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Abstract 

Scientists employing omics in life science studies face c hallenges suc h as the modeling of multiassay studies, recording of all relevant 
parameters, and managing many samples with their metadata. They must manage many large files that are the results of the assays or 
subsequent computation. Users with di v erse backgr ounds, ranging fr om computational scientists to wet-la b scientists, hav e dissimilar 
needs when it comes to data access, with programmatic interfaces being favored by the former and graphical ones by the latter. 
We introduce SODAR, the system for omics data access and r etriev al. SODAR is a softw ar e packa ge that addr esses these challenges 
by providing a web-based graphical user interface for managing multiassay studies and describing them using the ISA (Investigation, 
Study, Assay) data model and the ISA-Tab file format. Data storage is handled using the iRODS data management system, which 

handles large quantities of files and substantial amounts of data. SODAR also offers pr ogramma b le APIs and command-line access 
for metadata and file stor age . 
SODAR supports complex omics inte gr ation studies and can be easily installed. The software is written in Python 3 and freely available 
at https://github.com/bihealth/sodar-server under the MIT license. 

Ke yw ords: scientific data mana gement, ISA-Ta b, iR ODS 
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Introduction 

Modern studies in life sciences r el y on “omics” assa ys , which en- 
compass br anc hes of science suc h as genomics, pr oteomics, and 

metabolomics. One or multiple assays can be run within a single 
study, potentially including assays for multiple omics studies of 
se v er al types. 

The following k e y ste ps ar e r equir ed for executing these com- 
plex omics studies: (i) planning, whic h r esults in study metadata; 
(ii) collection of mass data; and (iii) data analysis, including the 
integration of multiple assa ys . T he aim of SODAR is to ensure sup- 
port for scientists within all the steps. 

Challenges 

Each step presents its own set of challenges. During planning, it 
is important to enable recording crucial factors and co variates .
The flow of materials and samples thr ough pr ocesses m ust also 
be specified in sufficient detail. Further challenges arise from, for 
example , assa ys using complex m ultiplexing, suc h as the need for 
r efer ence samples; r equir ements for using contr olled vocabular- 
ies or ontologies; and possible change of assays over time. 

In the data collection step, scientists must record the used ma- 
chines , kits , and versions of both har dw are and softw are used.
Omics studies also cr eate lar ge volumes of data, ranging from 

a few gigabytes for mass spectrometry to terabytes for imag- 
ing such as microscopy. These data may be spread among many 
files, further complicating the needs for managing mass data stor- 
age. Instead of a rigid process, data collection should also be ad- 
justable to changes and de v elopments in data gener ation ov er 

time. m  
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Data analysis is often split into multiple phases, with primary
nalysis of each assay follo w ed b y steps for integr ation of r esults.
pecific results need to be fed back to metadata management, an-
otation, quality control, or storing resulting markers. Access to 
etadata with recorded factors and confounders is necessary in 

ach step, while access to primary raw data becomes less impor-
ant after the primary analysis. Certain analysis results are writ-
en back into the mass data storage . T his includes binary align-

ent map (BAM) files and variant call format (VCF) files. 
Ther e ar e also ov er arc hing c hallenges for the steps in study

xecution. All data should be recorded in structured format.
utomation should be a pplied wher e possible, and on-premise

nstallation might be pr efer able or e v en r equir ed when data
riv acy–r ele v ant data are generated such as DNA sequencing. 

ata management approaches 

n this and the following section, we will discuss the topic of data
anagement and software . T he terms “data” and “document” will 

e used interc hangeabl y in this section. The steps described in the
Challenges" section can be inter pr eted as pr ocesses taking doc-
ments and materials as input, as well as gener ating mor e doc-
ments and materials as the result. For example, data collection
akes the plan document and samples and generates assay result
les (documents). Scientists thus need computational tools for 
upporting them in managing their scientific and research data. 

Historicall y, suc h documents are maintained on paper in lab-
ratory notebooks, or documentation created by quality control 
ystems. For the most direct and unstructur ed a ppr oac hes in
aintaining digital data, this corresponds to w or d processing,
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pr eadsheet, and ima ge files on local or network driv es. Mor e
tructur ed a ppr oac hes ar e desir able for taking adv anta ge of digi-
al documents, pr e v enting r esearc h data loss [ 1 ] or fostering reuse
 2 ]. 

While data management in science is a broad topic, the library
nd information science community is fr equentl y a ppr oac hing it
sing a top-down a ppr oac h. Fr equentl y, in this context, the term
r esearc h data mana gement” (RDM) is used. Her e, the needs of
hole organizations and their parts for managing their research
ata, as well as the necessary steps to establish whole RDM sys-
ems, ar e consider ed first (cf. Donner [ 3 ]). This correlates with the
 ole of libr aries in certain academic or ganizations for or ganizing
ata that were collected in research. 

A second a ppr oac h, whic h can be described as “bottom-up , ”
riginates fr om differ ent “working scientist” comm unities . T he
omm unities commonl y r efer to the topic as “scientific data man-
 gement” (SDM) and solv e their pr oblems at hand, often starting
ith specific small-scale solutions, whic h ar e then upscaled if the
eed arises. While considering their organizational embedding,
hey focus on solving specific data management challenges for
hemselves and their peers. We found ourselves in this situation
nd will thus focus on this perspective. 

ata management software packages 

cientific data management needs come in different forms and
hapes. We could find no general treatment of the subject of data
anagement in the literature. Machina and Wild [ 4 ] provide a col-

ection of 4 tool categories: laboratory information management
ystems (LIMSs), electr onic labor atory notebooks (ELNs), scientific
ata management systems (SDMSs), and a chromatography data
ystem that we generalize as an instrument-specific data system
IDS). In this section, we provide our take on explaining what these
ystems comprise. We also note—as Machina and Wild [ 4 ] did—
hat categorization of such software solutions is not clear-cut, and
eatures may be ov erla pping. We expand this list by 2 more system
ypes: data repository systems (DRSs) and database/data ware-
ouse management frameworks (DMFs). 

The 4 items by Machina and Wild [ 4 ] are as follows: 
LIMSs focus on storing information around laboratory work-

ows . T his includes tr ac king of consumables , samples , instru-
ents , and tests . T hey deal with daily tasks of labor atories suc h

s billing and instrument calibration. They are often specific to
ertain domain areas such as sequencing facilities. 

ELNs focus on allowing humans to record their laboratory
ork. The y re place pa per notebooks and ca ptur e experiments and

heir r esults, mostl y in fr ee-form text, pictur es , tables , and so on.
 hey pla y a k e y r ole in fulfilling r egulatory r equir ements. 

IDSs provide data capturing, storage, and analysis functional-
ty in instrument-specific domains. Two examples are the CASA V A
ipeline and the BaseSpace cloud-based service, both from Illu-
ina. The former is provided without extra cost with the instru-
ent along with its source code, while the latter is purchasable

nd closed source. Such software often ships with the instruments
hemselves. 

SDMSs provide scientific content management functionality
or scientific data and documentation. They allow for the man-
gement of metadata and potentially mass data. Their core func-
ionality does not include data analysis, user-centric data collec-
ion, or laboratory w orkflo w tracking. Such features may be po-
entially supported by plugins or extensions. Many such systems
ffer integration with surrounding systems (e.g., via application
r ogr amming interfaces [APIs]). 
We augment this list by 2 system types: 
DRSs pr ovide shar ed access to data with a ppr opriate documen-

ation and metadata. Examples are FAIRdom Seek [ 5 ], Dataverse
 6 ], and Yoda [ 7 ]. There also specialized DRSs focusing on par-
icular use cases, such as dbGAP [ 8 ], MetaboLights [ 9 ], and Gene
xpression Omnibus [ 10 ], that allow for managing public or con-
rolled public access to large research data collections. 

DMFs allow for the r a pid de v elopment of database and data
ar ehouse a pplications . T hey often pro vide preexisting compo-
ents to build on ready-made functionality and extension by im-
lementing custom components. Such enable creating domain-
pecific databases and structured data capturing. Examples in-
lude Molgenis [ 11 ] and Zendro [ 12 ]. 

Other types of systems also exist, and not e v ery system falls
nto just one category. A complete r e vie w of such systems is be-
ond the scope of this article . T his section identifies focus areas
f systems involved in some form of scientific data management.
ODAR falls into the category of SDMS. 

ata management technologies 

or planning and documenting experiments and their structure,
xperiment-oriented metadata stor a ge formats with predefined
yntax and semantics exist. A popular standard is the ISA (Inves-
igation, Study, Assay) model [ 13 ], which allows describing studies
ith multiple samples and assa ys . T he ISA model defines the ISA-
ab tabular file format, which allows users to model each process-
ng step with each intermediate result and annotate each of these
ith arbitrary metadata. An example of an alternative to ISA-
ab is Portable Encapsulated Projects (PEPs) [ 14 ]. There are also
ore specialized standards such as Brain Imaging Data Structure

BIDS) for brain imaging data [ 15 ], as well as other a ppr oac hes
uch as Clinical Data Interchange Standards Consortium (CDISC)
tandards [ 16 ] and the Hier arc hical Data Format (HDF5) [ 17 ]. Use
f generic file formats such as HDF5, TSV, XML, and JSON is also
ommon. 

For storing large volumes of omics data, it is possible to simply
se file systems or object stor a ge systems. Mor e adv anced solu-
ions such as Shock [ 18 ] or dCache [ 19 ] allow for storing metadata
nd distributing data ov er m ultiple serv ers. iRODS (Integr ated
ule-Oriented Data System) [ 20 , 21 ] adds further featur es, suc h as
unning rules and pr ogr ams within the data system and enabling
ntegration with arbitrary authentication methods. 

For publication, raw and processed data and metadata are de-
osited in scientific catalogs , study databases , and registries . Ex-
mples include the BioSamples database for metadata [ 22 ] and
equence Read Arc hiv e (SRA) for raw sequencing data [ 23 ]. 

ur work 

n our w ork, w e focus on managing many omics projects of vary-
ng data size and various use cases, including cancer and func-
ional genomics studies. We also need to support m ultiple tec h-
ologies such as whole-genome sequencing, single-cell sequenc-

ng, proteomics, and mass spectrometry. Deposition to public
epositories was not a necessity in our context. Ho w e v er, SODAR
s an ISA-compliant system. Should the data owner r equir e it, it is
asily feasible to create appropriate exports to public data reposi-
ories using the APIs provided by SODAR. Open-source software
s a r equir ement to avoid vendor lock-in and allow for flexibil-
ty in different use cases. A suitable end-to-end solution was not
vailable when we started our work in 2016. Ther efor e, we set out
o implement an integrated system for managing omics-specific
ata and metadata. 
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In this article, we introduce SODAR (System for Omics Data Ac- 
cess and Retrie v al). SODAR combines the modeling of studies and 

assays using the ISA-Tab format with handling of mass data stor- 
a ge using iRODS. Mor e example pr ojects ar e av ailable in the SO- 
DAR online demo server [ 41 ]. 

Results 

We present the results by first giving an overview of the developed 

SODAR system. Next, we compare it to a selection of existing tools 
and their r ele v ant featur es. We then describe pr ocesses we hav e 
established ar ound SODAR. Finall y, internal usa ge statistics ar e 
detailed along with discussion on the limitations of SODAR. 

Resulting system o vervie w 

Figur e 1 pr esents the components of the SODAR system. The SO- 
DAR server is built on the Django web fr ame work. It contains the 
main system logic and provides both a gr a phical user interface 
(GUI) and APIs for managing projects , studies , and data. 

Project and study metadata are stored in a PostgreSQL 
database . T he study metadata are stored as ISA-Tab–compatible 
sample sheets, with each project containing a single ISA-Tab in- 
v estigation. Eac h inv estigation can hold m ultiple studies; like wise,
each study can contain multiple assa ys . 

Mass data stor a ge is implemented using iRODS and accessed 

via iRODS command-line tools or access to the WebDAV proto- 
col, whic h is pr o vided by using the Da vr ods softwar e . T he SODAR 

serv er mana ges cr eation of expected iRODS collections (i.e., di- 
r ectories), gov erns file access, and enforces rules for file uploads 
and consistency. In vestigations , studies , and assa ys correspond to 
collections in the iRODS file hier arc hy. Within assa ys , collection 

structure can be split by, for example, samples or libraries, de- 
pending on the type of assay. 

Uploading files for studies is handled using “landing zones,”
whic h ar e user-specific collections with r ead and write access . T he 
SODAR serv er handles v alidation and tr ansfer of files fr om the 
landing zones into the project-specific read-only sample reposi- 
tory, which is split into assay-specific iRODS collections. 

Planning and tr ac king the study design and experiments is 
done using the ISA-Tab–compatible sample sheets . Here , the “as- 
say” in the ISA model corresponds to an “experiment” in our work.
SODAR pr ovides m ultiple ways to create and edit both the meta- 
data model and the contained metadata itself, including user- 
friendly GUI-based creation of sample sheets from ISA-Tab tem- 
plates . T he templates aid in maintaining consistent metadata 
structures between studies. Once created, the SODAR server pro- 
vides a GUI for filling up metadata and configuring expected val- 
ues, including support for controlled vocabularies and ontologies. 
Furthermore, SODAR also allows uploading and updating sample 
sheets using its API. Uploading any valid ISA-Tab file and replacing 
existing sheets via upload is also supported, enabling the creation 

of sample sheets using other software such as ISA-tools [ 13 ]. The 
API allows to automate metadata and file management activities 
using scripts. 

Data management software features and 

selection 

This section first describes features of DMS pac ka ges that ar e 
subsequently used for comparing SODAR to other software types 
and pac ka ges. We then describe the selection pr ocess for softwar e 
comparison. 
The following is a list of features that allows us to see the
nique strengths and properties of SODAR in the category SDMS
nd describe the differ ence fr om other categories. When a feature
s important in multiple categories, it is only shown once. Cate-
ories 1–4 are focused on SDMS, and category 5 contains features
lso important for other categories. 

1) Featur es addr essing ov er arc hing c hallenges 
a) Structure into projects and folders 
b) Access control 
c) Automation possible via API 

2) Use of open formats and standards 
a) Featur es addr essing planning c hallenges 
b) Structur ed r ecording of assays and experiments 
c) Flexibility in definition of studies and experiments 
d) Annotation with controlled vocabulary 
e) Annotation with ontologies 

3) Featur es addr essing data collection c hallenges 
a) Stor a ge of files possible 
b) Support for many files 
c) Support for large file sizes 

4) Featur es addr essing data anal ysis c hallenges 
a) API for reading and updating experiment metadata 
b) API for reading and updating mass data 

5) Featur es commonl y found in specific systems 
a) ELN 

i) Flexible data entry in free text/tables/pictures 
b) DRS 

i) Host public data repositories 
c) DMF 

i) Easy creation of new data tables 
ii) User-centric data entry 
iii) Multiple predefined components (e.g., for data visualiza- 

tion and analysis) 

With the aim of showing the unique strengths of software 
ategories and pac ka ges, we attempted to select popular soft-
ar e pac ka ges in eac h category. We limited the selection to open-

our ce softw are. We sear c hed for the differ ent softwar e types via
 publication on Google Scholar or the project search on GitHub.
e made no attempt to define “the most popular” or “the best”

oftwar e pac ka ges. We excluded LIMS and IDS as suc h softwar e
s focused on the wet-lab process . T he follo wing softw are w as se-
ected: 

1) SDMS 
a) SODAR 

b) qPortal [ 24 ] 
c) FAIRDom Seek [ 5 ] 
d) OpenBIS ELN-LIMS [ 25 ] 

2) ELN 

a) ELabFTW [ 26 ] 
3) DRS 

a) Dataverse [ 6 ] 
b) Yoda [ 7 ] 

4) DMF 
a) Molgenis [ 11 ] 
b) Zendro [ 12 ] 

ata management software comparison 

he table included in Additional File 1 shows the comparison
f the categorized software in the categories as described in the
Data Management Software Features and Selection" section. 
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Figure 1: SODAR system with its components and actors. The figure illustrates how actors interact with SODAR and iRODS through different APIs. 
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Since the software packages operate in a similar space, there
s a certain ov erla p in featur es, e v en acr oss categories. Most soft-
ar e pac ka ges pr ovide the featur es for addr essing the ov er arc h-

ng challenges. All “planning” features are included in SODAR and
AIRDom Seek in the SDMS category, while qPortal and OpenBIS
 emain limited. ELabFTW pr ovides limited functionality for struc-
ur ed r ecording and does not support controlled vocabularies and
ntologies, while DRS systems do not address planning challenges
y their design. As expected, such features can be implemented
y the DMF pac ka ges, but they do not provide the functionality on
heir own. The “data collection” and “data anal ysis” featur es ar e
nl y compr ehensiv el y addr essed by SODAR and FAIRDom Seek in
he SDMS category, with FAIRDom Seek being limited in storing

an y and/or lar ge files. ELN softwar e is limited in this capabil-
ty, while DRS pac ka ges pr ovide good support for suc h featur es,
nd the DMF software packages allow for implementing support
o varying levels. 

As for the specialized features, some functionalities of “foreign”
ategories are implemented. For example, SODAR has support for
ser-centric data entry, and FAIRDom Seek allows for hosting pub-

ic data repositories b y design. Ho w e v er, eac h softwar e pac ka ge
hows its strengths by providing the features for the tasks that it
as originally designed for. We note that certain packages cover

heir category more focused or compr ehensiv el y than others. For
xample, in the DMF category, Molgenis has an ecosystem of many
redefined components, while Zendro focuses on allowing for the
asy creation of tables and user-centric data entry masks. 

oles and interaction with SODAR 

he general w orkflo w in using SODAR for managing data and
etadata is shown in Fig. 2 . We distinguish between the roles

data stew ar d” and “experimentalist.” It is possible for one person
o act in both roles. 

Data stew ar ds ar e r esponsible for cr eating the ov er all structur e
f the experiment data. They are expected to be experienced with
sing ISA-Tab files. For example, in our use case, data stew ar ds are
ioinformaticians working in the core unit. They are responsible
or planning the experiments and modeling them in the ISA-Tab
ormat as sample sheets describing the ov er all experimental de-
ign. Data stew ar ds also maintain a library of sample sheet tem-
lates for common use cases. With experienced experimentalists,
he stew ar d might just cr eate the gener al structur e of the experi-

ent. In some cases, the stew ar d may also pr e-cr eate the sample
heet with an initial structure of all planned samples and pro-
esses and IDs together with experimentalists. 

Experimentalists ar e primaril y r esponsible for entering the ac-
ual data into the system. They are users more concerned with
ompleting the metadata in the sample sheet than in creating its
tructure. When the full sample sheet is created together with
ata stew ar ds , experimentalists ma y onl y v erify the structur e
gainst the information of their experiments and fill in some mea-
urements in sample sheet cells (e.g., concentration measure-
ents). More experienced experimentalists will also create new

ows in the ISA-Tab tables for samples , related materials , and pro-
esses. 

eneral SODAR process 

ere we describe the SODAR-backed process of managing exper-
ment data we are using in our work. This demonstrates how SO-
AR helps tackle challenges in complex omics study manage-
ent. 

lanning and sample sheet creation 

lanning begins with data stew ar d and experimentalists meeting
nd discussing the study, including, for example , its factors , sam-
le size , replicas , and confounders . Stew ar ds create sample sheets
rom templates and modify columns depending on the discus-
ions and the study’s r equir ements. Working together, ste w ar ds
nd experimentalists also decide on ontologies and controlled vo-
abularies to use, data ranges, and so on. 

The template will be bootstr a pped with example samples, or all
amples, depending on the study. During this step, the experimen-
alist r eceiv es tr aining in using the SODAR sample sheet editor for
lling in cells where necessary. Filling cells can in volve , for exam-
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Figure 2: SODAR metadata management workflow. The workflow scheme is divided into steps attributed to a data stew ar d (blue) who manages the 
ov er all data schema and experimental user (green) who enters the actual data or uploads files. 

 

 

Table 1: Summary statistics of project type and count, sample 
count, user count, mass data file count, and total size in our in- 
ternal instance of SODAR 

Projects 406 
Users 385 
Samples 26,349 
Total file count 304,638 
Total file size 457 TB 

Statistics collected in March 2023. 
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ple , adding measurements , cancer staging, definition and refine- 
ment of phenotypes, and adjustment of relationship information. 

Automated extraction of measurements from instruments or 
LIMS and ingesting it using the SODAR API is also possible. For 
example, an integration with a LIMS system could automatically 
create samples as they are processed in the wet lab, while mea- 
surements could be written to SODAR from the LIMS or from an 

integration of an ELN system. We are currently working toward 

this when cooperating with other units. 

Data acquisition and sample sheet update 
Experimentalists run their experiments and use SODAR for edit- 
ing the sample sheets . T his includes adding new samples, mark- 
ing dropouts, or removing them, as well as adjusting ontologies 
and terms as needed. SODAR sample sheets are useful as a cen- 
tr al stor a ge of metadata, r emo ving the need to, for example , share 
spr eadsheets via email. Differ ences between sample sheet ver- 
sions can also be browsed in the SODAR GUI to tr ac k c hanges in 

the metadata. 
In this step, actual data files are uploaded by experimental- 

ists to the project sample r epository thr ough landing zones . T he 
iRODS collection structure for each study is maintained by SODAR 

and based on the study type and names of samples or associated 

libraries . In most cases , files related to a certain sample and its 
processing in an assay can be found in the collection named after 
the related library. 

Data analysis 
For data analysis, bioinformaticians access metadata in the sam- 
ple sheets as well as raw data in iRODS, the latter being linked to 
the former in the SODAR GUI for ease of access. Depending on the 
phase of study, this ma y in volve , for example , primary analysis ,
secondary analysis, and required data integration. Resulting files 
ar e uploaded bac k into iRODS via SODAR for safek ee ping and shar- 
ing betw een resear chers. Also, uploaded are files needed for inte- 
grating with third-party systems, such as UCSC Genome Browser 
[ 27 ] tr ac ks and files for data exploration tools such as SCelVis [ 28 ].

During the analysis, up-to-date experiment structure is main- 
tained in SODAR. It r epr esents a centr alized stor a ge and sole 
source of truth for the internal structure, encompassing factor 
values , ontologies , and controlled vocabularies. Similarly, it rep- 
resents an external structure, with samples and materials linked 

to corresponding iRODS collections. 
SODAR also provides integrations to specific third-party soft- 

ware to aid analysis. For germline and cancer DNA sequencing ex- 
periments, SODAR supports the IGV Genome Browser [ 29 ], by gen- 
erating session files pointing at r ele v ant v ariant and r ead align- 
ment files with a single click. 
ong-term data storage and data access 
fter transferring files from landing zones into the project’s sam-
le repository, the data are in general assumed to be permanent
nd not modifiable or r e writable, with users onl y having the pos-
ibility of request file deletion from project maintainer in case of,
or example, mistakes in uploading. Hence, once the project fin-
shes, the data ar e consider ed good for long-term arc hiv al. SO-
AR supports setting projects into a r ead-onl y “arc hiv ed” state
nd provides an API for implementing custom policies for han-
ling arc hiv ed data. For example, suc h a policy might consist of
dding a cold stor a ge r esource suc h as ta pe onto which the data
ould be moved. 

In exporting data to public databases, creating a generic ex- 
orter cannot be considered feasible due to the metadata model
exibility in SODAR. Ho w e v er, ther e ar e export possibilities de-
ending on the type of study. For example, if the project is set
p with Gene Expression Omnibus (GEO) [ 10 ] compatible meta-
ata, exporting to the GEO database may be tri vial de pending
n the target system APIs. In the future, we intend to create ex-
ort functionality from SODAR to the emerging German National 
esearch Data Infrastructure (NFDI), the associated German Hu- 
an Genome-phenome Arc hiv e (GHGA) [ 30 ], and corresponding
etadata models . T hese will be based on the feder ated Eur opean
enome-phenome Arc hiv e (EGA) [ 31 ] and should provide a good
tarting point for many other exporters. NFDI will be our long-
erm and controlled public access backend, while other users and
nstances might have other backends. 

nternal usage statistics 

e have been using SODAR in our group’s projects for the past 4
ears. Table 1 summarizes data statistics and metadata stored in
ur internal instance and the diversity of projects. We have thus
ested SODAR extensiv el y in a real-world setting and use it daily
s our main stor a ge for all our project data and metadata. 

Figure 3 displays file size and count for each project on our sys-
em in March 2022. The diagram shows the varying scale of the
rojects within our group. A limited number of projects from a
0- to 45-terabyte range can be seen, while most are smaller. 
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Figure 3: SODAR project file statistics scatterplot, with file count per project on the x-axis and the total file size in terabytes on the y-axis. 
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imitations 

urr entl y, SODAR offers no automated data export to, for ex-
mple , the GEO database . T his ma y be added in the future as
iscussed in the “Long-term data stor a ge and data access” sec-
ion. Similarly, SODAR does not support access in a “data com-

ons” manner. It is possible to set specific projects for public read
ccess, but by default, SODAR enforces strict access control to
ata. 

We also do not have a definitive solution for training peo-
le in ISA-Tab. SODAR features a set of templates for prede-
ned study types (e.g., germline and cancer studies), but there is
o definite solution for trivially setting up any type of study as

SA-Tab. 

ethods 

ODAR ( RRID:SCR _ 022175 ) is implemented in Python 3 using
he Django ( RRID:SCR _ 012855 ) web fr ame work and Django REST
r ame work. Reusable components hav e been extr acted into the
ibr ary SODAR Cor e ( RRID:SCR _ 023708 ) [ 32 ]. ISA-Tab format ma-
ipulation has been implemented using AltamISA ( RRID:SCR _ 023
09 ) [ 33 ]. 

roject organiza tion, authoriza tion structure, and
DAP integr a tion 

ODAR uses the concept of “projects” for organizing all data.
r ojects hav e a unique identifier and some basic metadata, suc h
s title and description. Projects are organized in a tree structure
sing the concept of “categories” that can contain projects or other
ategories. Eac h pr oject has a single owner, who can assign them-
elves a delegate for managing the project. Further users can be
ranted access to the project either in a read-write (contributor) or
 r ead-onl y fashion (guest) using role-based access control (RBAC)
 34 ]. 

SODAR can be configured to be run standalone or integrated
ith LDAP servers, including Microsoft ActiveDirectory, for pro-
iding authentication information. Here, authentication refers to
 hec king the identity of a user based on their username and pass-
 or d. 
RODS integr a tion 

ODAR automaticall y mana ges user access to pr ojects in iRODS.
his is done by creating an iRODS directory and user group for
ac h pr oject. The gr oup is giv en access to the dir ectory, and gr oup
embership is sync hr onized between the SODAR database and

RODS. 
SODAR creates an iRODS collection for each study and assay

rom the ISA model of the project. Files can be uploaded by users
hrough landing zones, either for each sample or for the whole
tudy or assay. It is thus possible to add data for an arbitrary num-
er of assays for each sample and original donor or specimen. 

The files can be accessed either dir ectl y thr ough iRODS or using
he WebDAV protocol through the Davrods [ 35 ] software . T he lat-
er allows users to access the stor a ge as a network drive on their
esktop computers. Since WebDAV is HTTP based, users can also
ake data available to genome browsers such as the Integrative
enomics Viewer ( RRID:SCR _ 011793 ) or UCSC Genome Browser
 RRID:SCR _ 005780 ). Mor eov er, it is easy to access data through an
rganization’s security system and proxies without the interven-
ion of IT departments. 

Optionally, SODAR allows the management of iRODS “tickets,”
hich allow for access based on randomly generated tokens in-

tead of user login. This way, users can upload genome browser
r ac ks to SODAR and iRODS and create public URL strings to ac-
ess them and share them with users that do not have access to
he full project or do not even have an account in SODAR. 

ample sheet editor, import, export 
ample sheets can be included into SODAR projects by either im-
orting existing ISA-Tab files or template-based creation. When

mporting, the user can upload a Zip arc hiv e or a set of individual
SA-Tab files. For creating sample sheets from templates, the user
eeds to fill in certain details in the SOD AR GUI. SOD AR contains
ultiple built-in templates for generic RNA sequencing, germline
NA sequencing, and mass spectrometry–based metabolomics,

or example. After import or creation, the sample sheets are stored
n an object-based format in the SODAR database for easy search
nd modification. In the GUI, they ar e pr esented to the user as
preadsheet-style study and assay tables. 

https://scicrunch.org/resolver/RRID:SCR_022175
https://scicrunch.org/resolver/RRID:SCR_012855
https://scicrunch.org/resolver/RRID:SCR_023708
https://scicrunch.org/resolver/RRID:SCR_023709
https://scicrunch.org/resolver/RRID:SCR_011793
https://scicrunch.org/resolver/RRID:SCR_005780
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The user can edit sample sheets in the SODAR GUI (see Addi- 
tional File 2). Cells in the study and assay tables can be edited like 
in a spreadsheet application. For each column, the project owner 
or delegate can define the accepted format, value choices, value 
r anges, r egular expr essions for accepted v alues, and other settings 
depending on the column type . T his ensures the validity of data 
and their compatibility with the study’s r equir ements and con- 
ventions. 

SODAR supports ontology term lookup for cell editing. Com- 
monly used ontologies such as Human Phenotype Ontology (HPO) 
( RRID:SCR _ 006016 ) [ 36 ], Online Mendelian Inheritance in Man 

(OMIM) ( RRID:SCR _ 006437 ) [ 37 ], and NCBI Taxonomy Database 
Ontology (NCBITaxon) ( RRID:SCR _ 000479 ) [ 38 ] can be uploaded 

into SODAR for local querying as OBO or OWL files, without the 
need to r el y on third-party APIs. Manual entering of ontology 
terms is also allo w ed. It is possible to include multiple ontology 
terms in a single cell, and 1 or se v er al ontologies can be used in a 
single column. 

In addition to cell editing, the user can insert and r emov e r ows 
for study and assay tables. Cells for existing sources, samples, ma- 
terials, or processes are autofilled by the editor when including 
a ne w r ow. Similarl y, if m ultiple r ows contain r efer ences to the 
same entity, all related cells are automatically updated in the ta- 
bles when modifying them on a single r ow. SODAR v alidates all 
edits using the AltamISA parser [ 33 ]. This ensures the validity 
and ISA-Tab compatibility of the sample sheets at each point of 
editing. 

When editing sample sheets, old sheet versions are stored as 
bac kup. These v ersions can be compar ed and r estor ed in case of 
mistakes, as well as exported from the system. SODAR allows for 
sample sheet export in the full ISA-Tab TSV format or simplified 

Excel tables. Replacing existing sheets with versions modified out- 
side of SODAR is also supported. 

Integr a ting SODAR Core–based sites 

Se v er al subcomponents of the SODAR serv er suc h as pr oject and 

user management ha ve pro ven to be useful in other contexts. We 
hav e extr acted them into the SODAR Cor e softwar e pac ka ge [ 32 ],
which forms the foundation of other projects such as VarFish 

( RRID:SCR _ 023710 ) [ 39 ] and Kiosc ( RRID:SCR _ 023711 ) [ 40 ]. Using 
a common library for projects and access management has sev- 
er al adv anta ges and enables the integration of VarFish and Kiosc 
with SODAR. 

SODAR can be configured to work as a “source” site. Applica- 
tions based on SODAR Core can then be configured as “target” sites 
of the source site. Projects and access to users will then be syn- 
c hr onized to target sites . T his allows us to manage sample and 

experiment definitions in SODAR and upload corresponding vari- 
ant data to V arFish. V arFish can then use the REST APIs defined 

by SODAR for sync hr onizing sample metadata, suc h as pheno- 
type terms, dir ectl y fr om SODAR. Similarl y, users can upload mass 
data files into the iRODS data repository and create access tokens 
to them in SODAR. These tokens can be used to provide data vi- 
sualization applications in Kiosc with data access via HTTP and 

iRODS protocols or external applications such as UCSC Genome 
Browser. 

SODAR administr a tion 

We provide a straightforw ar d w ay to install SODAR and re- 
lated components (SOD AR, iRODS , Da vrods , and supporting 
database servers) and maintain such an installation based on 

Docker containers and Docker compose. Detailed installation 
nstructions can be found in the “sodar-server” source code 
epository [ 41 ]. 

The entire system can be set up using an external LDAP
r Activ eDir ectory serv er for users and cr edentials or as an
lternative in a standalone fashion where SODAR hosts this 
nformation. Existing iRODS installations can also be used 

ith SODAR. For administr ators, SODAR featur es dashboards 
hat provide statistics regarding projects and usage of storage 
esources. 

vailability of Supporting Source Code and 

equirements 

roject name: sodar-server 

� Pr oject homepa ge: https:// github.com/bihealth/ sodar-server
� Operating system: Linux/Unix 
� Pr ogr amming langua ge: Python 

� License: MIT 

� RRID: SCR_022175 
� Biotools: biotools:sodar 

a ta Av ailability 

ll supporting data and materials ar e av ailable in the GigaScience
igaDB database [ 41 ]. 

dditional Files 

dditional File 1 . Data management software comparison table.
omparison of features between SODAR and related data man- 
 gement softwar e 
dditional File 2. SODAR sample sheet editor. Figure consisting 
f screenshots of the SODAR sample sheet editor with its major
eatures annotated 

bbreviations 

PI: a pplication pr ogr ammable interface; BAM: binary alignment
a p; BIDS: Br ain Ima ging Data Structur e; CDISC: Clinical Data In-

er change Standar ds Consortium; CUBI: Core Unit Bioinformatics; 
MF: data management framework; DRS: data repository system; 
GA: European Genome-phenome Archive; ELN: electronic labo- 
atory notebook; GEO: Gene Expression Omnibus; GHGA: German 

uman Genome-phenome Arc hiv e; GUI: gr a phical user inter-
ace; HDF5: Hier arc hical Data Format v5; HPO: human phenotype
ntology; HTTP: hypertext transfer protocol; IDS: Instrument- 
pecific Data System; IGV: Integr ativ e Genomics View er; iR ODS:
ntegrated Rules-Oriented Data System; ISA: Investigation, Study,
ssa y; JSON: Ja vaScript object notation; LDAP: lightweight di-
 ectory access pr otocol; LIMS: labor atory information mana ge-
ent system; MIT: Massachusetts Institute of Technology (also 

ommonly used with “MIT license”); NCBI: National Center for 
iotechnology Information; NFDI: Nationale Forschungsdaten- 

nfrastruktur (German National Research Data Infrastructure); 
BO: Open Biological and Biomedical Ontologies; OMIM: Online 
endelian Inheritance in Man; OpenBIS: Open Biology Informa- 

ion System; OWL: Web Ontology Language; PAM: pluggable au- 
hentication mechanism; PEP: Portable Encapsulated Projects; 
BAC: role-based access control; RDM: resource data manage- 
ent; REST: r epr esentational state tr ansfer; SDM: scientific data
anagement; SDMS: scientific data management system; SODAR: 

ystem for Omics Access and Retrie v al; TSV: tabular separ ated

https://scicrunch.org/resolver/RRID:SCR_006016
https://scicrunch.org/resolver/RRID:SCR_006437
https://scicrunch.org/resolver/RRID:SCR_000479
https://scicrunch.org/resolver/RRID:SCR_023710
https://scicrunch.org/resolver/RRID:SCR_023711
https://github.com/bihealth/sodar-server
https://scicrunch.org/resolver/RRID:
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2016.
 alues; UCSC: Univ ersity of California, Santa Cruz; VCF: variant
all format; WebDAV: Web-based Distributed Authoring and Ver-
ioning; XML: Extensible Markup Language. 
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