine sample size. No data were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study and source data have been depos-
ited in Zenodo at https://doi.org/10.5281/zenodo.8118725. Publicly
available datasets used in this study are: Replicate serial sectionMIBI-
TOF dataset35: https://doi.org/10.5281/zenodo.5945388. Decidua
MIBI-TOF dataset:33 https://doi.org/10.5061/dryad.v15dv41zp. Tonsil
CyCIF dataset34: https://www.synapse.org/#!Synapse:syn24849819/
wiki/608441. DCIS MIBI-TOF dataset11: https://data.mendeley.com/
datasets/d87vg86zd8/3. Hippocampus MIBI-TOF dataset13: https://
doi.org/10.25740/tx581jb1992. Colorectal cancer CODEX dataset17

https://doi.org/10.7937/tcia.2020.fqn0-0326. TNBC data will be
provided within a week upon request to the corresponding author
Michael Angelo (mangelo0@stanford.edu).

Code availability
User-friendly Jupyter notebooks for running Pixie are available at
https://github.com/angelolab/pixie. The code used to generate the
figures is available at https://github.com/angelolab/publications/tree/
main/2022-Liu_etal_Pixie and also deposited on Zenodo at https://doi.
org/10.5281/zenodo.809793365.
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