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INTRODUCTION: Helicobacter pylori colonizes the human stomach. Infection causes chronic gastritis and increases the

risk of gastroduodenal ulcer and gastric cancer. Its chronic colonization in the stomach triggers aberrant

epithelial and inflammatory signals that are also associated with systemic alterations.

METHODS: Using a PheWAS analysis in more than 8,000 participants in the community-based UK Biobank, we

explored the association of H. pylori positivity with gastric and extragastric disease and mortality in a

European country.

RESULTS: Along with well-established gastric diseases, we dominantly found overrepresented cardiovascular,

respiratory, andmetabolicdisorders.Usingmultivariate analysis, theoverallmortality ofH.pylori–positive
participants was not altered, while the respiratory and Coronovirus 2019–associatedmortality increased.

Lipidomic analysis for H. pylori–positive participants revealed a dyslipidemic profile with reduced high-

density lipoprotein cholesterol and omega-3 fatty acids, which may represent a causative link between

infection, systemic inflammation, and disease.

DISCUSSION: Our study of H. pylori positivity demonstrates that it plays an organ- and disease entity–specific role in

the development of human disease and highlights the importance of further research into the systemic

effects of H. pylori infection.
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INTRODUCTION
Helicobacter pylori is a human pathogen that chronically colo-
nizes the stomach of approximately the half of the world’s pop-
ulation. Infection with Helicobacter sp. usually occurs during
childhood and persists for decades. Infection is linked to various
gastric disorders. While infection causes gastritis, it remains
asymptomatic in most individuals. However, approximately 5%
of individuals with H. pylori develop gastric or duodenal ulcers,
and approximately 1% develop gastric cancer, with infection
being the most relevant risk factor for both (1–3).

While the long-known epidemiologic association ofH. pylori
with gastric diseases is well established, novel findings on in-
duction of chronic inflammation and changes in gastric (stem)
cell physiology due to infection raise the question whether in-
fection may also be associated with systemic alterations and
development of extragastric diseases. Indeed, several disorders

have been linked to H. pylori infection, and eradication is sug-
gested in individuals with several extragastric disorders such as
unexplained iron deficiency anemia (IDA) and immune
thrombocytopenia. However, results are heterogenous, and re-
sponse to eradication is higher in countries with high H. pylori
prevalence in the background population. In patients with IDA,
main benefits for eradication are achieved in children in contrast
to adults, while for immune thrombocytopenia, the evidence is
less compelling for children and benefits are achieved in adults
(2,4,5). An association with cardiovascular diseases has also
been previously suggested, although the strength of this asso-
ciation is controversial and a definite mechanistic explanation is
missing (6,7).

Using the well-characterized, community-based UK Biobank
(UKB) that comprises a large dataset of directly measured anti–
H.pylori antibodies in serum samples consisting of more than
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9,000 participants, we analyzed overall and disease-specific
morbidity in a country with rather medium prevalence of
H. pylori up to 40% (8). To this end, we explored the associa-
tion betweenH. pylori positivity at baseline and 457 PheCodes,
available in the dataset over the threshold of 5 observations per
PheCode. This approach demonstrates thatH. pylori positivity
predisposes to specific organ dysfunctions including well-
established gastric diseases, anemia, and various cardiovas-
cular and respiratory disorders. Because cardiometabolic
diseases were among the strongest associations with H. pylori
positivity, we analyzed 143 metabolites measured at the same
time as the H. pylori test was performed and analyzed their
association withH. pylori positivity, mortality, and morbidity.
H. pylori positivity was associated with lower levels of sphin-
gomyelins, total esterified cholesterol, docosahexaenoic acid,
large and very large high-density lipoprotein (HDL), and
smaller average HDL diameter.

METHODS
Study cohort

The UKB is a community-based cohort study conducted in the
United Kingdom at 22 participating centers. The baseline ex-
aminations were conducted from 2006 to 2010 and recruited
502,505 volunteers aged 37–73 years. All participants gave in-
formed consent for data linkage to medical reports. At the
baseline assessment (2006–2010), the participants provided
demographic and physical measures. Ongoing inpatient hos-
pital records beginning in 1996 were used to identify diagnoses
according to International Classification of Diseases 9th and
10th edition (ICD-10 and ICD-9) codes. All reported ICD codes
were assigned to the respective date of their first diagnosis.

TheUKB receives death notifications (age at death and primary
ICD diagnosis that led to death) through linkage to national death
registries. End of follow-up was defined as death or end of hospital
inpatient data collection in January 2023. Causes of death included
all malignancies (C00–C97), cardiovascular diseases (I00–I99),
respiratory diseases (J00–J99), nonmalignant digestive diseases
(K00–K93), and COVID-19 (U0). This research has been con-
ductedusing theUKBResource underApplicationNumber 71300.

Case definition

In a subset of UKB participants, seropositivity status of 20
pathogens was measured in a pilot study using multiplex se-
rology (9,10). H. pylori positivity is defined as 2 or more
positive antibodies against the following antigens (with the
following cutoff values): antigen VacA .100, antigen outer
membrane protein .170, antigen GroEL .80, antigen Cata-
lase .180, and antigen UreA .130 (UKB datafield 23074).
The descriptive statistics of this cohort are summarized in
Supplementary Table 1 (see Supplementary Digital Content,
http://links.lww.com/CTG/A973)

Propensity score matching

Propensity score matching was applied using the PsmPy (0.3.13,
(11)) python package (python $3.7). After logistic regression–
based propensity score with k-nearest neighbor (k-NN) alloca-
tion, 2 iterations were performed, resulting in a 2:1 balance of
controls over cases and a reduced standardizedmean effect size by
variable shown in Figure 1 and summarized in Table 1. The
propensity score was estimated using age, sex, body mass index
(BMI), ethnic background, and socioeconomic status (Townsend

deprivation index) at baseline as predictive covariates in the re-
gression. In total, 8,898 cases were enrolled in further regressions
(See Supplementary Figure 1, Supplementary Digital Content,
http://links.lww.com/CTG/A973).

PheWAS analysis

We performed a phenome-wide association study (PheWAS).
The coding for clinical diagnoses in our dataset followed the
ICD-10 and ICD-9 coding systems. The ICD is a list of codes for
diseases, symptoms, findings, and injuries. Most of the world’s
health expenditures are allocated with ICD (12). For each
study subject, ICD codes from the electronic health record
diagnoses throughout the study period were collated and du-
plicates removed. We converted the ICD codes of the 8,898
enrolled participants into 457 associated PheCodes using the
pyPheWAS package (13). PheCodes are manually compiled
groups of ICD codes used to characterize and scale clinically
relevant conditions with wide ranges of diagnoses or symptoms
and were created to enable PheWAS (14). PheCodes are main-
tained by the Center for Precision Medicine at Vanderbilt
University Medical Center and are available at https://www.
phewascatalog.org/phecodes. A series of case-control tests was
performed by fitting multiple logistic regression models, 1 for
every PheCode of interest. The influence of the analyzed Phe-
Code was then determined through evaluating the beta and
testing for statistical significance. To further reduce the in-
fluence of age, sex, BMI, self-reported ethnic background, and
socioeconomic status after propensity score matching, they
were used as “constant” covariates in every regression (13). We
analyzed PheCodes from the following 7 disease groups: di-
gestive, respiratory, neoplasms, infections, circulatory, hema-
topoietic, endocrine/metabolic.

In total, 457 PheCodes were analyzed (See Supplementary
Table 2, Supplementary Digital Content, http://links.lww.com/
CTG/A973).

Metabolomics

To further dissect the metabolic effects of H. pylori positivity, we
analyzed 143 metabolites that were measured through nuclear
magnetic resonance spectroscopy in a subset of 1.436 H. pylori–
negative participants and 677 H. pylori–positive participants (See
Supplementary Table 3, Supplementary Digital Content, http://
links.lww.com/CTG/A973). Details on measurements through
nuclear magnetic resonance can be accessed here: https://biobank.
ndph.ox.ac.uk/showcase/ukb/docs/nmrm_companion_doc.pdf.

Statistical analysis

All continuous variables were analyzed by unpaired, 2-tailed
t tests or the Mann-Whitney U test and by an appropriate mul-
tivariablemodel. The results are presented asmean6 SD (normal
distribution) or median [IQR] (non-normal distribution). All
categorical variables were displayed as relative (%) frequencies,
and the corresponding contingency tables were analyzed using
the x2 test. Odds ratios/hazard ratios (ORs/HRs) were presented
with their corresponding 95% confidence intervals (CIs) given in
brackets. HRs were calculated using Cox proportional hazard
regression models. Multivariable logistic regression was per-
formed to test for independent associations. The PheWAS anal-
ysis was performed using the “pyPheWAS” python package
(15). Differences were statistically significant when P , 0.05.
For PheWAS analyses, an false discovery rate-adjusted
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significance level of P #0.0038 was calculated using the imple-
mented false discovery rate correction for multiple testing. Data
were analyzed using Python 3.11.2, R version 4.0.2 (R Foundation
for Statistical Computing, Vienna, Austria) and Prism version 8
(GraphPad, LaJolla, CA).

RESULTS
The UKB dataset consists of 9.967 individuals with valid in-
formation on the presence ofH. pylori antibodies in the serum

at baseline, with 2.966 beingH. pylori positive (Table 2). Before
matching, we found that H. pylori positivity was associated
with higher age, male sex, and obesity (See Supplementary
Table 1, Supplementary Digital Content, http://links.lww.
com/CTG/A973). After propensity score 2:1 matching, age
was well balanced, and for all cohort variables, a reduction in
mean effect size could be achieved (See Supplementary Fig-
ure 1, Supplementary Digital Content, http://links.lww.com/
CTG/A973).

Figure 1. Manhattan plot of sex, age, body mass index, ethnic background, and socioeconomic status (Townsend deprivation index) adjusted 2log10
(P values) for all selected PheCodes comparing their occurrence inHelicobacter pylori–positive individuals with controls. Highlighted are associations with
P values,0.05 (corrected for multiple testing by false discovery rate to the threshold [dotted line] 0.0038). Upward/downward pointing triangular markers
refer to PheCodes, that are overrepresented or underrepresented, respectively, in H. pylori–positive individuals compared with controls. CHF, congestive
heart failure; NOS, not otherwise specified.

Table 1. Mortality analyses after a mean follow-up of 13.6 years, corrected for age, sex, BMI, and socioeconomic status

Helicobacter pylori
positive (n5 2,966) Controls (n 5 5,932)

P OR CIn % n %

Mortality (ICD-10 code) 263 8.87 432 7.28 0.39 1.07 0.91 1.23

Neoplasms (C) 136 4.59 240 4.05 0.84 1.02 0.81 1.24

Neurological diseases (G) 14 0.47 20 0.34 0.37 1.36 0.68 2.05

Cardiovascular diseases (I) 52 1.75 91 1.53 0.83 0.96 0.62 1.30

Respiratory diseases (J) 17 0.57 15 0.25 0.026* 2.16 1.48 2.84

Digestive diseases (K) 8 0.27 20 0.34 0.25 0.60 0.29 1.48

Coronavirus disease 2019 (U0) 12 0.4 5 0.08 0.018* 3.53 2.49 4.58

Mortality categories with at least 5 deaths per group are displayed with ICD groups. For categories that are significantly different betweenH. pylori–positive individuals and
controls, the most common subgroups are displayed.
BMI, body mass index; ICD, International Classification of Diseases.
*P , 0.05.
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We compared routine serum parameters between H. pylori–
positive individuals and controls. H. pylori–positive individuals
had higher mean levels of total protein (73.1 vs 72.4 g/L), lower
levels of cholesterol (5.6 vs 5.8 mmol/L), and lower levels of in-
sulin-like growth factor 1 (21.0 vs 21.6 nmol/L) compared with
controls. H. pylori –positive individuals also had higher levels of
sex hormone binding globulin (51.9 vs 51.7 nmol/L) and alkaline
phosphatase (85.7 vs 83.7 U/L) comparedwith controls (Table 2).

To obtain insight into conditions associated with H. pylori
positivity, we performed a multi/mass monovariate PheWAS
analysis. Of 457 selected PheCodes, 25 were significantly
overrepresented and 2 were underrepresented in H. pylori–
positive subjects (Figures 1 and 2, Supplementary Table 2 [see
Supplementary Digital Content, http://links.lww.com/CTG/
A973]). We found a significant overrepresentation of several
gastric disorders that are known to be driven by H. pylori
infection such as “bacterial gastritis,” “other specified gas-
tritis,” and “gastric cancer.” Moreover, there was a strong
positive association with IDA, which confirmed previous

data (16,17). In addition, various other diseases showed a
significant correlation. Of the 25 most overrepresented dis-
orders, 11 belonged to circulatory diseases, including con-
gestive heart failure, cardiomegaly, angina pectoris, essential
hypertension, hypotension, myocardial infraction, and 7 re-
spiratory disorders such as postinflammatory pulmonary fi-
brosis and chronic obstructive pulmonary disease (COPD)
(Figure 2, Supplementary Table 2 [see Supplementary Digi-
tal Content, http://links.lww.com/CTG/A973]). The un-
derrepresented PheCodes included “benign neoplasm of
other parts of digestive system” and “ulcer of esophagus”
(Figure 2).

Next, we analyzed whether increased morbidity in H. pylori–
positive individuals is also linked to increased mortality (Table 1).
During themean follow-up of 13.6 years, 263 of theH. pylori–positive
participants (8.8%) and 432 (7.2%, Table 1) of H. pylori–negative
individuals died. The univariate analysis revealed a significant
increase in the overall mortality of the H. pylori–positive par-
ticipants (univariate P value 0.012; See Supplementary Figure 2,

Table 2. Comparison of baseline characteristics and serum parameters in Helicobacter pylori–positive individuals vs controls

H. pylori positive
(n5 2,966) Controls (n5 5,932)

Multivariable PMean SD Mean SD

BMI (kg/m2) 27.4 4.8 27.8 4.9

Age (yr) 57.0 7.9 57.3 8.2

Sex (n, %women) 1,483 50 2,966 50

Townsend deprivation index 21.7 2.9 20.7 3.4

Ethnicity (n, % White) 2,652 89.4 5,717 96.4

Serum metabolites

Total protein (g/L) 73.1 4.4 72.4 4.1 2.3E-08*

Cholesterol (mmol/L) 5.6 1.2 5.8 1.2 0.009*

IGF-1 (nmol/L) 21.0 6.0 21.6 5.9 0.004*

SHBG (nmol/L) 51.9 27.2 51.7 27.4 0.008*

Alkaline phosphatase (U/L) 85.7 28.4 83.7 24.9 0.023*

Vitamin D (nmol/L) 45.5 21.1 46.2 20.2 0.09

Albumin (g/L) 45.1 2.6 45.3 2.5 0.13

Alanine aminotransferase (U/L) 23.6 12.9 23.6 13.6 0.16

Glucose (mmol/L) 5.1 1.1 5.1 1.1 0.21

Total bilirubin (umol/L) 9.0 4.3 9.1 4.7 0.24

C-reactive protein (mg/L) 2.7 3.9 2.6 4.6 0.31

HbA1c (mmol/mol) 36.6 6.7 35.9 6.3 0.31

Creatinine (umol/L) 73.2 17.3 72.8 21.5 0.38

Aspartate aminotransferase (U/L) 26.6 11.1 26.1 9.5 0.45

Urate (umol/L) 314.3 82.1 310.0 80.0 0.51

Gamma-glutamyltransferase (U/L) 38.9 48.1 37.6 43.5 0.63

Direct bilirubin (umol/L) 1.9 0.8 1.8 0.8 0.80

Urea (mmol/L) 5.5 1.4 5.5 1.5 0.93

Quantitative measures are expressed as mean with SD or relative frequency (%) and their corresponding multivariate P values, sex, age, BMI, ethnic background, and
socioeconomic status (Townsend deprivation index) adjusted. Relative measures are expressed as n with percentage of modus.
BMI, body mass index; IGF-1, insulin-like growth factor 1; SHBG, sex hormone binding globulin.
*P , 0.05.
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Supplementary Digital Content, http://links.lww.com/CTG/A973),
which did not stay significant after adjustment for age, sex, BMI,
ethnicity, and socioeconomic status (multivariate P value 0.4,
Table 1). However, H. pylori positivity was associated with a sig-
nificant increase in respiratory-associated mortality (HR 2.16; 95%
CI [1.48–2.84], Table 1) and increased death due to COVID-19 (HR
3.53; 95%CI [2.49–4.58]).

Last, we dissected the effect of H. pylori positivity on 143
serummetabolites (Figure 3).H. pylori positivity was associated
with lower levels of sphingomyelins, total esterified cholesterol,
docosahexaenoic acid, large and very large HDL, and smaller
average HDL diameter (Figure 3).

DISCUSSION
Weaimed toanalyze theUKBdatabase to delineate the relevance of
H. pylori positivity for human health. Our data demonstrate that
H. pylori positivity plays an organ- and disease entity–specific role
in the development of cardiovascular, digestive, and metabolic
diseases. Given the large number of recruited individuals, the long
follow-up period (.10,000 person-years) and a precise collection
of disease phenotypes, we were able to gain unprecedented insights
and discovered 27 PheCodes that are significantly associated with
H. pylori positivity.

Our data confirm previous well-established links between
H.pylori and gastric disorders,which are based onbacterial lifelong
persistence in the human gastric mucosa of approximately 50% of
theworld’s population (18–21). Using a potentflagellar system and
chemotactic receptors, H. pylori can penetrate the mucus and
colonize gastric epithelial cells in the pit and deep in gastric glands

(20,22,23). Recent studies have revealed the interplay between
bacterium and host epithelium, demonstrating keymechanisms in
activation of stem cells leading to hyperplasia and a robust and
sustained innate and adaptive immune response that fails to clear
H. pylori, rather supporting a chronic inflammatory condition,
laying ground for cancer initiation and progression (20,24–29). In
addition to being linked to gastritis and gastroduodenal ulcers,
our data confirm an association between H. pylori positivity and
IDA. Experimental data from mice studies revealed that CagA1
H. pylori acquire iron from host cells through transfer of
transferrin receptors from the basolateral membrane to the
apical surface where the bacteria locate (30). This and gastric
hypochlorhydria in chronic gastritis, which interferes with iron
reduction and absorption, may affect the systemic iron level
leading to anemia (31). Notably, iron deficiency has been as-
sociated with accelerated premalignant and malignant gastric
lesions inmice and humans (32). The link between infection and
noncardia gastric cancer has been demonstrated in various
studies, and H. pylori is considered a WHO type I carcinogen
(1). It should be noted that most datasets that link H. pylori
infection and gastric cancer risk are from Asian countries, an
area with high prevalence ofH. pylori infection (33).While large
cohort studies from the United States have also demonstrated
this association (34,35), there is still a debate on whether this
applies to European countries because the reduction for H. py-
lori is larger than the reduction in gastric cancer from 1993 to
2007 (36). Still most patients with noncardia gastric cancer were
tested H. pylori positive in a European case-control study and 2
studies in the Swedish population reported a high association of

Figure2.The27most overrepresented/underrepresentedPheCodes in individualswithHelicobacter pylori, adjusted for age, sex, BMI, ethnic background,
and socioeconomic status. ORs are given as log (OR) and 95%confidence intervals. Only PheCodes that remained significant after adjustment for multiple
testing are displayed and have thereby a P value of#0.0038. BMI, bodymass index; CI, confidence interval; NOS, not otherwise specified; OR, odds ratio.
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H. pylori seropositivity with noncardia gastric cancer (37–39).
Our data now clearly demonstrate an association between
H. pylori positivity and gastric cancer in the UK, together sup-
porting the critical role of H. pylori for this disorder also in
Europe. Heterogeneity of the strength of the association with
gastric cancermay be explained by the not yet routinely analyzed
genetic risk status of infected individuals (40). Whether H. pylori
infection is associated with other extragastric cancers remains con-
troversial. We found no clear association with extragastric cancers.

Our study found a positive association of H. pylori infection
with several cardiovascular disorders such as heart failure, angina
pectoris, or cerebrovascular disease, consistent with recent meta-
analyses: H. pylori infection in .20,000 patients was associated
with an increased risk of myocardial infarction, OR: 2.10 (CI:
1.75–2.53) (6); second, an increased risk of acute coronary syn-
drome, OR: 2.03 (CI: 1.66–2.47) (41), and third, an increased risk
by 51% of adverse cardiovascular events, including foremost
myocardial infarction and cerebrovascular disease (42). A recent

Figure 3. Circle plot for lipidomic analysis forHelicobacter pylori–positive UKB participants comparedwith controls. Lipidomic parameters weremeasured
through NMR spectroscopy. Hazard ratios (with 95% confidence intervals) are presented per 1-SD higher metabolic biomarker on the natural log scale,
stratifiedby age, sex, bodymass index, andTownsenddeprivation index. *P,0.05.Original codebyDiego JAguilar-Ramirez.DHA, docosahexaenoic acid;
FAs, fatty acids; FAw3, omega-3 fatty acids; FAw6, omega-6 fatty acids;HDL-D, high-density lipoproteinparticle diameter; LA, linoleic acid; LDL, low-density
lipoproteins; LDL-D, low-density lipoprotein particle diameter; LP, lipoprotein; MUFA, monounsaturated fatty acids; NMR, nuclear magnetic resonance;
PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids; VLDL-D, very low-density lipoprotein particle diameter.
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meta-analysis of observational studies in .270,000 individuals
further linkedH. pylori infection to an increased risk of stroke (43).
The latestmeta-analysis of cohort studies onH. pylori infection and
the risk of cardiovascular disease including 230,288 patients found
only amild increase of cardiovascular risk (relative risk 1.10, 95%CI
1.03, 1.18), much smaller than previousmeta-analyses and our data
and no significant association with the risk of stroke (7). The car-
diovascular risk, even if limited, has significant impact on public
health and might become evident because H. pylori, especially
CagA-positive strains,may contribute synergisticallywith ahigh-fat
diet to the development of atherosclerosis and cardiovascular dis-
ease through chronic inflammatory and immunological processes
(44–46). In addition, a correlation of H. pylori infection with
changes in lipids might contribute to a higher cardiovascular risk
(47). In accordancewith previous publications (44,48,49), we found
a prominent decrease in HDL cholesterol, contributing to dyslipi-
demia as an important factor for atherosclerosis. Of importance,
eradication was successful in restoring HDL levels (50), indicating
that eradication could have an inhibitory effect on the onset of
cardiovascular disease, although this is yet unknown.We also found
a negative association with docosahexaenoic acid, an omega-3 fatty
acid that has been found to protect cardiovascular health (51).
Bacterial properties enable H. pylori also to directly extract choles-
terol from epithelial cells, which may also affect the systemic lipid
levels (29,52). This and the atherogenic modification in lipid me-
tabolism may be associated with proinflammatory signaling (53).
Theproinflammatory signalingmay explain thepositive correlation
with type 2 diabetes mellitus found in theH. pylori–positive cohort
and elsewhere (54), which in turn drives further unfavorable effects
on cardiovascular disease. While our data provide additional evi-
dence for an increased cardiometabolic risk in individuals infected
withH. pylori, less biased studies as randomized controlled trials are
needed for definite conclusion on this association. Further pro-
spective studies should also address whether eradication prevents
the development of atherosclerosis and its complications to clarify
the role of this bacterium in cardiovascular pathology.

The potential involvement ofH. pylori infection in respiratory
diseases is still under debate.We found a positive association for 7
respiratory disorders such as postinflammatory pulmonary fi-
brosis, and COPD. A recent review summarized predominantly
case-control studies with controversial findings on respiratory
diseases concluding that so far in face of missing prospective
studies, no clear evidence supports a casual relation between in-
fection and respiratory diseases (55). Still inflammatory and en-
dothelial changes associated with lung injury have been described
in mice (56). Besides proving data on a larger sample size, we, in
this study, report data on a significant increase in respiratory-
associated mortality in individuals with positive H. pylori serol-
ogy, which is in line with a previous report in individuals with
COPD (57). The associationwith lung cancer is under debate (58)
and was not specifically obvious in our study. Noteworthy, we
found a positive association of H. pylori positivity with deaths of
individuals with COVID-19 (SARS-CoV-2) infection, although
limited by small death rate. Previous data suggested that H.
pylori–infected people may be more susceptible to COVID-19,
which may be explained by the increased expression of SARS-
CoV-2 entry receptors such as angiotensin-converting enzyme 2
in the affected gastric mucosa or elevated gastric pH that no
longer inactivates SARS-CoV-2 (59,60). In addition, as found in
this study, the H. pylori–associated inflammatory response and
cardiocirculatory and respiratory morbidity may promote a risk

status for COVID-19. The understanding of gastrointestinal and
respiratory disease course in the complex interplay of both highly
prevalent human infectious diseases is of emerging interest.

While the PheWAS analysis is well suited to identify an ex-
tensive repertoire of H. pylori positivity–associated conditions,
our analysis has some limitations. First, a causal link between
diseases and mechanisms cannot be explained. Second, the UKB
is not an entirely representative population sample because 94%
of subjects are White British and from higher-income classes.
Moreover, outcomes based on ICD codes may experience some
degree ofmisclassification or underdiagnosis.Wewere not able to
distinguish active or past H. pylori infection and to analyze the
influence of eradication treatment on gastric and extragastric
disease because patients were enrolled based on anti-H. pylori
antibodies, and data onH. pylori eradication in the past or during
follow-up were not available. In summary, our large study of
H. pylori positivity demonstrates that it plays an organ- and
disease entity–specific role in the development of human disease.
However, an association study cannot distinguish between causes
and consequences. Although this study design is based on a
correlational relationship, our findings might help to provide a
framework for patient recommendations.
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Study Highlights

WHAT IS KNOWN

3 Helicobacter pylori colonizes the human stomach and
increases the risk of gastroduodenal ulcer and gastric cancer.

WHAT IS NEW HERE

3 H. pylori positivity is associated with specific cardiovascular,
respiratory, and metabolic disorders.

3 Multivariate analysis shows no change in overall mortality in
H. pylori–positive participants.

3 Lipidomic analysis reveals dyslipidemic profile in H.
pylori–positive participants, which may link H. pylori to
systemic inflammation and disease.
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