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A weak‑labelling and deep learning 
approach for in‑focus object 
segmentation in 3D widefield 
microscopy
Rui Li 1,2, Mikhail Kudryashev 2,3 & Artur Yakimovich 1,4,5*

Three‑dimensional information is crucial to our understanding of biological phenomena. The vast 
majority of biological microscopy specimens are inherently three‑dimensional. However, conventional 
light microscopy is largely geared towards 2D images, while 3D microscopy and image reconstruction 
remain feasible only with specialised equipment and techniques. Inspired by the working principles of 
one such technique—confocal microscopy, we propose a novel approach to 3D widefield microscopy 
reconstruction through semantic segmentation of in‑focus and out‑of‑focus pixels. For this, we 
explore a number of rule‑based algorithms commonly used for software‑based autofocusing and 
apply them to a dataset of widefield focal stacks. We propose a computation scheme allowing the 
calculation of lateral focus score maps of the slices of each stack using these algorithms. Furthermore, 
we identify algorithms preferable for obtaining such maps. Finally, to ensure the practicality of our 
approach, we propose a surrogate model based on a deep neural network, capable of segmenting 
in‑focus pixels from the out‑of‑focus background in a fast and reliable fashion. The deep‑neural‑
network‑based approach allows a major speedup for data processing making it usable for online data 
processing.

Gaining insights into biological processes in three dimensions (3D) is vital for understanding biological mecha-
nisms, as well as improving translation between in vitro and in vivo1. However, following the historical concept 
of microscopy, the vast majority of common techniques used in laboratories remain focused on acquiring 2D 
images. Among other existing techniques, confocal laser scanning microscopy (CLSM)2 remains the most widely 
used to capture 3D information about biological entities. During CLSM imaging, the pinhole present in the opti-
cal path filters out the scattered light, ensuring all the captured intensities are in-focus. This process is repeated 
for each focal plane as the acquisition moves along the axial  axis3. In this way, CLSM reconstructs the clear 3D 
models of biological entities slice-by-slice. Other prominent 3D imaging techniques include the optical section 
of the specimen in selective plane illumination microscopy (SPIM)1,4 and holotomographic  microscopy5–7. SPIM 
or lightsheet microscopy typically performs optical sectioning by illuminating the specimen with a sheet of light 
positioned orthogonally to the imaging path. In fluorescence microscopy, this allows to excite fluorophores only 
in the focal plane, minimising scatter. Holotomographic microscopy, in turn, employs the holography principle 
to obtain the 3D image of the  specimen8. However, longer imaging time, high requirements for trained personnel 
or facility, as well as high equipment complexity and costs often make these techniques less accessible than tra-
ditional widefield microscopy. At the same time, widefield microscopes and binoculars using transmission light 
are inexpensive, abundant in laboratories across the world, and require minimal training or specimen labelling.

The stepwise acquisition of a larger translucent specimen in 3D may also be performed using widefield 
microscopy through sequential alteration of the focal plane. Unlike optical  sectioning3, when widefield micros-
copy is directly applied to 3D specimens, all light—both in-focus and scattered—contributes to the formation 
of an  image9. This introduces the noise from the other focal planes to the recorded images, reduces the contrast 
information and decreases the quality of 3D reconstruction. An ability to separate in-focus and out-of-focus parts 
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of each focal slice would not only allow for precise 3D reconstruction of the specimen but also make such imaging 
modality quantitative. This would be possible through a clear separation of background and foreground pixels.

Separation of in-focus and out-of-focus microscopy images without reference may be achieved algorithmi-
cally using image-based (passive)  autofocusing10. In-focus images of specimens are often rich with context pat-
terns which make neighbouring pixels in the in-focus image less autocorrelative compared to the out-of-focus 
image. This, in turn, leads to greater contrast, wider ranges of intensity, and sharper contour information in the 
in-focus images, making it possible to evaluate images’ in-focus status. Many passive autofocusing algorithms, 
for example,  Vollath11,12,  Brenner13, and  Variance14 are designed based on this concept. Another more recently 
proposed  approach15 employs a discrete wavelet  transform16, which decreases with the blurring of the image. 
Yet, most of them are used to evaluate the in-focus status of the whole images or slices in a focal stack. Further-
more, most of these algorithms are relatively slow to compute. This may be addressed using surrogate machine 
learning models (ML). For example, models based on deep neural networks (DNNs) are recently showing great 
promise in a plethora of microscopy  applications17–19. With the development of DNNs has gained more popular-
ity in various computer vision tasks (image  classification20,  segmentation21 and object detection, etc.). Through 
convolution operations, the DNN models extract features from images on multiple scales. These diverse features 
enhance the accuracy of vision tasks. Specifically, in Waller et al.19. have reviewed the potential of DNNs in 3D 
 microscopy19. Chen et al.22 proposed a 3D convolutional DNN and validated the algorithm for medical image 
segmentation. Yet, DNN models are known to perform best when used in a supervised ML setting, which would 
require manual data annotation.

To lower the burden of manual annotation, here we created a novel DNN model for widefield focal sectioning 
through in-focus pixel segmentation, trained using algorithmically derived Ground Truth (GT). Then, to further 
improve relevance we employ fine-tuning on the manually segmented GT. It is worth mentioning, that similar 
approaches to obtain the GT algorithmically have been proposed  previously23–25. The widefield microscopy image 
dataset we employed contains in vivo transmission light focal stack micrographs of the Danio rerio (zebrafish) 
larva’s  head26,27. To obtain the GT we investigated 9 algorithms commonly used in autofocusing tasks including 
 Brenner13,  Variance28,  Tenengrad10,29, etc. These algorithms obtained focus-score maps of each slice using a slid-
ing window approach and maxima Z-projection. Next, we compared the sensitivity of the focus measurement 
algorithms using the output of focus measurement algorithms as a focus score. To ensure that the output of these 
algorithms represents a good proxy for in-focus pixels we compared these outputs to a manually annotated test 
subset (manually segmented GT). We concluded that five detectors—Variance, Vollath, Standard  Deviation14,30, 
Brenner, and Laplacian—were superior to others in detecting changes of focus planes. It is worth noting, that 
Standard Deviation and Variance, while correlated scale differently in assessing contrast. After the assessment 
of the target segmentation qualities, we concluded that the Standard Deviation (std) detector outperformed the 
others in evaluating the focus status of images. Next, we adopted a DNN model with the U-Net31 architecture to 
obtain a surrogate model speeding up the previous focal score computation process.

Our results suggest that using conventional algorithms as weak labels, DNN may be employed as a sur-
rogate model for the detection of in-focus pixels in stable quality. This solution separates the in-focus pixels 
from image stacks of widefield microscopy, enables the optical sectioning in a digital manner, and reveals the 
3D information of the specimen. This, in turn, can make in vivo 3D imaging widely accessible for laboratories 
with modest funding.

Methods
Dataset source and ethics declaration. The dataset of this work comes from the observation of in vivo 
zebrafish (Danio rerio) larvae heads recorded as focal stacks using a stereomicroscope (Leica M205FA; Leica 
Microsystems, Nussloch GmbH, Nussloch, Germany). All images were obtained at × 130 magnification with a 
1 × objective. The lateral resolution was 0.79 μm per pixel. To obtain a focal stack, twenty Z-planes were captured 
covering a total axial distance of 171 μm at 8.55-μm intervals and saved as TIFF  stacks26. In each file, the target is 
in the middle of the view field. As stated  in26, the animal experiments were performed according to the Animals 
(Scientific Procedures) Act of 1986 and approved by the Home Office (project licenses PPL P84A89400 and 
P4E664E3C).

An algorithm for segmentation of in‑focus pixels. The focus measurement  algorithms14 evaluate the 
in-focus status through the pixel value patterns in images. Such algorithms give the highest focus score for in-
focus pixel intensities. The focus score decreases when the focal plane changes. While a great number of focus 
detection algorithms have been proposed in the literature (reviewed in  paper28, including an autofocusing algo-
rithm selection). In this work, we investigate the 9 most widely used algorithms. The algorithms can be classified 
into three categories based on their design.

Derivative‑based algorithms. These algorithms assume that in-focus images contain more high-fre-
quency content. Therefore, the pixel intensity changes stronger than in out-focus images. These intensity vari-
ations can be recognised by computing the derivatives of pixel values. We selected the five most promising 
algorithms below.

(1) Brenner  gradient13. This algorithm computes the first-order derivation between the target pixel and its 
neighbours. Equation 1 is presented below with (i(x + 1, y)− i(x, y))2 ≥ θ . Here the θ is a manually defined 
threshold.
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where x corresponds to the pixel position in the horizontal direction, while y indicates the vertical, and i 
corresponds to pixel value (intensity).

(2) Tenengrad29. This algorithm derives from the Sobel operator by detecting the contour in both horizontal 
and vertical directions ( Sx(x, y) and Sy(x, y)).

where x is the pixel position in the horizontal direction and y is vertical.  Sx stands for the Sobel score in x 
direction, and Sy means in y direction.

(3) Laplacian32. This algorithm convolves the image with Laplacian operators and sums the values.

x corresponds to the pixel position in the horizontal direction, while y indicates the vertical.  Lx stands for 
the Laplacian score in x direction, and Ly means in y direction.

(4) Sum Modulus Difference (SMD)33 algorithm calculates the first-order derivation between pixels and neigh-
bours. Here, FSMD represents the SMD score in both x and y directions.

where x indicates the pixel position in the horizontal direction, and y indicates the vertical.

(5) Vollath11,12. The Vollath algorithm computes the derivation between pixel intensity in both horizontal and 
vertical directions.

where i corresponds to the pixel position in the horizontal direction, while j indicates the vertical. g(i, j) 
stands for the grey-level intensities in position (i, j)

Statistic‑based algorithms. These algorithms distinguish the in-focus status by statistical features of 
images (variance, standard derivation, correlation, etc.). Compared to the derivative-based algorithms, such 
algorithms are more stable to noise. The candidates in this work are below.

(F) Standard  deviation14,30. When the images are in-focus, the contrast of pixel values is high. This can be 
detected by calculating the standard deviation, as shown below

where x corresponds to the pixel position in the horizontal direction, while y indicates the vertical. H and 
W stand for the height and width of the image. µ is the mean of the image, and i stands pixel intensity.

(G) Variance14. Similarly to the standard deviation, variance can also detect the pixel contrast. However specifi-
cally to variance, the power operation amplifies the variation differences from pixel values.

where x corresponds to the pixel position in the horizontal direction, while y indicates the vertical. H and 
W stand for the height and width of the image, µ is the mean of the image.

Histogram‑based algorithm. These algorithms assess the patterns of intensity distributions. This work 
inspects one histogram-based algorithm outlined below.

(H) Entropy  algorithm34. This method assumes the in-focus images contain more information about the target. 
Thus, it shows higher entropy scores.

where pi is the probability of pixels with intensity in pixel position i.

Wavelet‑based algorithm. 
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(I) Discrete Wavelet Transform (DWT)15,16.

where the w in the equation indicates the wavelet. The hw(img) stands for the high-pass bands, while the 
lw(img) presents the low-pass band.

Sliding window scheme. To obtain the focus score maps of the high-resolution micrographs, we employed 
a sliding (context) window scanning  scheme35. In this algorithmic scheme, illustrated in Fig. 1a, the context win-
dow is moved across the image with a fixed step (stride). For each step the previously described focus scores (9 
algorithms described above) were computed on pixels within the context window. In accordance to the respec-
tive to the x and y position of the context window, the values of the respective focus scores were then assembled 
into the image-wide focus score map.

Image‑wide focus map. The computation of focus scores employing sliding window scheme was repeated 
on every slice of the image stack in both stride directions (vertical and horizontal). It produces a focus-score 
map of the scanned image. By changing the stride parameters, this scanning generates multiple focus-score maps 
with different perceptions. As the sliding windows are calculated on a fixed lattice independently of the vertical 
or horizontal stride, the results of these calculations are isotropic. Since the in-focus pixels gain higher scores 
in every scanning, their focus scores peak in the stacks. To obtain the distinct changes for each scanning, we 
amplify the difference between in-focus and out-focus pixels through the maxima Z-projections of the focus-
score stack. This operation preserves the highest focus score for patches. As the scanning repeats, the focus score 
of in-focus pixels increases more steeply than the out-focus pixels. Finally, we obtain a focus-score map for each 
slice of the focal stack by reassembling them into a stack and maxima Z-projecting them. This makes it possible 
to distinguish the in-focus pixels from the images. To diversify the perceptions, the strides parameters and size 
of windows can be assigned with multiple values as presented in Fig. 1. This compresses the bias introduced by 
the scanning parameters configurations. Algorithmically, the entire procedure is demonstrated in the following 
notebook: notebooks/focalMap_demo_update.ipynb, which can be located in our online repository: https:// 
github. com/ casus/ deepf ocus.

Ranking of the focus score algorithms. Each widefield microscopy dataset contained twenty Z-slices—
ranging from in-focus to out-of-focus. Besides the changes of focus status in the lateral plane (Fig. 1a), the focal 
plane differs also along the axial direction. We proposed the scanning scheme in Fig. 1b. Applied to the differ-
ent slices, the nine in-focus segmentation algorithms above evaluated the pixels and outputted a focus score for 
every slice. Since each slice corresponds to different focal planes, the focus scores varied from each other. This 
makes it possible to distinguish the in-focus slice from the stacks in the axial direction. The higher the focus 
scores difference between slices, the better the algorithms can recognise the out-of-focus slices.

Deep neural network architecture. This work proposes a 7-layers symmetric U-Net model with a 3-layer 
encoder and decoder structure arranged as follows: C256-C128-C64-C32-DC64-DC128-DC256. Here, “C” stands 
for the convolutional layer, while “DC” stands for the deconvolutional layer. The following number indicates the 
number of output channels. This U-Net segments the in-focus pixels from the widefield microscopy images end-
to-end. This, bypasses calculating the computationally expensive focus score acting as a surrogate model. For the 
training dataset, we use the previous focus score maps as GT masks. The widefield microscopy image paired with 
the corresponding GT masks served as input. The U-Net model learns the transfer between raw widefield images 
and GT masks directly. These GT masks serve as references for in-focus segmentation. After training, the model 
translates the widefield microscopy image stacks into corresponding 3D pixel information.

Computations, training and fine‑tuning. The GPU calculations for this work were performed on a 
Tesla V100, and the 9 rule-based algorithms were run on an AMD Rome core. The training speed for our DNN-
based solution is 1 s/epoch on average resulting in a training time of 8.5 min for a maximum of 1000 epochs. To 
avoid overfitting, we implemented early stopping.

Training (pre-training) and fine-tuning were performed using Adam as the optimiser with 0.001 as a starting 
learning rate. The batch size was 16 and 1 for training and fine-tuning respectively. Early stopping occurred at 
epochs 425 and 700 for training and fine-tuning respectively. Our datasets consisted of 69 stacks (1380 images) 
for pre-training on algorithmic GT. Within this dataset we split the stacks with approximately 0.8:0.1:0.1 ratio 
to obtain training, validation and testing holdouts. For fine-tuning, we used 5 stacks with manually-derived GT 
(100 images) accompanied by 3 stacks (60 images) for validation and 3 test.

Results
Widefield focal stack dataset. To develop an approach for in-focus region detection, we have employed 
a published dataset of Danio rerio (zebrafish) in vivo widefield  microscopy26. In this dataset, the fraction of the 
head of the zebrafish is located in the middle of the field of view. Each observation consists of a stack of 20 images 
taken in different focal planes (focal stack). The last slice (No. 19) of stacks contains mostly in-focus pixels, while 
most of the pixels in the first slice (No. 0) are out-of-focus. The remaining slices contain a mixture of in-focus 
and out-of-focus signals (see “Methods” for details). As a result, we have used 69 stacks (1380 images) for pre-
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training on algorithmic GT, with 0.8:0.1:0.1 split for training, validation and testing holdouts. For fine-tuning, 
we used 5 stacks with manually-derived GT (100 images) accompanied by 3 stacks (60 images) for validation 
and 3 test.

Figure 1.  Sliding window scanning approach for focus score maps computation. (a) Illustrates a perception 
window sliding across the widefield microscopy images in both x and y directions, while evaluating the 
in-focus status of pixels, and outputting the focus-score maps. The three rows show the scanning results with 
window sizes (64, 128, 256). The focus-score maps with bigger perception windows show fewer details. The 
three columns stand for different stride plans for specific window sizes. (b) Shows the axial sensitivity of focus 
measurements. The image stack contains 20 images—from the out-of-focus slice 0 to the in-focus slice 19 
(shown in the OX axis). Min–max-normalized focus score for each tested algorithm is shown in the OY axis. 
Figure legend names algorithms in the order of maximum focus score value reached. (c) Presents the lateral 
sensitivity of focus measurements. The slices of one stack range from out-of-focus (left) to in-focus (right). (d) 
The top row shows an example of how the three detectors (Variance, std, and Laplacian) marked the in-focus 
pixels in the middle slice. This slice contains pixels from both in-focus and out-of-focus. The bottom row shows 
merges of the maps with microscopy images. The scale bar in all images is 500 µm.
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Rule‑based in‑focus region detection. The widefield microscopy datasets of bulk objects, similar to the 
one we employed here, often contain in-focus and out-of-focus lateral regions in each slice of the focal stack. 
These regions change from slice to slice as the focal plane goes through the bulk of the specimen. To distinguish 
the regions of the slice which are in-focus from those that are out-of-focus, we have explored algorithms typi-
cally used for focal plane detection in the axial direction. For each subregion (see sliding window scheme in 
the “Methods” section) in each slice of the focal stack we have computed a score corresponding to the focal 
plane detection algorithm (Fig. 1). Specifically, we compared the following 9 algorithms: Brenner, Tenengrad, 
Laplacian, SMD, Vollath, Std, Variance, Entropy and DWT. To determine the algorithm most suitable to detect 
lateral in-focus pixels we have used three main criteria: the ability to detect the shift in the axial direction, detail 
preservation, and computational time.

Figure 1a illustrates the scanning results from one image (slice). To preserve the homogeneity of the original 
image, this work uses a square perception window (see “Methods” section). As presented in the left part of the 
panel, the perception window slid in the same step size in both horizontal and vertical directions. We tested the 
following windows sizes: 64, 128, and 256. We tested the strides (step sizes) 16, 32, 64, and 128 in this experiment. 
We obtained a focus-score map for each slice of the focal stack by reassembling them into a stack and maxima 
Z-projecting them (see “Methods”).

As presented in the focus-score map in the right part of Fig. 1a, the brightness indicates a high focus score. 
We noted that the smaller the perception window was, the more detailed the scanning result was. Yet, a small 
perception window failed to show the low-frequency information (the global features). For example, the first 
row extracted only contour information, while the other preserved more global information. Conversely, the 
large window lost the high-frequency signal (details of images) during scanning leading to undesired results. 
Notably, between the second and third rows, the third row failed to capture the detailed contour information. 
Therefore, the balance between low- and high-frequency signals, the window size 128 proved a more appropri-
ate choice for both global features and local details. Next, we examined the stride parameters for this optimal 
perception window size (Fig. 1a, second row). We noted that the smaller the strides correspond to smoother 
the final focus scores in the map. A smooth focus-score map indicates the structure details of the zebrafish (eye 
contour, body components). Conversely, bigger stride steps allow for retaining more global information. This 
prevents the focus-score map scanning from turning into a simple contour detection method. We further noted 
that all stride parameters contributed valuable detailed information at various levels. Therefore, a better scanning 
process should contain multiple stride values to preserve both high-frequency information and local details.

To determine the appropriate focus metric for each region, we applied the nine described rule-based algo-
rithms on the widefield microscopy dataset. The best focus metric was expected to distinguish images on varied 
focal planes continuously in the axial direction. The in-focus region should score the highest value, while the out-
of-focus region should rank at the bottom. With this in mind, we have measured the outputs of each algorithm 
in comparison to the distance from the perfect focus of a region (defocus). Figure 1b illustrates the sensitivity 
detection to the focal plane changes.

We noted that six (Variance, DWT, Vollath, Std, Brenner, and Laplacian) out of the nine algorithms detected 
the focal plane changes successfully—from slice No. 0 to slice No. 19. Interestingly, the Vollath algorithm rec-
ognized the difference between in-focus images and out-focus images. However, it failed to detect the changes 
continuously in the middle slices of the stacks. In these slices, the amount of in-focus pixels was visually com-
parable to the amount of out-of-focus pixels (mixed-focus slice). However, the Vollath score varied only slightly 
since the fifth slice (see Fig. 1b). In Table 1, we evaluated the time consumption for all nine candidates. Compared 
to the other candidates, the Brenner and Vollath algorithms were much more computationally expensive for the 
same images (16 min/ slice vs. less than 1 min from other candidates). Nonetheless, the results were marginally 
better than Laplacian. Laplacian, at the same time, preserved a great number of finer structures. Therefore, we 
concluded that the four algorithms—Variance, DWT, Laplacian, and Std outperform other algorithms in sen-
sitivity along the axial direction.

Table 1.  The time consumption comparison between 9 candidates for in-focus pixels segmentation. To 
obtain measurements, we evaluated the computation time for segmentation on the whole stack (all 20 slices of 
one example stack). Noteworthy, SMD and SMD2 correspond to two different implementations of the same 
algorithm.

Candidates Computation time (s)

Standard deviation (Std) 203

Variance 199

Laplacian 270

DWT 953

Tenengrad 1212

SMD > 2.4∙104

SMD2 > 2.4∙104

Brenner 1.92∙104

Vollath 1.2∙104

DNN 0.15
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Unlike focal plane detection in the axial direction, the task of detecting in-focus parts of the specimen requires 
focus measurement to distinguish both the in-focus status and the contour information in the lateral direc-
tions. The Fig. 1c presents the in-focus status of two images. Zooming into the same patch of these images, the 
pixel intensities indicate varied contour information. The optimal algorithm should preserve the correct image 
content during the focus status detection. In the first row of Fig. 1d, we calculated the focus score map from the 
mixed-focus images (middle slice, mixture from both in-focus and out-of-focus pixels) with the three algorithms 
above. The detected contour information using the Laplacian differs from the other two. To validate the differ-
ences, we merged the focus score map with the corresponding microscopy image in the second row of Fig. 1d. 
The segmented contour from Laplacian appears to show relatively less detail, compared with Std and Variance.

To avoid dataset bias in this judgement, we have further explored Variance, DWT, Std and Laplacian algo-
rithms performance on synthetic images (Sup. Fig. 1). For this we employed Shepp–Logan phantom (Shepp & 
Logan 1974) with and without Gaussian blur of variable degree (6 × 6 and 12 × 12 kernel size). The comparison 
showed that while DWT, Std and Variance algorithms were able to perfectly preserve the low-frequency details, 
only Std and Laplacian were able to preserve the high-frequency details. Remarkably, Std algorithm was able to 
preserve both high-frequency and low-frequency details, while computing almost as fast as the Variance—the 
fastest computing algorithm in our comparison (see Table 1).

Thresholding the focus score map with the Otsu  algorithm36, we obtained the focus score masks as references 
for in-focus pixels. This mask preserves the pixels only from the target focal plane and filters out pixels from other 
focal planes. In Fig. 2a, we compared the segmentations of the three focus algorithms (Laplacian, Variance, and 
Std) to the manual segmented GT for validation. The Laplacian shows severe inconsistency with the manual GT. 
Thus, we concluded that it is inferior to the other two in preserving the correct image content. To be noticed, 
the Variance marks the in-focus pixels in a more conservative way. This yields the loss of specimen information. 
We assessed the information loss of two algorithms (Variance and Std) on whole stacks in Fig. 2b. Compared 
to the manual GT, the Variance barely preserved the complete contour information. The Std, however, showed 

Figure 2.  In-focus masks and pixel segmentation. (a) Shows binary masks from the focus measurements 
corresponding to the respective algorithm. To obtain masks, the focus-score maps were binarized using the 
Otsu thresholding. Comparison with the manually marked ground truth (GT) masks is presented on the right-
hand side. (b) Shows in-focus masks of Variance and Standard deviation merged with corresponding images 
compared to the manual ground truth (GT) in red. The scale bar in all images is 500 µm.
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consistency with the manual GT. This makes the Std the focus algorithm of choice satisfying focus sensitivity 
and the ability to detect the morphology of specimens and fast computation time.

Deep neural network surrogate for the rule‑based in‑focus region detection. We have shown 
that the focus score pipeline with the Std algorithm may generate reliable focus score maps (Fig. 3a). Further-
more, accompanied by automated thresholding algorithms, these maps allow obtaining focus masks which are 
comparable to the manual GT. However, this rule-based pipeline is relatively computationally expensive and 
requires a long time to process image stacks). To achieve similar results in an end-to-end single-step fashion, we 
proposed a DNN surrogate model with the U-Net-like  structure31 Illustrated in Fig. 3b. To obtain the U-Net-
based surrogate model, we used the binary masks captured from the output of the rule-based focus score algo-
rithms as weak  labels24. This way, the model learns directly the transformation between focus score masks and 
raw images. Further improvements may be obtained by fine-tuning on manually annotated data (see “Methods”).

We opted for U-Net architecture as it is commonly used in biomedical image segmentation tasks. U-Net com-
bines the convolutional neural network (CNN) and the Autoencoder (AE) like  structures37. As a representation 
learning model, the first several convolutional layers of U-Net (the encoder part) enhance channel numbers of 
the input images and extract the features in the AE structure. The middle convolutional layer (the bottleneck 
part) encodes the previous features as embedding vectors in the latent space. The last multiple de-convolutional 
layers (the decoder part) upsamples the embedding vectors back into the original images. Optimizing the loss 
between reconstructed images and inputs, the encoder and decoder learn jointly the manifold  structures38 of 
given datasets. In contrast to the traditional AE structures, the U-Net concatenates the up-sampled embedding 
code with the feature maps from the corresponding layers in the encoder  part39. This operation casts constraints 
on the outputs and gives the U-Net an advantage in the supervised learning tasks. This model segmented the 
in-focus pixels directly from the widefield microscopy images.

As illustrated in Fig. 3b, this model contains 7 convolutional layers—3 for the encoder; 1 for the bottleneck; 
3 up-sampling layers for the decoder. The loss function we chose consisted of focal loss, dice loss, and binary 
cross entropy summed up into a total loss. To evaluate the performance of the model, this work adopted the IoU 
 score40 as the metric. As the optimiser, we used Adam with a learning rate of 0.001. After 400 epochs of learn-
ing with a batch size of 8, the model converged to a stable value both for IoU scores and the loss. The final IoU 
for the validation set was around 0.93 (algorithmic GT). Noteworthy, training augmentations including image 
flip and 90 degrees rotation, chosen to avoid introducing new pixels or disturbing morphology, improved our 
performance only marginally (Sup. Fig. 2). As presented in Table 1, this DNN model speeds up the segmentation 
process with 0.15 s for one stack. Even with the training time of 8.5 min in one shot, this solution is still superior 
to other candidates by accelerating the segmentation to at least ~ 1000 times. Noteworthy, this gain comes at the 
cost of accuracy in comparison to the algorithmic GT. Yet, given that the manually-derived GT constitutes the 
true target, the DNN approach allows for performance improvement through fine-tuning. This notion is often 
utilised by the weak-labelling  approach24.

Figure 3.  The pipeline of the in-focus segmentation using deep neural networks. (a) Shows the pre-processing 
part, which scans the regions of image stacks from widefield microscopy and outputs the feature map for the 
maxima projecting. Here, each slice of the z-stack is processed separately. The focus-score map resulting from 
maxima projecting serves as the input for the binarizing step. This process marks the in-focus pixels in the 
focus-score maps as the Weak-label Ground Truth (WGT) masks. (b) The deep learning part adopts the WGT 
masks along with the widefield microscopy images for the surrogate deep neural network (DNN) training. The 
DNN segments directly the in-focus pixels from the original image stacks and presents the 3D information of 
targets. The scale bar in all images corresponds to 500 μm.
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Surrogate model evaluation. The pre-trained U-Net surrogate model can directly predict the focus-score 
mask with the widefield microscopy images as inputs. This approach significantly simplified the segmentation 
compared to the previous focus-score pipeline. Figure 4a illustrates part of the segmentation results. Notably, 
from the completely out-of-focus slice (slice 0) to the completely in-focus slice (slice 19), the DNN model dis-
tinguished the in-focus pixels correctly. In slice 0, the model labelled the whole Image as out-focus. The results 
were largely consistent with the GT mask. As the focal plane changed during optical sectioning, the image con-
tained more in-focus pixels. The predictions of the DNN model stayed reliable. In slice 19, the model labelled 
correctly the whole target as in-focus. However, the model trained on algorithmic GT (pre-training) showed 
minor discrepancies with the manually-derived GT (Fig. 4a, Red Square). This observation was consistent with 
the performance metric. When validated on the manual GT validation performance of the model trained on the 
algorithmic GT dropped from 0.832 to around 0.660 using the test holdout.

To further improve the performance of our surrogate model we have fine-tuned it on an unseen portion 
of 5 manually annotated image stacks containing in total 100 images (Table 2). Remarkably, in such a setting, 
fine-tuning provided a significant improvement in performance on manual GT from 0.660 to 0.784. At the same 
time, the performance of the fine-tuned model on the algorithmic GT dropped only insignificantly (Table 2), 
illustrating that the model training of Std-derived GT can be useful as a pretraining step. Finally, a visual com-
parison of the fine-tuned model to the manually-derived GT (Fig. 4a, Red Square) suggested higher consistency.

The focus-score masks obtained from the surrogate model may be employed for in-focus pixel segmentation 
from the widefield microscopy images. As shown in Fig. 4b, these masks allow for retaining only the in-focus 
part of the image. These, in turn, may be assembled into a 3D model of a specimen. Notably, this is possible by 

Figure 4.  The end-to-end in-focus segmentation model using deep neural network (DNN). (a) Shows input, 
pre-training prediction, fine-tuning prediction, and manual Ground Truth on slices ranging from 1 (out-of-
focus) to slice 19 (in-focus) in one stack. Red square denotes region of prediction improvement upon fine-
tuning. (b) Depiction of the end-to-end pipeline: the trained DNN segments the in-focus pixels from the 
image stacks of widefield images directly. These pixels represent the 3D information of targets. This enables the 
operations of optical sectioning in a digital way by using widefield microscopy.
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employing images obtained using widefield in vivo microscopy, in which unlike in CLSM, both in-focus and 
out-focus light contribute to the formation of the image in every image plane.

Conclusion and discussion
Inspired by the concept of 3D object reconstruction from the focal stacks and software-based autofocusing 
algorithms, this paper proposed an approach to filter in-focus from out-of-focus regions of the image in the 
focal stack obtained in widefield microscopy. The latter can be obtained by altering the focal plane and scanning 
through bulk specimens like live zebrafish (D. Rerio). However, focal stacks obtained by widefield microscopy 
in such a manner contain a mixture of information produced by both in-focus and out-of-focus light. To select 
the optimal focus measurement algorithm, this work investigated nine candidates widely used in software-based 
focal plane detection (Vollath, Brenner, std, etc.). Our experiments showed that for the purpose of in-focus region 
detection and content information preservation, standard-deviation-based pipelines were optimal.

To overcome the computational costs of the rule-based pipeline, we proposed a DNN surrogate model based 
on U-Net architecture for in-focus pixel segmentation. This model was trained to adopt the previous rule-based 
segmentation results as GT. The resulting DNN model filtered out the out-of-focus signals digitally without a 
complex and expensive confocal setup. The segmentation results on the zebrafish dataset showed consistency 
with the manual segmentation GT. Compared to the previous nine candidates, the DNN model outperforms 
others in the calculation speed being at least ~ 1000 times faster by in-focus segmentations. This may likely be 
attributed to the highly parallelised nature of the TensorFlow library. We argue that through such an impres-
sive performance virtual optical sectioning employing surrogate DNN may be well-suited for in vivo widefield 
microscopy. Upon segmentation of the in-focus pixels, our DNN allows us to reconstruct 3D models of the 
specimen obtained from widefield imaging.

While multiple tasks in machine learning and deep learning for microscopy have been proposed in the 
 past17,41–43, no tasks for the separation of in-focus from out-of-focus images have been explored until now. We 
argue that our work opens an avenue to advanced image protocols, such as 3D in vivo imaging using simple and 
inexpensive hardware. Widefield microscopes are abundant in research and education facilities and may find 
new applications using approaches akin to ours. Remarkably, as the GT for our surrogate model was obtained 
purely programmatically, it is tempting to speculate that this approach may be useful in weak labelling and self-
supervised  learning24,44,45.

As a possible extension of this work, a better focus-score pipeline could combine multiple focus measure-
ment algorithms instead of only one. This could possibly enhance the quality of the segmentation. This serves as 
a better GT for training the DNN models. Besides, other DNN structures (pix2pix GAN, transfer learning, 3D 
U-Net, etc.) might bring better performance regarding segmentation accuracy.

Data availability
The program code used in this work is available for use and re-use under an open-source license and can be 
accessed via GitHub (https:// github. com/ casus/ deepf ocus). The Dataset of D. Rerio focal stacks was previously 
published  in26 and raw or additional data is available upon request from the corresponding  authors26. As stated 
 in26, the animal experiments were performed according to the Animals (Scientific Procedures) Act of 1986 and 
approved by the Home Office (project licenses PPL P84A89400 and P4E664E3C). Processed data necessary to 
reproduce this work is available via GitHub repository.
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