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Abstract

High-throughput metabolomics techniques are a useful tool to understand many disease conditions including cardiovascular disease such
as valvular heart disease(s) (VHD). VHD involves damage to heart valves, mostly presenting as stenosis, regurgitation or prolapse and can
be classified into degenerative, rheumatic, congenital, or prosthetic valve disease. Gaps remain in our understanding of the pathogenesis
of the common VHD. It is now fitting to place into perspective the contribution of metabolomics in the mechanism of development,
diagnosis, and prognosis of VHD. A structured search for metabolomics studies centred on human VHD was undertaken. Biomarkers
associated with the pathogenesis of bicuspid aortic valve disease, mitral valve disease, rheumatic heart disease, and degenerative aortic
valve stenosis are reviewed and discussed. In addition, metabolic biomarkers reported to prognosticate patient outcomes of post-valve
repair or replacement are highlighted. Finally, we also review the pitfalls and limitations to consider when designing metabolomics
studies, especially from a clinician’s viewpoint. In the future, reliable and simple metabolic biomarker(s) may supplement the existing
diagnostic tools in the early diagnosis of VHD.
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1. Introduction

Metabolomics is the high-throughput comprehensive
measurement and investigation of small molecules (sub-
strates, intermediate metabolites, and products) within a
biosystem [1]. Metabolomics has become an important
technique in clinical research for biomarker discovery for
several disease conditions and phenotypes, e.g., heart fail-
ure, cancer and chronic kidney disease and contributes to-
wards personalisedmedicine [1–6]. Metabolic phenotyping
has led to the idea of a “metabotype”, i.e., a group of indi-
viduals with similar metabolic profiles which can be used
in precision screening, diagnosis, and prognosis [7]. In ad-
dition to disease phenotypes causing perturbations of the

metabolome, gut or oral microbiome dysbioses have also
been associated with changes in the metabolome [8].

Valvular heart disease(s) (VHD) results from devel-
opmental anomalies of cardiac valves and acquired pathol-
ogy of valvular structure of the heart. VHD are clas-
sified into degenerative, congenital, rheumatic, or car-
diac injury due to mediastinal radiation exposure, car-
diotoxic therapies or carcinoid heart disease. Myocardial
infarction, hypertension, age, and hypercholesterolemia
are some of the risk factors of acquired VHD (Fig. 1)
[9,10]. The VHD types have varying incidences that
depend on the geographic regions and economic status.
Central and sub-Saharan Africa (SSA) showed a high
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Fig. 1. The common valvular heart diseases, aetiologies, and diagnostic techniques. Showing the clinical and potential metabolic
biomarkers. Gamma-Glu-Met, gamma-glutamylmethionine; GSSG, glutathione disulfide; PE, phosphatidylethanolamine; ADMA,
asymmetric dimethylarginine; CMR, cardiac magnetic resonance. Figure created with BioRender.com.

age-standardised prevalence of rheumatic heart disease
(RHD) (29.40/100,000) as of 2017 and an increase in non-
rheumatic VHD from 244.55/100,000 to 247.26/100,000
between 1990 and 2017, respectively [11]. The RHDpreva-
lence trends in Africa and other resource limited regions are
considerably higher than to those seen in developed coun-
tries such as high-income North America or Western Eu-
rope. Africa is also seeing a rise in non-rheumatic VHD
and occur against a background of weaker medical infrac-
structure [11]. The trend in central and sub-Saharan Africa
presents a considerable challenge in diagnosis and manage-
ment of VHD thus simple and reliable biomarkers for early
diagnosis are needed.

The only proven treatment for VHD is timely valve re-
placement or repair, however, it is not always readily avail-
able in all geographical regions. There are limited therapeu-
tic strategies available to halt progression of VHD; clinical
trials of statins were not successful at halting aortic stenosis
(AS) [11]. Metabolomics, therefore, may help in the devel-
opment of new and more effective targeted therapies. This
review highlights the potential of metabolomics in identi-
fying biomarkers which impact on pathogenesis, diagnosis,
and prognosis of common VHD.

2. Pathogenesis and Clinical Diagnosis of
Valvular Heart Disease

The most common VHD are RHD, degenerative AS,
and bicuspid aortic valve (BAV) (Fig. 2). Degenerative AS

commonly presents with calcified aortic valves (AV) caus-
ing a dilated left atrium (LA) and left ventricle hypertrophy
(LVH) [12]. The most common congenital valve lesion is
BAV, where the valve has two leaflets, and mostly presents
with AS [13]. RHDmostly presents with mitral valve (MV)
regurgitation and stenosis, AV regurgitation and stenosis,
and tricuspid regurgitation [14]. Mechanical damage of
heart valves commonly results in rupture of the valves or
chordae tendinae—this can be from biochemical, toxins, ra-
diation, or traumatic injury [15].

Currently, the most accurate method of diagnosing
VHD is transthoracic and transoesophageal echocardiogra-
phy [16,17]. It is performed at discrete time intervals and
is relatively static. On the other hand, dynamic monitoring
of cardiac valvular molecular biomarkers may detect ongo-
ing inflammatory and degenerative valvular changes even
when echocardiography demonstrates a stable valvular con-
dition.

2.1 Rheumatic Heart Disease

RHD is prevalent in SSA (Fig. 2) and is a sequel to
acute rheumatic fever (ARF) after pharyngeal or skin in-
fection with group A Streptococcus (GAS) [11,18]. GAS
M proteins induce autoimmune reactions against the host’s
cardiovascular proteins [18]. M proteins have similar im-
munogenic epitopes to hosts’ myosin, actin, tropomyosin,
and laminin, which stimulate proinflammatory responses
[18]. Genetic susceptibility, low social economic status and
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Fig. 2. Summary of RHD, AS and BAV prevalence, aetiologies, pathogenesis, and pathobiology. LMICs, low- and middle-income
countries; GAS, group A Streptococcus; HLA, human leukocyte antigen; IGH, immunoglobulin heavy locus; ECM, extracellular matrix;
VICs, valve interstitial cells; VECs, valve endothelial cells; NOTCH1, neurogenic locus notch homolog protein 1; GATA5, GATAbinding
protein 5; eNOS, endothelial nitric oxide synthase; RHD, rheumatic heart disease; AS, aortic stenosis; BAV, bicuspid aortic valve.

overcrowded dwellings are some of the risk factors for ARF
and RHD [19]. The immune response leads to the damage
of the quiescent fibroblast-like cells which leads to collagen
remodeling leading to fibrosis, mineralization, and stiffen-
ing of the leaflets [18]. Furthermore, changes in gut and oral
microbiota have been associated with RHD severity [20].

2.2 Degenerative Aortic Stenosis
Degenerative AS is prevalent in high-income coun-

tries (HICs), affecting mainly older persons but the preva-
lence is rising in low- and middle-income countries
(LMICs) [11]. Degenerative AS is characterised by dys-
trophic calcification, and also associated mitral regurgita-
tion due to myxomatous degeneration [11]. Progression of
degenerative AS is linked to activation of myofibroblasts,
osteoblast differentiation or high shear forces [21]. Dys-
trophic aortic calcification is associated with inflammatory
activation, advanced age, smoking status, BAV, and hyper-
tension (Fig. 2) [21]. However, advanced age, smoking,
and hypertension are independently associated with activa-
tion of inflammation pathways [22,23]. In addition, neuro-
genic locus notch homolog protein 1 (NOTCH1), fibrillin-1
(FBN1), and filamin (AFLNA) gene mutations are linked
with the development of degenerative AS and mitral valve
prolapse [21].

2.3 Bicuspid Aortic Valve
Common congenital valve defects are the BAV and

MV prolapse [11]. BAV predominantly leads to aortic
stenosis (AS) and/or regurgitation and calcification [13].
The condition has been shown to be more common in

males, with a male-female ratio of about 3:1. BAV re-
sults from incomplete separation of the leaflets in the de-
velopment stage due to defective cushion formation or sep-
tation of the outflow tract (Fig. 2) [13]. Pathobiology of
BAV is multi-layered including mineralization, inflamma-
tion due to disorganised tissue structure, haemodynamic
stress, and genetic mutations [13]. The mineralization ob-
served in calcific aortic valve stenosis is linked to cell apop-
tosis and necrosis that enables dystrophic calcification pre-
dominately due to accumulation of hydroxyapatite of cal-
cium [13]. In non-calcified BAV, there are anomalies in the
organisation of the valve interstitial cells which lead to ac-
cumulation of proteoglycans, glycosaminoglycans and the
extra cellular matrix which promotes lipid retention [13].
With regards to the haemodynamic stress, a BAV experi-
ences higher blood flow turbulence as compared to tricuspid
aortic valve (TAV) leading to more mechanical stress which
has been shown to cause increased collagen deposition and
mineralization of the leaflets [13].

3. Metabolomics in Valvular Heart Disease
Metabolomics is the comprehensive study of small

molecules (50–1500 Da) and can measure effects of en-
dogenous and exogenous phenomena which affect phe-
notype [1]. Considering the proximity to the biologic
phenotype, metabolomics holds great potential in objec-
tively measuring and understanding tissue pathophysiolog-
ical processes, including the impact of multiple genetic, nu-
tritional, and environmental factors. Due to the early patho-
logical changes inmetabolic profiles and the technical capa-
bilities to analyse multiple features at once, metabolomics
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Fig. 3. Schematic summary of targeted and untargeted metabolomics approaches. GC-MS/MS, gas chromatography with tandem
mass spectrometry; LC-MS/MS, liquid chromatography with tandem mass spectrometry; GC-MS, gas chromatography mass spectrom-
etry; LC-MS, liquid chromatography mass spectrometry; NMR, nuclear magnetic resonance; DIMS, direct-infusion mass spectrometry;
CEMS, capillary electrophoresis mass spectrometry; m/z, mass-to-charge ratio. Figure created with BioRender.com.

can facilitate in-depth investigations of VHD [24–29]. Re-
searchers need to decide a priori whether to use targeted
or untargeted metabolomics approaches for their studies
(Fig. 3).

Targeted experiments are designed for qualitative and
quantitative analysis of specific groups of molecules which
are either chemically related or belong to the same biologi-
cal pathway. A targeted approach is suitable for quantifica-
tion of differences in potential biomarkers between pheno-
types [30]. By contrast, untargeted metabolomics measures
many metabolites in an unbiased manner, i.e., the chem-
ical extraction and analysis methods are not optimized for
specific chemical classes. Untargeted metabolomics is suit-
able for “hypothesis generating” studies allowing discovery
of specific pathways or biomarkers that associate with spe-
cific phenotypes [30], assuming such studies are based on
a well-designed and testable biological question.

Upon data acquisition (especially in untargeted
metabolomics), the raw data is normally processed through
automated or semi-automated bioinformatic pipelines [30].
The initial step in the metabolomics data analysis is
data pre-processing which converts the graphical spec-
tra into computer useable data formats. Data process-
ing includes normalization, peak detection and quantifi-
cation, chromatogram alignment (where necessary), and
filtering [30]. For untargeted metabolomics, data pro-
cessing is followed by structural elucidation and anno-
tation/identification, biomarker discovery statistics, and
functional analysis.

3.1 Applications of Metabolomics in Valvular Heart
Disease

We inputted the search terms “metabolomics AND
valvular heart diseases OR congenital valve diseases OR
bicuspid aortic valve OR degenerative aortic valve OR
calcific aortic stenosis OR myxomatous mitral valve dis-

ease OR rheumatic heart disease”, into PubMed to iden-
tify metabolomics studies of VHD up to 25th July 2022.
A total of 55 studies were found, of which 41 were ex-
cluded due to being reviews, not being studies on VHD
metabolomics, and not being metabolomics studies on hu-
man VHD (Fig. 4). The remaining 14 studies were included
and reviewed and are summarised in Table 1 (Ref. [24–
29,31–38]) and are discussed below.

Fig. 4. Flow diagram of systematic review selection criteria.
VHD, valvular heart disease.

3.1.1 Pathogenetic Biomarkers
Applying metabolomics methods to VHD pathologies

is underutilised. In the preceding ten years up to 2020,
between zero and eight papers a year were referenced in
PubMed on this subject. However, in 2021, at least 19 pa-
pers were published, and there is a slow overall upward
trend. Major focuses of investigations include circulatory
and tissue-specific biomarkers together with their related
pathways and genes.
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Table 1. Summary of the reviewed metabolomics studies in valvular heart diseases indicating the sample size, disease phenotypes, approaches and techniques, bio-samples, extraction
methods, pathogenesis, diagnostic and prognostic biomarkers, and if the studies are validated.

Author and
year

Sample
size

Study
Participants

Approach
(Techniques)

Bio-
sample(s)

Metabolites extraction Pathogenesis biomarkers Diagnostic biomarkers Validated Reference

Das et al.
(2022)

100 RHD vs healthy Untargeted
(LC-MS)

Plasma Methanol (monophasic) (N-acetylneuraminate, Arachidonic acid, D-
Sphingosine, 16(R)-HETE, orotate, inosine, Hypoxan-
thine, linoleate, Prostaglandin B, d-(+)-Pyroglutamic
Acid, l-5-Hydroxytryptophan, Adenosine monophos-
phate, l-glutamic acid, 5-Methoxysalicylic acid,
Prostaglandin A1, d-pantothenic acid, xanthine, (Capro-
lactam, trans-4-Hydroxy-l-proline, dihydroxymandelic
acid, alphaAspartylphenylalanine, 2’-Deoxyuridine,
alpha-Lactose, 4-Nitrophenol, 4-Anisic acid

Caprolactam, N-acetylneuraminate,
trans-4-Hydroxy-l-proline, Dihydroxymandelic acid

No [29]

Jiang et al.
(2019)

154 MVD (MS, MR)
vs healthy

Untargeted (NMR) Plasma Methanol (monophasic) Formate, 2-oxoisocaproate, lysine, tryptophan, alanine,
lactate, 2-hydroxybutyrate, Octanoate, Acetate, Crea-
tine, Acetone, Calcium, N-Acetyl Glycoproteins

Formate, lactate No [26]

Al Hageh et al.
(2020) 92 AS vs healthy Untargeted (GC-MS) Urine andPlasma

Plasma; Methanol, water,
and chloroform (biphasic) -

trans-Aconitic acid, myristic acid, methylmalonic acid,
7-Dehydrocholesterol, 2,4-Di-tert-butylphenol, malonic acid,

2-Hydroxyhippuric acid, 3-Hydroxyhippuric acid, succinic acid,
glycerol, quinic acid, uric acid, stearic acid, 4-Deoxyerythronic
acid, 3-(3-Hydroxyphenyl)-3-Hydroxypropanoic acid (HPHPA)

and myo-inositol

No [25]

Urine; methanol
(monophasic)

Elmariah et
al. (2016)

44 AS with AKI vs
AS no AKI

Targeted (LC-MS) Plasma acetonitrile/methanol/formic
acid (monophasic)

- 5‐adenosylhomocysteine, xanthosine,
trimethylamine‐N‐oxide (TMNO), cysteamine, C4‐butyryl
carnitine, and C4‐methylmalonyl carnitine, kynurenic acid,

xanthosine, TMNO, taurine, asymmetric/symmetric
dimethylarginine, cysteamine, short‐chain acyl carnitines,

creatinine

No [38]

Elmariah et
al. (2018)

44 AS (with &
without LVH)

Targeted (LC-MS) Blood - - acylcarnitines (C16, C18:1, C18:2, C18, C26), choline,
kynurenine

No [37]

Haase et al.
(2021)

50 High gradient
AS vs healthy

Targeted
(LC-MS/MS)

Plasma - Acylcarnitines, amino acids and biogenic amines, sphin-
gomyelins, PC, LysoPC, and PC

Amino acids and biogenic amines, glycerophospholipids,
LysoPCs, PC, SM:PC, LysoPC:PC, acylcarnitines,

creatinine, triglycerides, alanine

No [36]

Mourino-Alvarez
et al. (2016) 44 AS vs AR Untargeted and

targeted, Multi-omics
(GC-MS)

Plasma ACN (monophasic) serine, citric acid, tartronic acid, 6-octadecanoate-a-D-
glucopyranoside, succinic acid, 5-hydroxytryptophan,
isoleucine, malic acid, aspartic acid, aminomalonic
acid, leucine, gluconic acid, alanine, threonine, 1-
monolinolein, pyroglutamic acid, tetrahydroxypentanoic
acid 1,4-lactone,glycine and sorbitol pyroglutamic acid
and succinic acid, alanine

Pyroglutamic acid, succinic acid, alanine Yes [31]

Olkowicz et
al. (2017)

85 Degenerative
AS vs healthy

Targeted,
Multi-omics

(IP-RPLCMS/MS,
Shortgun
LC-MS/MS
proteomics

Plasma ACN (monophasic) Arginine, Homo-L-arginine, Asymmetric dimethylargi-
nine, Symmetric dimethylarginine, 4-Hydroxyproline,
Betaine, 3-Methylhistidine

- No [33]
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Table 1. Continued.
Author and
year

Sample
size

Study Participants Approach
(Techniques)

Bio-
sample(s)

Metabolites
extraction

Pathogenesis biomarkers Diagnostic biomarkers Validated Reference

Surendran et
al. (2020)

106 CAS stages Targeted and
untargeted (LC-MS
and LC-MS/MS)

Aortic
valve
biopsies

Methanol,
acetonitrile, and

water
(monophasic)
chloroform and

methanol
(biphasic)

Triglycerides, random glucose, creatine, LysoPE,
MG, LysoPA, pyridinoline, glycoursodeoxycholic
acid, LysoPC, PC

LysoPAs No [32]

van Driel et
al. (2021)

19 AS vs healthy Untargeted
(DI-HRMS)

Serum Methanol
(monophasic)

9’-carboxy-gamma-tocotrienol, 3-polyprenyl-4,5-
dihydroxybenzoate, asparaginyl-Phenylalanine

(phenylalanyl-asparagine, dihydropteridine,
alpha-tocotrienol, 9’-carboxy-gamma-tocotrienol,

3-hydroxymelatonin, 3-polyprenyl-4,5-dihydroxybenzoate,
Prostaglandin F1a, alpha-linolenyl carnitine, 14-HDoHE,

24,25,26,27-Tetranor-23-oxohydroxyvitamin D3,
11beta,20-Dihydroxy-3-oxopregn-4-en-21-oic acid)1

No [24]

Xiong et al.
(2020)

57 BAV AS vs TAV
AS

Untargeted (GC and
LC-MS)

Plasma Methanol
(monophasic)

L-Glutamine, L-Proline, Hydroxyproline, pyrrile-
2-carboxylic acid, NS-Succinyl-L-ornithine, sper-
mine, (L-Glutamine, L-Arginine, Pyruvic acid, Ho-
mocarnosine, Ornithine)2

(6-Keto-prostaglandin F1a, Leukotriene B4, Arachidonic
acid, Leukotriene E4)3, (15-KETE, 15(S)-HETE,

arachidonic acid, prostaglandin G2, Thromboxane B2,
Leukotriene A4, Leukotriene B4)4

No [28]

Martinez-
Micaelo et al.
(2020)

212 BAV vs TAV Untargeted
(LC-MS)

Plasma Methanol and
dichloromethane

(biphasic)

Alpha-Tocopherol, choline Alpha-tocopherol No [27]

Chessa et al.
(2021)

44 BAV vs healthy Untargeted (NMR) Urine - 3-hydroxybutyrate, Alanine, Creatine, Glycine, Hip-
purate, Taurine, Betaine

Glycine, Hippurate, Taurine No [34]

Wang et al.
(2016)

100 BAV vs healthy Untargeted
(LC-MS)

Serum Methanol
(monophasic)

- Glycerophospho-N-oleyl ethanolamine, monoglyceride,
phosphatidylethanolamine

No [35]

1Prognostic biomarkers for ventricular reverse remodelling post-AVR, 2Pathogenesis biomarkers that reversed expression post-TAVR, 3Prognostic biomarkers changed pre-TAVR, 4Prognostic biomarkers changed post-TAVR. ACN,
acetonitrile; AS, aortic valve stenosis; CAS, calcific aortic stenosis; AKI, acute kidney injury; LC-MS, liquid chromatography mass spectrometry; LC-MS/MS, liquid chromatography with tandem mass spectrometry; GC-MS, gas chro-
matography mass spectrometry; NMR, nuclear magnetic resonance; IP-RPLCMS/MS, ion-pairing reversed-phase liquid chromatography with tandem mass spectrometry; DI-HRMS, direct-infusion high-resolution mass spectrometry;
LVH, left ventricle hypertrophy; BAV, bicuspid aortic valve; TAV, tricuspid aortic valve; MVD, mitral valve disease; MS, mitral valve stenosis; MR, mitral valve regurgitation; KETE; keto-eicosatetraenoic acid; HETE, hydroxyeicosate-
traenoic acid; PC, phosphatidylcholine; RHD, rheumatic heart disease; SM, sphingomyelines.
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To the best of our knowledge, few studies have ex-
plored the metabolic profiles in RHD. However recently,
Das and colleagues have reported dysregulation of metabo-
lites involved in Purine, Glutamine, Glutamate, Pyrimi-
dine, Arginine, Proline and Linoleic metabolic pathways
in rheumatic heart disease patients [29]. Like other se-
vere valvular heart diseases, the dysregulated pathways
were mostly energetic and amino acid metabolism path-
ways. Further, the involvement of linoleic acid metabolism
may suggest proinflammatory processes in RHD since it has
previously been linked to activation of vascular endothelial
cells [29]. As indicated earlier, RHD most often affects the
mitral valve leading to mitral valve stenosis or regurgita-
tion. Mitral valve disease has been associated with dys-
regulation of inflammatory processes, energy metabolism,
amino acid, and calcium metabolism. Further, serotonin
and branched chain amino acids were reported to be dysreg-
ulated in both humans and canines [26]. The dysregulation
of serotonin and related amino acids may suggest involve-
ment of autocrine serotonin signaling in myxomatous mi-
tral valves [26]. Further, the dysregulation of the autocrine
system and fatty acids in valvular heart conditions may ex-
plain the increased rates of depression among heart disease
patients [39].

Mourino-Alvarez used metabolomics to study AS.
Metabolites involved in the alanine pathway and immune
response processes were reported to be dysregulated in pa-
tients with AS [31]. Similar findings were reported by a
multi-omics study that found dysregulation of inflamma-
tion proteins, lipids dysregulation, and changed amino acid
profiles in AS patients [33]. Inflammation is thought to
have a significant contribution towards worsening of cal-
cification as is also seen in atherosclerosis [40]. Metabolic
signatures have also shown a strong correlation with clini-
cal parameters for valvemorphologies, VHD severities, and
classical markers of cardiac injury [24,28,33]. Surendran et
al. [32] investigated the tissue-specific metabolic profiles
in patients at different stages of calcific aortic valve stenosis
(CAS), i.e., mild to severe CAS. Their findings suggested
that pathways involved in lipid metabolism and biosynthe-
sis are mostly associated with CAS severity [32]. Specifi-
cally, LysoPE, monoacylglyceride (MG), and LysoPA and
their metabolic species showed the strongest associations
with CAS severity [32]. From their findings, LysoPA was
strongly implicated as a factor in the rate of CAS progres-
sion [37]. In a similar study, dysregulation of nitric oxide
synthesis, fatty acids, and tetrahydrobiopterin metabolism
was reported post-aortic valve replacement (AVR) in CAS
[24]. Dysregulation of fatty acids and eicosanoids may be
indicative of inflammatory processes in patients with severe
AS in a similar process to atherosclerosis [24]. Interest-
ingly, the levels of antioxidant metabolites, NOmetabolism
metabolites, and steroids involved in inflammatory path-
ways reversed toward healthy control levels 4 months post-
AVR [24]. Such reversals post-valve replacement may ei-

ther suggest that they are involved in the worsening of the
valve pathologies, or they may represent adaptive strategies
to protect the heart or body from the consequences of car-
diac insufficiency.

With regards to bicuspid aortic valve disease (BAV),
dysregulation of urinary metabolites which map to glycine,
serine and threonine metabolism, and the taurine metabolic
pathway were associated with its pathologies [34]. In ad-
dition, Martinez-Micaelo and colleagues [27] reported in-
volvement of alpha-tocopherol and choline pathways while
comparing stenotic bicuspid and tricuspid aortic valveswith
and without dilatation. The dysregulated pathways suggest
a role for inflammation, oxidative stress, and endothelial
damage in congenital aortic valve pathologies [27]. In addi-
tion, Xiong and colleagues [28] reported valve-specific dif-
ferences in dysregulation of metabolic biomarkers mapping
to arginine and proline metabolic pathways both before-
transthoracic aortic valve replacement (TAVR) and 7 days
post-TAVR in BAV and tricuspid aortic valves, and that
arachidonic acid may be predictive of poorer haemodynam-
ics following surgery in BAV.

3.1.2 Diagnostic Biomarkers

Diagnostic tools and guidelines already exist to
identify VHD [16,17]. However, early detection and
screening are challenging. Several metabolomics stud-
ies have investigated metabolic biomarkers that could
be used for early detection and diagnosis of VHD.
Caprolactam, N-Acetylneuraminate, arachidonic acid,
L-5-Hydroxytryptophan, D-Pantothenic acid, and 4-
Nitrophenol showed good performance in distinguishing
RHD patients from healthy individuals [29]. Additionally,
Jiang and colleagues [26] reported formate and lactate as
having very good performance as diagnostic biomarkers
for mitral stenosis and mitral regurgitation with high
sensitivity, and specificity.

Further, a study that compared plasma and urine
metabolic profiles reported biomarkers with capabilities of
differentiating aortic valve stenosis patients from healthy
controls [25]. It was also one of the few studies that in-
vestigated the comparability of different biofluids in their
utility as biomaterials for biomarker research [25]. Their
findings showed that biomarkers detected in plasma were
in agreement to those detected in urine and had excellent
biomarker performance after metabolomics data were nor-
malized to creatinine levels [25].

Urinary glycine, hippurate, and taurine showed good
diagnostic performance at differentiating patients with
BAV from healthy individuals [34]. Urine has the dis-
tinct advantage that it can be collected at home and
is pain free to collect. In addition, based on logis-
tic regression and receiver operating characteristic (ROC)
curve analysis results, Wang and colleagues [35] reported
serum glycerophospho-N-oleyl ethanolamine, monoglyc-
eride, and phosphatidylethanolamine as suitable biomark-
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ers to diagnose BAV patients from healthy participants.
Their findings indicate that dysregulation in lipids and
lipoprotein metabolism are the main drivers of endothelial
damage and inflammation in calcific BAV. In addition, a
proteomics andmetabolomics study reported a panel of pro-
teins and metabolites associated with “coagulation, inflam-
mation and immune response”, “response to ischaemia”,
and lipid metabolism as potential discriminatory biomark-
ers between calcific aortic stenosis and aortic regurgita-
tion [31]. Metabolic profiling could also be used for sen-
sitive screening procedures by associating it with specific
valvular morphologies. A recent study used random for-
est prediction to show that alpha-tocopherol is a poten-
tial metabolic biomarker capable of predicting aortic valve
morphology or dilation of the ascending aorta in BAV pa-
tients [27]. Combining alpha-tocopherol, endothelial mi-
croparticles (EMPs) and C-reactive proteins (CRP) showed
a strong ROC specificity and allowed for the discrimination
of aortic morphologies of the studied patients [27].

3.1.3 Prognostic Biomarkers

Since it is often challenging to predict patients’ out-
comes post valve replacement intervention using conven-
tional means, there is a need for biomarkers with high
prognostic accuracy. However, there are very few stud-
ies that have investigated multivariate metabolic biomark-
ers for predicting outcomes post valve repair or replace-
ment. A targeted metabolomics study following surgery
observed a decrease in formerly elevated amino acids, bio-
genic amines, and glycerophospholipids to levels approach-
ing clinically healthy patients, suggesting their involvement
in worsening of aortic valve pathology in patients with high
gradient aortic stenosis [36]. Specifically, metabolites be-
longing to the glycerophospholipids class were reversed
post-TAVR to healthy control levels; glycerophospholipid
metabolism perturbation is associated with dysregulation of
inflammatory processes [36]. Further, while correlating the
dysregulated biomarkers to the clinical parameters pre- and
post-TAVR showed a strong association between acylcarni-
tine, alanine and phosphatidylcholines (PCs) with changes
in left ventricular ejection fraction (LVEF), left ventricu-
lar end-diastolic diameter (LVEDD), left ventricular mass
index (LVMI), and left ventricular posterior wall thick-
ness in diastole (LVPWD) suggesting that the metabolites
could predict reverse remodelling post-TAVR [36]. De-
layed valve replacement in patients with severe AS may
lead to irreversible left ventricle (LV) remodelling. El-
mariah et al. [37] showed long chain acylcarnitines as
suitable predictors of LV reverse remodeling after AVR.
Long chain acylcarnitines (C16, C18:1, C18:2, and C18)
were decreased in AS patients 24 hours post-AVR [37].
In another study, Elmariah and colleagues used plasma
metabolic profiles to predict AS patients’ likelihood of dy-
ing from acute kidney injury (AKI) post-TAVR [38]. Ele-
vated S-adenosylhomocysteine was associated with devel-

opment of AKI and predicted mortality up to 7.8 months
post-TAVR [38]. Xiong and colleagues [28] observed that
a combination of poor hemodynamics and reduced ventric-
ular function before-TAVR combined with dysregulation of
arachidonic acid metabolism pathways post-TAVR was as-
sociated with worse outcome and reduced reverse remod-
elling. This may suggest that arachidonic acid metabolism
could be playing a critical role in the worsening of ventric-
ular function and delayed ventricular reverse remodelling
post-intervention. Xiong et al. [28] showed that thera-
peutically targeting arachidonic acid metabolism protected
against heart failure, decreased myocardial fibrosis, and led
to regained myocardial function. In summary, the reported
prognostic biomarkers indicate that metabolomics has po-
tential in providing biomarkers that may dictate treatment
options.

3.2 Potential Pitfalls and Limitations of Metabolomics in
VHD

The success of metabolomics experiments rides on the
experimental design and sample collection. Metabolomics
is a multi-disciplinary study and bringing disciplines to-
gether to plan studies at the earliest possible stage is im-
portant. Careful study design and sample collection avoid
false discoveries due to poor sample handling and storage,
or confounding factors overinfluencing results [41]. Good
study design starts with a well framed hypothesis, or bio-
logical question which is both defined and testable.

Analytically, some of the common pitfalls in
metabolomics studies can occur during sample prepa-
ration, analysis, statistics, and reporting of biomarkers.
For chemical analysis using certain techniques such as
mass spectrometry, ion suppression or enhancement is a
common phenomenon and often seen in complex matrices
such as plasma or tissues, and it can mask detection of
metabolites of interest; effects can be reduced by using
internal standards, serial dilution or prior matrix clean
up and separation technologies [42]. However, matrix
effect differences can be particularly pronounced in studies
where the physiology between the two classes may be very
different (e.g., particularly high haematocrit levels in heart
failure, or high glucose in diabetics).

Discovery of spurious biomarkers is highly likely due
to statistical errors of chance, especially if analysing many
hundreds of variables concurrently [30]. This phenomenon
is seenwherevermultiple testing is done and occurs because
most medical studies typically allow a 5% chance of a false
positive result (p = 0.05 as a cut off). This becomes addi-
tive the more tests are undertaken, such that, by the time
you have conducted 100 tests, on average, five of them will
be positive purely by chance [30]. Validation of statistical
models is important, and false discovery correction is com-
monly employed in univariate methods to adjust p-values
based on how many tests were undertaken. This has the
unfortunate effect of potentially increasing the type II er-
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ror rate, i.e., increasing the number of false negatives. This
highlights the importance of appropriately powered sample
sizes, independent cohorts, and targeted analyses to follow
up important results.

Full identification of biomarkers in untargeted
metabolomics remains a great challenge and normally re-
quires nuclear magnetic resonance (NMR), but it could be
mitigated by validating the putatively annotated biomarkers
using orthogonal factors such as exact mass, mass spectral
fragmentation data, retention time of the unknown features,
prior knowledge of the kind of metabolites expected in the
sample, and the isotopic peak envelopes of the annotated
features [42]. In the last ten years, the advent of chemical-
rule based algorithms and machine learning to predict de
novo structures, along with the availability of well curated
mass spectral fragment libraries and annotation matching
software have greatly improved the annotation rate.

Many studies reporting metabolic biomarkers in-
volved in pathogenesis often find it challenging to ascribe
causality of circulatory biomarkers to cardiac pathologies
[43,44]. Some of the circulatory biomarkers could be indi-
cators or epiphenomena of metabolic disturbances in other
organs other than the heart, or of altered gut microbiomes
that contribute towards immune and cardiac pathologies.
Some of the studies reviewed here describe metabolites as-
sociated with specific valvular pathologies where the in-
cluded patients had heart failure [28,31]. It is a well-known
phenomenon that patients with severe VHD may present
with heart failure [12–15]. However, the affect heart failure
may have on the observed metabolite changes remains to be
investigated. Therefore, follow-up validation experiments
with knockout models are encouraged where affected path-
ways could be disrupted to ascribe causality to the observed
pathologies. Studies with small sample sizes are another
limitation. The cost of collecting and curating large sample
sizes, and the complexities of accessing invasive tissues re-
main a challenge [31,45].

Even fewer studies investigate disease phenotypes
at different stages of development such as mild and se-
vere VHD, or at best, conduct longitudinal studies to trace
metabolic shifts over a time course [46]. Longitudinal stud-
ies and those including different disease stages would pro-
vide significant insight into the magnitude and direction of
dysregulation of the potential biomarkers but are often fur-
ther confounded with small sample sizes in each disease
stage. To the best of our knowledge, studies comparing cir-
culatory and tissue-specific metabolic profiles in VHD to
determine the reliability of using circulatory biomarkers to
understand cardiovascular diseases are sparse.

4. Conclusions
Congenital, degenerative, rheumatic, or mechanical

valvopathies have different aetiologies and pathogenesis,
but mostly lead to similar pathophysiology which remains
challenging to detect in the early stages. Metabolomic tech-

niques have been used for discovery and quantification of
diagnostic biomarkers and to identify those that have an
impact on cardiovascular diseases pathogenesis. The field
of metabolomics has seen a steady improvement in ana-
lytical technologies and development of tools for data pro-
cessing and analysis. We have summarised studies that re-
port on metabolic biomarkers which describe the pathogen-
esis of calcific aortic stenosis, degenerative mitral valve
stenosis, rheumatic heart disease, and congenital valvular
heart diseases. We have summarised biomarkers used for
diagnosis and prediction of post-intervention outcomes in
BAV, CAS, and mitral valve diseases. We have also high-
lighted potential limitations and pitfalls that are common in
metabolomics studies. To the best of our knowledge there
are very few metabolomics studies that have investigated
rheumatic valve diseases despite it being endemic in de-
veloping countries. The study of metabolomics could be
of interest to improve understanding of the pathogenesis
and prognosis of VHD that are endemic in LMICs. How-
ever, it will be of great importance to assess how much
metabolomics changes is relate to a specific VHD or are
rather a reflection of the associated heart failure. Studies
on VHD with specific degrees of heart failure as well as on
heart failure not due to valvular heart disease may help to
assess if metabolomics may be proposed as a diagnostic and
prognostic biomarker in the specific field of VHD.
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