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Abstract DNA damage response inhibitors have a potentially important therapeutic role in 
paediatric cancers; however, their optimal use, including patient selection and combination 
strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with 
diverse mechanisms of action and the limited number of paediatric patients available to be en-
rolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors 
targeting homologous recombination-deficient tumours have been used primarily in the treatment 
of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood 
tumours, and therefore, a specific response hypothesis is required. Combinations with targeted 
radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor- 
related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the 
same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors 
with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA- 
PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric 
development. There should be an overall coordinated strategy for their development. Therefore, 
an academia/industry consensus of the relevant biomarkers will be established and a focused 
meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated 
activity in desmoplastic small round cell tumours and have a potential role in the treatment of 
other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 in-
hibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these 
inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the 
intent to further investigate responders and non-responders with detailed retrospective molecular 
analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational com-
bination therapy, which is limited by overlapping toxicity. To maximally benefit children with 
cancer, investigators should work collaboratively to learn the lessons from the past and apply 
them to future studies. Plans should be based on the relevant biology, with a focus on simulta-
neous and parallel research in preclinical and clinical settings, and an overall integrated and 
collaborative strategy.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY- 
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The DNA damage response (DDR) is a complex process 
that includes signal transduction pathways required for 
preserving genomic stability. Dysregulation of the DDR 
can cause several human disorders, including cancer, 
accelerated ageing and developmental abnormalities. 
There has been rapid growth in the development of 
DDR pathway inhibitors, including agents targeting 
PARP, ATR, ATM, DNA-PK, PKMYT1, DNA poly-
merase theta (Polθ, also referred to as POLQ) and 
WEE1. The optimal use of these drugs, including pa-
tient selection and combination treatment strategies, 
remains largely unknown for paediatric cancers. 
Moreover, there is an imbalance between the high 
number of DDR targeting drugs, with diverse mechan-
isms of action, and the limited number of paediatric 
patients available to be enrolled in early-phase trials; 
thus, prioritisation and a harmonised strategy to study 
these agents through collaboration are essential.

To date, several PARP inhibitors are approved in 
adult cancer patients with BRCA mutations or DDR 
biomarker-positive malignancy, and the investigation of 
this class of products has been ongoing in several pae-
diatric cancer trials since 2009 [1]. There are both on-
going paediatric clinical trials evaluating these agents 
and active regulatory submissions of initial Paediatric 
Study Plans (iPSPs) and Paediatric Investigational Plans 
(PIPs). Paediatric patients enrolled in studies of PARP 
inhibitors have significant variability in target histolo-
gical tumour types, and tumour-agnostic approaches are 
being explored. Fewer studies have evaluated other 
DDR targeting agents, including ATR, ATM, DNA- 
PK, CHK1, WEE1, Polθ and PKMYT1 inhibitors in 
paediatric patients.

The multistakeholder Paediatric Strategy Forum or-
ganised by ACCELERATE [2,3] in collaboration with 
the European Medicines Agency (EMA) with the par-
ticipation of the US Food and Drug Administration 
(FDA) aimed to evaluate the science, facilitate dialogue, 
share information and foster prioritisation [4–11]. The 
Forum addressed key issues in the ongoing development 
of PARP and other DDR pathway inhibitors, specifi-
cally: (1) How best to use biomarkers to identify the 
optimal patient populations for these medicinal pro-
ducts? (2) Which genomic aberrations render tumours 
sensitive to these agents? (3) The most effective trial 
designs to evaluate these agents. (4) Based on knowledge 
of biology, what are the most promising rational com-
binations, including novel-novel combinations?

The meeting was held at the EMA, Amsterdam, on 
27 and 28 October 2022. There were 124 participants, 63 
in person and 61 virtually: 41 international clinical 
paediatric oncology and biology experts from Europe, 
the United States of America (USA), Canada and 
Japan; an expert in adult anti-cancer drug development: 
43 representatives from six pharmaceutical companies in 

Europe, Canada and the USA (AstraZeneca, GSK, 
Merck KGaA, Pfizer, Repare Therapeutics, Roche); 
seven patient advocates from Europe, the USA and 
Nigeria (representatives from Andrew McDonough B+ 
Foundation, Children’s Cancer Cause, The Dorcas 
Cancer Foundation, Imagine for Margo, KickCancer, 
Solving Kids’ Cancer, Zoé4life and Childhood Cancer 
International Europe); 30 regulators from the EMA 
(including the Paediatric Committee [PDCO]) and na-
tional competent authorities within the EU regulatory 
network, European Health Technology Agencies and 
US FDA as observers; and two organisers. An overview 
of the biology of the DDR pathway in childhood 
cancer, experience with PARP inhibitors in adults and 
children and discussion of the relevant biomarkers was 
first presented by academic experts to form a basis for 
discussion of other DDR pathway inhibitors. Details of 
15 inhibitors of the DDR pathway were presented by 
companies or academic investigators. The Forum con-
cluded with the patient advocates’ perspective and a 
multistakeholder strategic discussion.

2. Biology of the DDR pathway and rationale for DDR 
pathway inhibitors in paediatric cancer

Human cells continually encounter DNA damage from 
endogenous and exogenous sources with DNA single- 
strand breaks (SSBs) being the most common while 
DNA double-strand breaks (DSBs) being the most 
detrimental. In order to repair such DNA damage, cells 
leverage the coordinated and complex DDR signalling 
cascade. This begins with an initial wave of DNA da-
mage recognition, for example, PARP has a DNA- 
binding domain which recognises SSB and DSB, ATR 
binds to exposed single-stranded DNA coated by re-
plication protein A, whereas ATM and DNA-PK are 
recruited by MRN and Ku, respectively, to the sites of 
DSB and mediate distinct repair pathways. This initial 
DNA recognition is then followed by a signalling cas-
cade, including the activation of the mediator proteins 
involved in cell cycle regulation and recruitment of ad-
ditional repair proteins (e.g. ATR and ATM activate 
CHK1 and CHK2, respectively; DNA-PK recruits the 
endonuclease Artemis). This signalling cascade thus in-
volves recognition and correction of DNA damage, as 
well as inhibition of cell cycle progression, thus pro-
viding time for repair to occur [12–16] (Figs. 1 and 2).

There are different processes for DSB repair: (1) 
classical non-homologous end joining (c-NHEJ); (2) 
homologous recombination (HR); (3) single-strand an-
nealing (SSA) and (4) alternative end joining (a-EJ). 
Some proteins are involved in multiple repair processes 
and others play a preferentially focused role in the DDR 
pathway (e.g. DNA-PK with c-NHEJ as well as POLQ 
with a-EJ) [14,17,18]. PARP1 and PARP2 enzymes 
participate in the response of SSB in DNA [12] but are 
also involved in DNA damage signalling. Compared to 
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healthy cells, cancer cells have a higher degree of DNA 
damage due to oncogene-induced replication stress, ac-
cumulation of R-loops (RNA/DNA hybrids, which 
form when transcription and replication collide), aber-
rant DNA repair processes (e.g. PGBD5 [19], alternative 
lengthening of telomeres [ALT]), as well as acquired 
defects through loss/inactivation of aspects of the DDR 
machinery. As such, cancer cells therefore rely on an 
enhanced DDR for their survival [15,16,20,21].

Based on the primarily activated kinase, the DDR 
response includes overlapping pathways, which are po-
tentially targetable at different levels: (1) ATM-CHK2- 
CDC25A-CDK2 and p53-p21 preferentially respond to 
DSB to inhibit cell cycle progression into S-phase; (2) 
ATR-CHK1-CDC25C-CDK1 preferentially respond to 
replication-associated damage in S and G2/M to inhibit 
cell cycle progression into mitosis; (3) WEE1 and the 
related PKMYT1 are involved in the DDR response 
downstream at the level of CDK1 and CDK2, that is, at 
the level of regulation of cell cycle checkpoints; and (4) 
DNA-PK preferentially responds to DSB when HR is 
unavailable [15,17,18,22].

Stress on the genome (DNA damage, errors during 
DNA replication and aberrant DNA replication signalling 
or collision with the transcription machinery) results in re-
plication stress/stalled replication fork during DNA re-
plication and thereby single-stranded DNA being exposed. 

ATR and its downstream target CHK1 are recruited to 
alleviate replication stress [23]. If effective in their repair, 
replication stress is resolved and DNA synthesis resumes. 
However, if these regulatory proteins fail to stabilise the 
stalled replication fork, it can collapse and DSB occurs 
unless alternative pathways (such as those mediated by the 
complementary ATM/CHK2 pathway) repair the break. 
Replication stress arises from events such as RB1 loss of 
function, CCNE1 amplification, MYC/MYCN amplifica-
tion, oncogenic fusions and trapped PARP inhibitors.

Synthetic lethality (whereby inhibiting two targets 
together results in cell death but inhibiting one 
target alone does not) occurs with PARP inhibition in 
tumours with loss of function of BRCA genes, or more 
broadly, homologous recombination deficiency (HRD). 
Paradigms of this are BRCA-mediated breast and 
ovarian cancer, but also prostate and pancreas cancer. 
PARP inhibition and trapping lead to an accumulation 
of DSB both by preventing repair of SSB and through 
trapping of PARP at the DNA. DSBs cannot be re-
solved by cNHEJ or SSB repair mechanisms but can be 
repaired in cells competent for HR. Tumour-specific 
inactivating BRCA mutations result in deficient HR, 
and these unrepaired DSBs therefore enable selective 
cancer cell death [12].

Aberrant regulation of transcription is an important 
source of endogenous DNA damage in cancer cells. During 

Fig. 1. DNA damage response pathway. a-EJ, alternative end joining; c-NHEJ, classical non-homologous end joining; HR, homologous 
recombination; SSA, single-strand annealing.
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transcription, the nascent RNA generated by RNA poly-
merases can hybridise with the DNA template, giving rise 
to a three-stranded structure called an R-loop [20]. In 
cancer cells, R-loops can accumulate and interfere with 
faithful replication, although paradoxically these have also 
been shown to be involved in mitigating replication stress. 
In response to aberrant R-loop accumulation, ATR is re-
cruited to facilitate DNA repair. Thus, it has been hy-
pothesised that inhibitors of the ATR-CHK1 pathway may 
be a particularly effective approach to targeting tumours 
with R-loop accumulation [23].

Molecular profiling data in paediatric cancers in-
dicate that BRCA1 and BRCA2 mutations are very rare 
(< 2%), as are ATM mutations (< 3%) [24–29]. How-
ever, there are alterations in paediatric cancer that could 
result in synthetic lethality with DDR inhibitors, in-
cluding ATR inhibitors, for example, MYC amplifica-
tion, aberrant transcription factor gene fusion (PAX3- 
FOXO1, EWSR1-FLI1), increased R-loops, ALT 
/ATRX mutations and the oncogenic mutator PGBD5 
[19,30,31]. For most of these alterations there are pre-
clinical but not clinical data, supporting synthetic leth-
ality. Some examples are 

1. MYC amplification: In neuroblastoma, combined inhibi-
tion of aurora-A kinase and ATR induces rampant tu-
mour-specific apoptosis and tumour regression in MYCN- 
amplified transgenic mouse models [32]. In neuroblastoma 
cell lines and patient-derived xenograft (PDX) models, ri-
bonucleotide reductase subunit M2 (RRM2)-CHK1 in-
hibition acts synergistically, illustrating the therapeutic 
potential [33], and chromosome 11q loss and MYCN am-
plification demonstrate synthetic lethality with CHK1 in-
hibition, possibly due to inactivation of ATM on 11q [34].

2. Aberrant transcription factor gene fusion: EWS-FLI1 and 
EWS-ERG translocations have been shown to sensitise 
Ewing sarcoma cells to ATR inhibitors [35,36]. ATR in-
hibition also causes increased DNA breakage in PAX3- 
FOXO1 fusion-expressing alveolar rhabdomyosarcoma 
models, suggesting that this tumour entity may also be 
particularly sensitive to ATR inhibition [37,38]. There are 
many more potentially susceptible paediatric tumour 
histologies, for example, other fusion-positive solid tu-
mours, several paediatric brain histologies and subgroups 
of many others with particular susceptibilities.

3. Increased R-loops in certain paediatric tumours, for ex-
ample, in Ewing sarcoma [39] or embryonal tumours with 
multilayered rosettes (ETMR) [40], may contribute to their 
sensitivity to DDR inhibitors, including selective agents 

Fig. 2. DNA damage response pathway and the cell cycle. 
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discussed as well as conventional DNA-damaging che-
motherapy (e.g. topoisomerase 1 inhibition). Potentially, 
cells with R-loops may also be sensitive to ATR inhibition 
as ATR is necessary for R-loop resolution [23].

4. ALT: The majority of osteosarcomas utilise alternative 
lengthening of telomeres (ALT) as a mechanism for telo-
mere maintenance [41–43]. ALT renders cells hypersensi-
tive to ATR inhibition since these cells require ATR for 
telomere maintenance [44]. Furthermore, as there are sev-
eral paediatric cancers with ATRX mutations (e.g. osteo-
sarcoma, neuroblastoma, medulloblastoma, high-grade 
glioma) and as ATRX inactivation promotes ALT, ATR 
inhibition may be a rational therapeutic approach for tu-
mours with ATRX loss [45,46].

5. PGBD5: Several paediatric tumours have increased en-
dogenous DNA damage from the oncogenic mutator 
PGBD5, which is synthetically lethal with ATR inhibition 
in several paediatric tumours [19,30,31]. Preclinical (in vitro 
and in vivo) evidence demonstrated that the ATR inhibitor 
AZD6738 (ceralasertib) has exceptional in vitro selective 
activity against the majority of PGBD5-expressing pre-
clinical childhood tumour models, including rhabdoid tu-
mour, medulloblastoma, neuroblastoma and Ewing 
sarcoma [31]. The relative PGBD5 expression levels cor-
relate with sensitivity to ATR inhibition. As the aberrant 
catalytic activity of PGBD5 is restricted to tumour but not 
normal cells, this opens the opportunity to exploit synthetic 
lethality with potentially less normal tissue toxicity.

Secondary resistance to PARP inhibitors occurs in 
adult cancers by several mechanisms, most frequently 
restoration of HR through BRCA reversion and also 
hyper-activation of the ATR/CHK1/WEE1 pathway 
and stabilisation of replication forks [47]. In paediatric 
cancer, due to the high-level replicative stress, it is 

conceivable that in most cases there is the risk of pri-
mary resistance to single-agent PARP inhibitors.

In summary, the current DDR inhibitor development 
is driven by findings from the treatment of adult in-
dications, and although paediatric cancer is different, 
DDR inhibitors likely have important therapeutic roles. 
Based on the aspects outlined above, single-agent syn-
thetic lethality with DDR inhibitors is unlikely to be 
widely applicable [48], and therefore, a sensitisation/ 
combination approach is favoured. Combination 
therapies which take paediatric tumour biology under 
consideration and enhance the potential for synthetic 
lethality may help to overcome ’primary resistance’. 
Thus far, data supporting predictive biomarkers of 
clinical response in the paediatric setting are scarce, and 
complementary biomarker analysis must be included in 
clinical trials. Biomarker profiles are likely to reflect a 
constellation of findings rather than single-gene altera-
tions. The most informative trial design will be driven 
by a clear hypothesis with the intent to further in-
vestigate responders and non-responders with detailed 
retrospective molecular analyses to generate a revised or 
new hypothesis.

3. Products discussed at the Forum and PIPs

Fifteen medicinal products – olaparib (Lynparza®), ta-
lazoparib (Talzenna®), niraparib (Zejula®), AZD5305, 
AZD9574, RP-2119, AZD6738 (ceralasertib), M1774, 
RP-3500, BAY-1895344 (elimusertib), ACR-368 (pre-
xasertib), AZD1390, M4076, peposertib and RP-6306 
– are discussed (Table 1).

Table 1 
DNA damage response pathway inhibitors discussed at the Forum 

Product Target Paediatric 
clinical trials 
(academic)

Paediatric 
investigation 
plan (PIP)

Company

Olaparib PARP 6 (5) + AstraZeneca
Talazoparib PARP 5 (4) + Pfizer
Niraparib PARP, CNS penetrant [136,137] 2(1) + GSK
AZD5305 PARP-1 selective 0 AstraZeneca
AZD9574 PARP-1 selective, CNS penetrant 0 AstraZeneca
RP-2119 Polymerase theta (Polθ) 0 Repare Therapeutics
AZD6738 (ceralasertib) ATR 2 (2) AstraZeneca
M1774 ATR 0 Merck KGaA
RP-3500 (camonsertib) ATR 2 (0) Roche
BAY-1895344 (elimusertib) ATR 1 (1) Bayer
ACR-368 (formerly prexasertib)† CHK-1 3 (3) Acrivon
AZD1390 ATM CNS penetrant 0 AstraZeneca
M4076 ATM 0 Merck KGaA
Peposertib DNA-PK 0 Merck KGaA
RP-6306 PKMYT1 1 (0) Repare Therapeutics

PARP inhibitors (veliparib, pamiparib, rucaparib) and Wee1 inhibitors were not presented at the Forum.
† Presented by an academic clinician.  
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As of October 2022, there are four published agreed 
PIPs for PARP inhibitors: olaparib (Lynparza®), tala-
zoparib (Talzenna®), veliparib and niraparib (Zejula®). 
Three of these PIPs are for combination therapy: tala-
zoparib plus liposomal irinotecan, veliparib plus radio-
therapy and temozolomide, niraparib plus dostarlimab. 
The indications are disease-specific in three PIPs: re-
lapsed/refractory Ewing sarcoma (talazoparib), newly 
diagnosed high-grade glioma (veliparib); relapsed/re-
fractory neuroblastoma and osteosarcoma, with sub-
sequent upfront evaluation planned in newly diagnosed 
high-risk patients against current standard-of-care re-
gimens if evaluation in relapsed/refractory disease shows 
safety and promising efficacy (niraparib). One indica-
tion is histology-agnostic: HR-mutated solid tumours 
(olaparib). There are no PIPs yet for the other DDR 
pathway inhibitors, but in line with the EU Paediatric 
Regulation a PIP should be submitted soon according 
to the timing dictated by the Regulation (Table 2).

Details of completed and ongoing paediatric trials of 
DDR pathway inhibitors are shown in Table 3. In sum-
mary, there are 26 relevant paediatric trials, 16 with PARP 
inhibitors and 14 with other DDR inhibitors (including four 
with PARP and another DDR inhibitor), involving 11 
products (four PARP inhibitors and seven other DDR in-
hibitors). Most (22/26) are combination trials, nine with 
irinotecan and/or temozolomide (two including radio-
therapy), five with novel agents (two olaparib and 

ceralasertib [PARP and ATR], camonsertib and talazoparib 
[ATR and PARP], niraparib and dostarlimab [PARP and 
PD-1] and RP-6306 and camonsertib [PKMYT1 and 
ATR]) and six with other combinations (chemotherapy, 
radiotherapy).

4. Experience with PARP inhibitors in adults: what have 
we learned?

In 2005 the synthetic lethality of PARP inhibitors and 
BRCA mutations was demonstrated preclinically 
[49,50] and the first clinical trial of olaparib com-
menced [51]. In December 2014 olaparib received its 
first FDA/EMA approval for advanced BRCA mutated 
ovarian cancer [52]. Now PARP inhibitors are ap-
proved in ovarian, breast, prostate and pancreatic 
cancer in various settings, including treatment, main-
tenance and adjuvant.

Validated predictive biomarkers are critical for max-
imising benefit and minimising harm from treatment and 
need to be integrated into clinical trial design. Best re-
sponses to PARP inhibitors are observed with biallelic loss 
of defined homologous recombination repair (HRR) genes 
[53], although most studies have not examined this. Tumour 
biopsies, crucial for DNA sequencing (e.g. targeted, whole- 
exome or whole-genome sequencing), are often performed 
but mutations are not always necessary and other me-
chanisms leading to a functional loss of protein may apply 

Text box 1 Key conclusions of the Paediatric Strategy Forum 

• DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers. Their optimal use, 
including patient selection and combination strategy, remains unknown.

• There is an imbalance between the number of drugs and mechanisms of action and the limited numbers of patients 
available to enrol in paediatric early-phase trials, so prioritisation and collaboration are essential.

• BRCA1/2 mutations occur very infrequently in childhood tumours and are not commonly associated. A different response 
hypothesis is required to that of BRCA mutations with PARP inhibitors.

• Monotherapy trials of PARP inhibitors with the same mechanism of action as previously evaluated are not recommended.
• Combinations of PARP inhibitors with targeted radiotherapy, ATR inhibitors or antibody drug conjugates with topoi-

somerase I payload require evaluation.
• PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration require evaluation.
• As ATR, ATM, DNA-PK, CHK1, Wee1, Polθ and PKMYT1 inhibitors are early in paediatric development, there should 

be an overall coordinated strategy for their development.
• CHK1 inhibitors have activity in desmoplastic small round cell tumour and have a potential role in other paediatric 

malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a 
high priority.

• Early engagement of regulators in the clinical development of agents for paediatric cancers is critical.
• By aligning scientific, regulatory and payer requirements from the inception of a clinical trial, the fewest number of patients 

will need to be enrolled to obtain sufficient evidence for scientific and regulatory purposes.
• Future steps include

▪ To define and develop potential relevant biomarkers, a meeting between academia and industry will be held.
▪ Academic investigators and industry should work collaboratively to collect and investigate the biology of tumours from 

patients exposed to PARP inhibitors, to analyse and compare responders to non-responders.
▪ A focused meeting on ATR inhibitors.
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[54]. Copy number/re-arrangement assessment calling is 
challenging but is essential to demonstrate biallelic loss, 
ploidy and heterogeneity. Furthermore, the limitation of 
immunohistochemistry analysis is that the presence of 
protein does not prove that the protein is also functional.

In metastatic prostate cancer, circulating tumour 
cells [55,56] and cell-free tumour DNA (ctDNA) [57] are 

of value, but the low tumour fraction median (10–30%) 
is a disadvantage, as is the reproducibility, feasibility 
and the interpretability of complex biomarker data. 
Tumour fraction is crucial, and a value < 30% makes it 
very difficult to detect homozygous deletions. Further-
more, the allele frequency matters – if this is 50%, then 
this may be a germline alteration and a very low 

Table 2 
Published paediatric investigation plans (PIPs) agreed for DNA damage response pathway inhibitors 

Product Olaparib (AZ) Talazoparib (Pfizer) Veliparib (AbbVie) Niraparib (GSK)

PIP Modified PIP 2020 (EMEA-002269- 
PIP01-17-M01)

PIP 2021 (EMEA- 
002066-PIP01-20) for 
Ewing sarcoma 
[Waiver 2021 (EMEA- 
002066-PIP02–20) for 
breast/prostate]

Modified PIP 2020 
(EMEA-000499- 
PIP02-10-M01) 
[Waivers for breast 
(2017), and ovarian 
and 
lung (2018)]

Modified PIP 2021 
(EMEA-002268-PIP02-18- 
M01) 
[Waivers for prostate 
cancer (2018, 2019, 2021)]

MoA PARP PARP PARP PARP
Condition Malignant neoplasms (except 

haematopoietic and lymphoid tissue 
neoplasms)

Ewing sarcoma High-grade glioma Malignant neoplasms 
(except haematopoietic and 
lymphoid malignancies)

PIP 
indication

6 months to 18 years with homologous 
recombination repair (HRR) mutated 
solid tumours

Talazoparib in combination 
with liposomal irinotecan (I- 
IRN) for relapsed/refractory 
Ewing sarcoma

Newly diagnosed 
supratentorial high- 
grade glioma

Neuroblastoma (0–18 years) 
Osteosarcoma (0–18 years)

Waiver 0–6 months 0–1 years 0–3 years None
Deferral By 2035 By 2027 By 2027 By 2040
Formulation Capsule, hard 

Film-coated tablet 
Age-appropriate oral solid 
dosage form

Capsule, hard Capsule 
Oral liquid

Film-coated tablet 
Capsule, hard 
Age-appropriate oral liquid 
formulation

Clinical (1) Open-label safety, PK, PD and 
preliminary efficacy – relapsed/ 
refractory solid tumours (including 
primary CNS tumours) with HRR 
deficiency 
(2) Open-label safety and efficacy in R/ 
R non-CNS solid tumours with HRR 
mutations 
(3) Randomised → safety and efficacy 
in relapsed/refractory non-CNS solid 
tumours with HRR mutations

Active, controlled, 
two-part trial: 
Part 1 – recommended 
phase 2 dose, PK and 
safety of talazoparib + 
I-IRN vs. TMZ + I-IRN in 
R/R solid tumours 
Expansion cohort 
patients with HRR and 
double-strand breaks 
signalling defects 
Part 2 - randomised, 
talazoparib + I-IRN vs. 
I-IRN + TMZ in relapsed/ 
refractory 
Ewing

(1) Open-label, non- 
controlled, dose- 
escalating PK, safety 
and 
activity of veliparib in 
combination with 
TMZ in 
R/R malignant CNS 
tumours (0–18 years) 
(2) Double-blind, 
randomised, placebo- 
controlled → safety 
and 
efficacy of veliparib in 
combination with RT  
+ 
TMZ (3–18 years) 
with HGG

(1) Open-label, multiple 
dose, two-part trial → 
PK, safety, activity, 
acceptability of niraparib 
with dostarlimab: 
(1b) R/R solid tumours 
(except CNS) (6 months 
to 18 years) 
(2) R/R osteosarcoma or 
neuroblastoma (6 months 
to 18 
years) 
(3) Open-label, 
randomised, controlled 
efficacy and safety of 
niraparib + dostarlimab 
vs. standard of care in 
relapsed/refractory 
osteosarcoma or 
neuroblastoma (6 months 
to 18 
years) 
(4) Open-label, 
randomised, controlled → 
efficacy and safety of 
niraparib + dostarlimab 
vs. standard of care in 
newly 
diagnosed HR 
osteosarcoma or Stage 4 
neuroblastoma (0–18 years)

CNS, central nervous system.
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percentage (< 10%) is probably sub-clonal and may not 
be clinically relevant [58,59].

An example of PARP inhibitor development in 
adults with prostate cancer is instructive. Successive 
trials in metastatic castration-resistant prostate cancer 
have defined the role of PARP inhibition. The 
TOPARP-A trial demonstrated that olaparib resulted in 
an 88% response rate in patients with DDR biomarkers 
(BRCA1/2, ATM, Fanconi’s anaemia genes and 
CHEK2); in contrast, there was only a 6% response in 
patients who were biomarker negative. The crucial ele-
ment in this all-comers trial design was that the re-
sponders and non-responders had molecular analysis 
(targeted next-generation sequencing, whole-exome and 
transcriptome sequencing and PCR for copy number) 
[54]. The TOPARP-B trial validated the association 
between the DDR gene aberrations and response to 
olaparib, with BRCA2 homozygous deletions having the 
best response [60,61]. There were also responses in pa-
tients with ATM, CDK12 and PALB2 mutations. The 
PROfound trial further refined the role of PARP in-
hibition, supporting a salvage role in metastatic castra-
tion-resistant prostate cancer with defective DDR 
following disease progression on enzalutamide or abir-
aterone [62,63].

The experience of developing PARP inhibitors in 
adults with metastatic castration-resistant prostate 
cancer has highlighted a number of limitations and 
challenges. These include genomic heterogeneity, espe-
cially in advanced disease, early resistance and lack of 
longitudinal response markers (RECIST fails to capture 
early signs of resistance and changes in circulating tu-
mour cells may be more relevant) [56,60,64,65]. Fur-
thermore, biomarker selection for enrichment is still 
suboptimal; there is a need for assays to identify 
downstream signatures of HR-deficient pathways and 
the functional status of HR pathway. Additionally, 
there are difficulties in obtaining tissue and in-
corporating complex assays into routine clinical prac-
tice. Finally, many drug combinations are limited by 
overlapping toxicities.

In conclusion, drugs targeting DDR show great po-
tential, but the challenge is how to approach their de-
velopment in children best. The three key elements are 
(1) innovative trial design; (2) biomarker selection; and 
(3) rational combination therapy, which is limited by 
overlapping toxicity. Patients should be selected to en-
able lower doses for those with hyper-sensitising muta-
tions, and novel dosing schedules should be employed to 
minimise the impact on normal tissue. The critical 
challenges are genomic heterogeneity in advanced dis-
ease and resistance.

5. Experience with PARP inhibitors in children

In children, to date PARP inhibitors have been evaluated in 
Ewing sarcomas, tumours with HRD and diffuse intrinsic 

pontine glioma. Ewing sarcomas are functionally deficient 
in DNA repair despite lacking mutations in DNA repair 
genes [66–68]. There is a strong biological rationale for 
Ewing sarcoma vulnerability to PARP inhibition as the 
characteristic EWS-FLI1 or EWS-ERG genomic fusion 
products interact with the DDR protein and transcriptional 
co-regulator [67]. EWS–FLI1 increases transcription to 
cause R-loops and depletes cells of BRCA1, resulting in 
deficient HR repair [39]. PARP inhibitor-induced cyto-
toxicity in Ewing sarcoma cells was 10- to 1000-fold higher 
after administration of the DNA-damaging agents ir-
inotecan or temozolomide [68]. Furthermore, studies de-
monstrated that talazoparib potentiated the toxicity of 
temozolomide up to 85-fold in Ewing sarcoma cell lines 
[69]. Finally, the combination of talazoparib or olaparib 
with irinotecan and temozolomide led to a complete and 
durable response in more than 80% of the tumours in an 
Ewing sarcoma PDX model [68].

In addition to the treatment of Ewing sarcoma, there 
is also biological and preclinical rationale for PARP 
inhibition in neuroblastoma. Specifically, PARP in-
hibitors may be effective for the treatment of neuro-
blastoma tumours with loss of ATRX function as this 
results in impairment of DDR by HR and impaired 
replication fork progression [45]. Additionally, PARP 
inhibition may be an effective therapy for neuro-
blastoma with high levels of replication stress, such as in 
tumours with 11q loss of heterozygosity (LOH) and 
those with MYCN [70,71].

Unfortunately, the promising preclinical activity of 
PARP inhibition with irinotecan and/or temozolomide 
for the treatment of paediatric tumours has not been 
confirmed clinically to date. In clinical trials evaluating 
PARP inhibitors plus DNA-damaging cytotoxic che-
motherapy for the treatment of Ewing sarcoma, the 
following results have been achieved: (1) ADVL1411 
(COG Phase I evaluating talazoparib plus temozolo-
mide) yielded 0/10 objective responses in Ewing sarcoma 
(two stable diseases for 8 weeks) [72]; (2) in SARC025 
(niraparib plus temozolomide or irinotecan) 1/31 pa-
tients with Ewing sarcoma had an objective response 
(PR). Importantly, the median decrease in tumour 
PARP activity was 89% [73]. (3) BMNIRN (talazoparib 
plus irinotecan with or without temozolomide), 6/41 
patients (Ewing sarcoma [5] and synovial sarcoma [1]) 
had an objective response, including 5/14 (31%) patients 
with Ewing sarcoma [74].

Dose escalation in BMNIRN was limited by gastro-
intestinal and haematological toxicities, constraining the 
ability to achieve doses in patients equivalent to those 
modelled preclinically [68,69,74]. The discrepancy be-
tween the preclinical response rate in the Ewing sarcoma 
PDX model in comparison to those observed clinically 
may reflect the inability to achieve adequate drug con-
centrations within the tumour due in part to inter-
mittent dose schedules required to achieve a tolerable 
regimen [74].
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Discouraging results have been observed in the 
treatment of paediatric non-Ewing sarcoma tumour 
types: (1) PBTC033: (veliparib plus radiation and te-
mozolomide): no difference in survival compared to 
historical controls; accrual stopped for futility [75]; 
and (2) paediatric MATCH, APEC1621H (olaparib as a 
single agent in patients with relapsed/refractory solid 
tumours with defects in either BRCA1, BRCA2, ATM, 
RAD51C or RAD51D), had 0/6 objective responses and 
the study was closed due to slow accrual [76]. Both the 
lack of response and the poor accrual could be due to a 
non-relevant responder hypothesis, in this population 
with a low frequency of these mutations.

However, the preliminary results of ESMART Arm 
D (irinotecanplus olaparib, phase Ib) indicate 3/24 
confirmed PRs (osteosarcoma, neuroblastoma, pine-
oblastoma) and 1 unconfirmed response (rhabdomyo-
sarcoma) in cohort 1 (HRD) and 1/27 CR and 1 PR in 
cohort 2 (Ewing sarcoma) with ongoing biomarker 
correlation [77]. Olaparib is now being combined with 
an ATR inhibitor in ESMART Arm N with 1/18 con-
firmed PR (pinealoblastoma) and 1 PR after cycle 9 
(neuroblastoma) [78].

The majority of combination regimens with a PARP 
inhibitor in paediatrics have administered the inhibitor 
for 5 d [72–75]. In contrast, in ESMART a prolonged 
course of 10 d is given together with low-dose irinotecan 
[77,78]; this is more in keeping with the duration used in 
combination trials, using low doses on intermittent 
schedules, in adults [79].

Combination trials of PARP inhibitors with other 
classes of products (ATR [four trials]), PD-(L)1 in-
hibitors and trabectedin are ongoing (Table 3).

6. Strategies to improve response to PARP inhibitors

The first-generation PARP inhibitors are dual PARP1 
and PARP2 inhibitors/trappers, with the primary dose- 
limiting toxicity being haematological toxicity, espe-
cially in combination [80]. Only PARP1 inhibition/ 
trapping is necessary for synthetic lethality in HR-defi-
cient models [80,81] whilst PARP2 is essential for ery-
thropoiesis in preclinical studies [82,83]. Therefore, 
selective PARP1 inhibitors are expected to have a fa-
vourable toxicity profile, may enable a higher drug ex-
posure to the target to achieve greater and durable 
target inhibition, achieve greater anti-tumour activity 
and potentially enable broader combination options 
[84,85]. PARP inhibitors with greater central nervous 
system (CNS) penetration potentially may have a role in 
CNS malignancies.

In order to address the narrow therapeutic window of 
talazoparib plus irinotecan, irinotecan is administered 
as a liposomal formulation (Onivyde) [86], and is now 
undergoing evaluation in a phase I/II trial (ONITT) 
[87]. The hypothesis is that this formulation could in-
crease intra-tumoural SN-38 (the active metabolite of 

irinotecan) concentrations with decreased systemic 
concentrations, thereby improving response while de-
creasing toxicity. In the preclinical setting, Onivyde plus 
talazoparib led to a complete durable response in an 
Ewing sarcoma PDX model. Other approaches such as 
altering the schedule of administration or tailoring to 
variability in the metabolism of irinotecan are less likely 
to increase intra-tumoural SN-38.

7. Biomarkers for PARP inhibitors

Adults who lack BRCA1/2 mutations may benefit from 
PARP inhibitor monotherapy, and not all patients with 
tumours harbouring BRCA1/2 mutations respond to a 
PARP inhibitor [15]. Therefore in adults a HRDness 
phenotype beyond the narrow scope of defects in the 
BRCA pathway has been proposed. In contrast, there is 
a subset of tumours that demonstrate ‘PARPness’ (re-
sponsiveness to PARP inhibitors in the absence of 
HRD) [15]. A number of biomarkers have been pro-
posed in adults [15] (Table 4), with biallelic loss of de-
fined HRR genes being the most predictive [5,53].

Pathogenic mutations in HRR genes (normally bial-
lelic or mutation with LOH) such as ATR, ATM, 
BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, 
PTEN, RAD50, RAD51B, RAD51C, RAD54L, CDK12, 
CHEK1, FANCL, PPP2R2A and RAD51D are con-
sidered classical biomarkers. DNA mutation signatures 
have been proposed, but these have not been confirmed 
in the paediatric clinical setting, and the definition/iden-
tification of these signatures varies [88–92]. The lack of 
confirmation of these in the paediatric setting is probably 
multifactorial, including the very small size of cohorts of 
patients investigated and lack of responders and non- 
responders undergoing detailed molecular analysis.

SLFN11 (Schlaffen Family Member 11) is a DNA/ 
RNA helicase with many roles [93]. SLFN11 expression 
is associated with higher levels of lethal DNA DSB and 
sensitivity to DDR pathway inhibitors [93–97], in-
cluding talazoparib, and SLFN11 knockout leads to 
decreased sensitivity to PARP inhibitors [98]. While 
SLFN11 expression was detected in approximately 50% 
of adults with small cell lung cancer [99], SLFN11 is 
expressed mostly in Ewing sarcoma, desmoplastic small 
round cell tumour (DSRCT) and osteosarcoma. How-
ever, a PDX generated from a patient with high 
SLFN11 expression treated in the Phase I BMNIRN 
trial did not respond to irinotecan, temozolomide and 
PARP inhibition. This suggests that SLFN11 may be 
necessary but not sufficient for promoting sensitivity to 
DDR pathway inhibitors.

8. Other DNA damage response pathway inhibitors in 
paediatric tumours

There are very few published results of paediatric trials 
of DDR pathway inhibitors (Table 3). There is a 
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biological rationale for combining a PARP inhibitor with 
an ATR inhibitor as (1) PARP inhibitors create PARP- 
DNA adducts (PARP trapping) and these DNA adducts 
stall replication forks and need to be repaired by ATR 
and (2) catalytic inhibition interferes with the repair of 
SSB, leading to replication fork damage that requires HR 
repair [35,80]. The Current Arm N of ESMART is 
evaluating this precise combination (olaparib + cer-
alasertib) in a molecularly enriched population [78].

CHK1 is primarily a G2M checkpoint inducer and takes 
part in HR at stalled replication. Prexasertib (previously 
LY2606368, now ACR-368) is a novel, second-generation, 
selective dual inhibitor of CHK1 and 2 which abrogates the 
DDR checkpoint, allowing cells that have sustained DNA 
damage to prematurely enter mitosis and undergo mitotic 
catastrophe due to incompletely replicated chromosomes 
[100]. The single-agent phase I trial of prexasertib was not 
biomarker selected, had no pharmacodynamics reported 
and had no responses [101]. However, prexasertib induces 
regression in DSRCT PDX models. In a phase I/II study of 
prexasertib and very low dose irinotecan in DSRCT, a tu-
mour where there is an unmet need for new therapies, there 
was an objective response rate of 32% at all dose levels 
including in many patients who had previously received and 
had progressive disease with irinotecan. However, the study 
was closed to accrual prior to completion due to the dis-
continuation of prexasertib supply [102].

Four clinical trials have evaluated WEE1 inhibitors 
in paediatrics: Phase I/II and Phase I (neuroblastoma, 
medulloblastoma/CNS embryonal tumours and rhab-
domyosarcoma) adavosertib in combination with ir-
inotecan [103,104], adavosertib in combination with 
carboplatin (ESMART – Arm C) [105,106] and WEE1 
inhibitor ZN-c3 in combination with gemcitabine in 
osteosarcoma [107]. Responses have been observed in 
neuroblastoma and correlations are made with genomic 
alterations in the DNA repair in ESMART.

Combination strategies for DNA-damaging agents in 
adults initially exploited chemotherapy (topoisomerase 
1 inhibitors, carboplatin, cisplatin and gemcitabine). 
Approaches using other DDR inhibitors (e.g. PARP, 
WEE1 and/or PKMYT1 inhibitors), along with ATR/ 
CHK1 inhibitors and immunotherapy, and radiation 
therapy, warrant evaluation. Overlapping toxicities have 
limited the ability to maximise dosing, but perhaps 
novel formulations such as liposomes and antibody 
drug conjugates (ADC) and alternative schedules have 
the potential to overcome this.

9. Potential predictive biomarkers of activity of ATR/ 
CHK1 inhibition

ATR/CHK1 is involved in the repair of replication 
stress, so biomarkers of response can be classified into 

Table 4 
Potential biomarkers for PARP inhibitors 

Biomarker Details Findings in adults

Priority genes: Biallelic loss or mutation with LOH 
of homologous recombination repair (HRR) 
genes – ATR, ATM, BARD1, BRCA1, BRCA2, 
BRIP1, CHEK2, PALB2, PTEN, RAD50, 
RAD51B, RAD51C, RAD54L, CDK12, CHEK1, 
FANCL, PPP2R2A and RAD51D BRCA1, 
BRCA2, ATM, RAD51C, or RAD51D

Mutations of other genes: e.g. TP53, NF1, RB1, 
CDKN2A, FBXW7, PPP2R1A

DNA mutation signatures: HRDetec Mutational signatures of HRDness have 
been developed through whole-exome or 
whole-genome sequencing.

Signature 3 Possible [161]

Genomic instability signatures
• HRD test Myriad Genetics myChoice
• T5 NGS LOH

Determination of Genomic Instability 
Score (GIS)-algorithmic measurement of 
loss of heterozygosity; telomeric allelic 
Imbalance and large-scale state transitions.

Not inclusive enough in defining 
molecular signatures of HRD tumours 
or fail to capture mechanisms of PARP 
inhibitor sensitivity outside of 
HRDness [162]

Functional biomarkers 
RDA51 foci assessment,

Multigene expression signatures Potential promise as dynamic biomarkers of 
HR repair function and PARP inhibitor 
sensitivity. But derived from comparisons 
of drug-sensitive versus drug-resistant 
tumour models because results from drug- 
sensitivity assays in preclinical models have 
been shown to be highly variable, with low 
levels of inter-assay [163].

Protein expression of PARP1, E-cadherin and/or 
SLFN11
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four groups [108]. CHK1 is downstream of ATR, and 
they are both interlinked but do both have separate 
functions, so a better understanding of the differences 
with ongoing research is required to separate bio-
markers for response. So far, with current knowledge, a 
clear separation is not possible [47]. 

1. Alterations that cause replication stress/or high DNA da-
mage: (i) high expression of (fusion) oncogenes such as 
CCNE1, MYC, MYCN, P3F1 and EWS-FLI1; (ii) ex-
pression of endogenous recombinases such as PGBD5; (iii) 
mutations of other genes: e.g. TP53, NF1, RB1, BRCA1/2, 
CDKN2A, FBXW7 and PPP2R1A; and (iv) increased 
SLFN11 [31,37,108].

2. Signs of active replication stress/DNA damage: (i) DNA 
fibre assays to quantify replication speed/stalling/in-
stability, activation of ATR, CHK1 (phosphorylation); (ii) 
R-loops; (iii) RPA phosphorylation; (iv) DNA damage in 
general (pH2AX, pKAP1) and (iv) extrachromosomal 
DNA [108–111].

3. Synthetic lethalities: (i) ATM loss and ATR inhibition; (ii) 
SETD2 mutations or KDM4A amplifications and WEE1 
inhibition (due to RRM2 levels); (iii) ARID1A or 
SMARCA4 mutations and ATR inhibition; and (iv) 
ATRX [108].

4. Markers causing treatment resistance: (i) low expression of 
FAM122A and resistance to CHK1 inhibitors; (ii) high 
MYT1 expression and WEE1 inhibition; (iii) high RAS- 
MAPK activity and ATR inhibition; and (iv) high AP1 
transcription factor (FOS family) expression and ATR 
inhibition [37,108].

10. ATM, DNA-PK, Polθ and PKMYT1 inhibitors

ATM inhibitors synergise with complementary DNA- 
damaging chemotherapy such as topoisomerase and 
PARP inhibitors, and radiosensitise in vivo preclinical 
tumour models [112,113]. DNA-PK inhibitors have a 
favourable monotherapy toxicity profile and synergise 
with radiotherapy, topoisomerase 2 inhibitors and 
PARP inhibitors in preclinical models [114,115]. The 
effect of DNA-PK inhibitor and radiotherapy combi-
nation on normal tissue must be considered to ensure 
there is a therapeutic window. To date there are no trials 
of ATM or DNA-PK inhibitors in children.

Polθ is a multifunctional DNA polymerase required 
for a-EJ and DSB repair. Polθ becomes essential when 
HR is defective. It is minimally expressed in normal 
tissue and knockout animals have no phenotype [116]. 
The highest frequency of Polθ mutations, anticipated to 
cause susceptibility to Polθ inhibitors, generally those 
associated with HR-deficiency (e.g. BRCA1/2), occur in 
paediatric CNS tumours and sarcomas, adult ovarian, 
breast and gastrointestinal cancers. Polθ inhibitors are 
expected to be well tolerated and may be important in 
the repair of DNA damage due to irradiation [117] and 
chemotherapy [118] and may overcome resistance to 
PARP inhibitors [119].

CCNE1 [120] amplification is among the most com-
monly amplified genes in osteosarcoma, and overexpression 
of Cyclin E has potential prognostic significance. PKMYT1 
inhibition is synthetically lethal with CCNE1-amplified 
cancer cells, leading to the dysregulation of the G2/M and 
G1/S cell cycle checkpoints, respectively [121]. In the ab-
sence of these critical checkpoints, the cancer cell accumu-
lates massive replication stress and DNA damage, and 
ultimately dies. Therefore, PKMYT1 inhibition is an in-
teresting therapeutic approach for CCNE1-amplified can-
cers, including osteosarcoma. There is one ongoing trial of a 
PKMYT1 inhibitor in patients aged 12 and older.

11. Discussion

11.1. Patient advocates’ perspective

Participating patient advocates maintained that colla-
boration and strategy development among stakeholders 
are essential to planning future research on DNA re-
sponse mechanisms. Past clinical work, too often 
lacking sufficient collaboration involving all relevant 
stakeholders, provides important lessons for in-
vestigators and companies as they design more in-
novative therapies. Maintaining simultaneous and 
parallel research in preclinical and clinical settings can 
provide mutually beneficial insights. Advocates stressed 
that it will be necessary to establish new structures to 
sustain collaborations.

Advocates endorsed a joint industry and academic 
proposal to re-analyse tumour material from patients 
exposed to PARP inhibitors and compare responders to 
non-responders to provide further insights. Innovative 
therapies will require prioritising among multiple drugs 
in the same class while focusing on children and ado-
lescents most in need.

Advocates also stressed that their involvement in 
cancer drug development programs, from the earliest 
stages through clinical trial implementation, can be of 
substantial benefit to academic and industry in-
vestigators. Examples include insights about assess-
ments of patients’ quality of life, toxicity reduction 
strategies, maximal use of tumour material and novel 
approaches to trial design.

Achieving a long-term benefit for children must be 
the overarching objective and pervasive aim for any 
integrated research program. However, while children 
and adolescents need access to high-quality clinical 
trials, it is also essential to ensure they have access to 
these novel agents once safety and early signals of effi-
cacy are established.

11.2. General themes

The DDR pathway is a relevant pathway in paediatric 
malignancies despite the low frequency of BRCA1 and 
BRCA2 (< 2%) and ATM mutations (< 3%) [24–29], and 
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the different molecular and immune landscape of chil-
dren’s tumours compared to adults. Despite this, DDR 
inhibitors have been explored less in paediatrics com-
pared to other classes of agents (chemotherapy, targeted 
inhibitors and immunotherapy). The response hypoth-
esis initially investigated for paediatric tumours relating 
to BRCA1 and Ewing sarcoma may not be relevant; 
therefore, new (different from adults) response hy-
potheses for replication stress in children have to be 
generated. There is a need for more consistent pre-
clinical evaluation with panels of representative models 
[122] and ’distribution/sharing’ of access to new models, 
including both front-line, naive-therapy models and re-
lapsed, multitreated models. An emphasis on colla-
boration by sharing preclinical models is paramount to 
the success of new clinical trials that maximise clinical 
benefit in patients. A further question is whether patient 
selection has been appropriate with the current lack of 
biomarkers to select patients.

Collaboration is mandatory at the pre- and clinical 
levels; there should be even greater interaction between 
the European Innovative Therapies for Children with 
Cancer (ITCC) P4 project and the North American 
PIVOT project [123,124], two large platforms that have 
established and molecularly characterised large series of 
PDX models for many different types of paediatric 
cancers. Both platforms facilitate a rapid in vivo pre-
clinical testing of new drugs and rational combinations, 
and the identification of putative response biomarkers, 
resulting in a better prioritisation of drugs and patients 
selected for clinical trials. These preclinical platforms 
provide the hypothesis for selection biomarkers, which 
then can be evaluated in clinical trials. Biological studies 
should be carried out retrospectively, but critically they 
should be incorporated as key components in new 
clinical trials based on preclinical derived responder 
hypotheses. Biomarker studies should be maximised, 
and this highlights the importance of tissue availability 
and pharmacodynamic readouts, as well as evaluating 
the value of circulating DNA. Clinical trials should be 
executed through the rigorously established paediatric 
oncology early trial networks, and there are major ad-
vantages of trans-Atlantic platform trials, particularly 
with the focus on rare genomically defined subgroups.

A combination of a PARP, ATR, CHK1 or other 
DDR inhibitor with an ADC linked to a topoisomerase 
I inhibitor payload may be of particular benefit by fo-
cusing the topoisomerase I inhibitory activity on cancer 
cells and away from normal tissues, thereby creating the 
potential for enhanced ADC activity that is tumour 
selective.

11.3. Regulatory considerations

Early engagement of regulators in the clinical develop-
ment of agents for paediatric cancers is critical. Trial 
design needs to consider regulatory requirements (PIP 

and iPSP) along with a full clinical development 
pathway, including early- and late-phase combination 
trials for novel agents, and for all drugs included in the 
combination (depending on emerging results from the 
early-phase studies, i.e. an iterative process). By aligning 
scientific, regulatory and payer (e.g., European health 
technology assessment bodies) requirements from the 
inception of a clinical trial, the lowest scientifically jus-
tified number of patients needs to be enrolled to obtain 
sufficient evidence for scientific and regulatory purposes 
[3]. Furthermore, there should be simultaneous reg-
ulatory submissions of individual PIPs and iPSPs to the 
EMA and FDA, respectively, in order to facilitate early 
regulatory interactions, for example, at Paediatric 
Regulatory Cluster Calls in view of a global develop-
ment [125–128]. An agreed PIP is a living document 
which can be modified and evolved in light of new evi-
dence – the stepwise PIP. The main goal is to foster 
evidence generation to inform life cycle PIP considera-
tions and support developments based on needs and 
robust science [129].

11.3.1. Paediatric formulation
The development of oral, ’child-friendly’ formulations, 
including palatable suspensions, liquid formulations or 
oral dispersible tablets or mini tablets of the medicinal 
products that are appropriate to be administered to 
young children, is critical. Some of these may be ad-
ministered by gastric tube for patients unable to take 
oral medication. While expensive to create, this process 
is essential to making available the most promising 
compounds to patients of all ages.

11.4. Specific themes

11.4.1. What are the lessons learnt from the development 
of PARP inhibitors?
PARP inhibitors have been evaluated in paediatrics for over 
10 years and a rational biological hypothesis for Ewing 
sarcoma (from preclinical to clinical) has been explored and 
does not appear to be valid, particularly for single-agent 
PARP inhibitors and for combinations of PARP inhibitors 
with temozolomide. Experience of PARP inhibitors with 
temozolomide provides a cautionary note for combinations 
of cytotoxic agents with DDR pathway inhibitors: the 
strong potentiation of temozolomide by PARP inhibitors 
observed in preclinical models (in vitro and in vivo) could 
not be translated to clinical success due to the combina-
tions’ potentiation of toxicity in normal tissues 
[68,69,72,74]. Initial results for the combination of a PARP 
inhibitor plus a topoisomerase I inhibitor were also dis-
appointing, but final conclusions await the results of the 
ONITT phase I/II trial [87]. There have been very few 
clinical responses to PARP inhibitors in children. Currently, 
there are four PIPs for PARP inhibitors (olaparib, talazo-
parib, veliparib, niraparib), three for combination therapy 
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and only olaparib for monotherapy. There are no validated 
biomarkers to identify them.

11.4.2. Future directions for PARP inhibitors
Future evaluation of PARP and DDR should include 
assessment of novel drug combinations, informative 
trial designs driven by a clear hypothesis with the intent 
to further investigate responders and non-responders 
with detailed retrospective molecular analyses to gen-
erate a revised or new hypothesis and collaboration to 
determine the ’best’ biomarkers. As with other combi-
nations, the therapeutic-to-toxicity window of regimens 
evaluating PARP inhibitors and other agents may be 
limiting. Additional dosing strategies that minimise the 
cytotoxic agent and maximise the DDR inhibitor should 
also be explored. The current lack of biomarkers to 
select patients may account for the lack of clinical ac-
tivity despite promising preclinical results. Further in-
vestigation of the role of both HRR gene mutations and 
genomic instability, determined by assessing genomic 
scarring or gene signatures, is needed to inform the se-
lection of paediatric patients for clinical trials. There is 
no rationale to enrol children in trials of monotherapy 
with PARP inhibitors with the same mechanism of ac-
tion as those already tested. A PARP1-specific inhibitor 
requires evaluation to determine whether this class of 
product has advantages (with a very short monotherapy 
phase); similarly, PARP inhibitors with very good CNS 
penetration, such as AZD9574 [130], require assessment. 
Combinations of the current PARP inhibitors with 
chemotherapy (except topoisomerase inhibitors) are 
highly unlikely to be effective, in view of toxicity con-
straints. Combinations, especially of novel-novel agents, 
need to be explored with a strong biological rationale 
and preclinical evidence; for example, MIBG therapy 
for patients with ATRX deletions, ATR inhibitors, Polθ 
inhibitors, radiotherapy, topoisomerase inhibition (not 
as chemotherapy, but as novel formulations, e.g. ADC) 
or immunotherapy. The majority of paediatric tumours 
are immunologically cold; therefore, activity combining 
anti-PD-(L)1 and PARP inhibitors is required from 
ongoing randomised phase III trials in adult patients 
with immunologically cold tumours as variable activity 
has been reported from phase I/II trials [131–134].

11.4.3. CHK-1 inhibitors
This is an important class of products in paediatrics 
because of (1) their activity in DSRCT (tumours which 
are resistant to many other therapeutic approaches); (2) 
preclinical research demonstrating their activity in 
neuroblastoma and (3) their crucial role in the DDR 
pathway. Availability of CHK-1 inhibitors, in particular 
ACR-368 (prexasertib), for clinical trials in DSCRT, 

neuroblastoma and testing strong biological hypotheses, 
is a very high priority.

11.5. ATR inhibitors

In view of their applicability to paediatric tumours, 
ATR inhibitors are a very interesting class of products, 
relatively early in development in paediatrics, and none 
of the four ATR inhibitors in clinical development have 
been approved in adults yet. An integrated and co-
ordinated strategy for their paediatric development 
would benefit children, industry and clinicians.

11.6. Approach to prioritising DNA damage response 
pathway inhibitors

It was concluded, based on the experience with PARP 
inhibitors, that the following rational approach to 
prioritise DDR pathway inhibitors in the future should 
be adopted: 

1. Evidence for mechanism-based tumour-regressing single- 
agent activity: This evidence can come from clinical trials in 
adults or it can derive from paediatric in vivo preclinical 
studies using well-credentialed models. Beyond some pro-
posed synthetic lethal interactions (and by analogy to 
PARP inhibitors and BRCA1/2 mutations), single-agent 
activity is dispensable. For example, ATR (and even more 
so ATM and DNA-PK inhibitors) have very limited 
monotherapy activity in adults.

2. If there is no single-agent activity and clinical efficacy is 
only expected through the use of combination, then one or 
both of the following (ideally both) are important: 
a. Proof-of-concept from adult cancers: There is replication 

stress in adult cancers and having strong evidence that a 
proposed combination of a DDR pathway inhibitor plus 
another anti-cancer agent has a therapeutic window for 
one or more adult cancers is important. When preclinical 
data for a combination is strong in adult cancer pre-
clinical models, then the inability to establish a ther-
apeutic window in adults likely reflects dose-limiting 
adverse effects of the combination on normal tissues. 
This is a red flag as it suggests that there is not adequate 
separation between the effects of the combination on 
replication stress in cancer cells versus the combination’s 
effect on normal tissues.

b. Preclinical in vivo data are generated by panels of re-
presentative paediatric cancer models, for example, in 
the context of the EU-TANSCAN funded BRCAddict 
project [135] to better address the tumour heterogeneity 
in children, showing evidence for combination activity in 
which the addition of the DDR pathway inhibitor 
markedly potentiates the activity of the agent to which it 
is added. It is essential to confirm that the drug levels in 
the preclinical setting approximate the drug levels 
achievable in the clinic.

3. A way to select patients who are likely to respond based on 
either diagnosis or a biomarker.
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11.7. How to best characterise biomarkers to identify the 
optimal patient populations?

There are many potential biomarkers proposed. An in-
tegrated strategy and a consensus, both in academic and 
industry trials, of the investigations and biomarkers to be 
explored would greatly enhance efficiency. Tumour biop-
sies, prior to therapy, with a common portfolio of in-
vestigations for DNA sequencing are crucial prior to 
therapy in order that the responders and non-responders 
have molecular analysis, helping to validate responder hy-
potheses; however, the ethical aspects require discussion 
with patient advocates. Response biomarkers (including 
ctDNA) should be incorporated to detect treatment failure/ 
emerging resistance early. ctDNA is of potential value but 
can have disadvantages as detection of allelic imbalance is 
challenging with low tumour fraction in cell-free DNA. 
However, the detection of a point mutation is feasible even 
with a very low fraction of ctDNA. In addition if a very low 
allelic fraction of a point mutation is detected, the inter-
pretation of allelic fraction is complicated when the actual 
tumour fraction is not known which is common in circu-
lating tumour DNA analysis. No circulating tumour cell 
assays have been validated in paediatric disease. In the de-
sign of novel-novel combinations, data generation of 
pharmacokinetics and safety of each of the components, 
including information on the individual contribution of the 
combinational partner(s), should be considered.

11.8. What are the best trial designs to evaluate these 
agents?

Molecular- and hypothesis-driven proof-of-concept 
trials are crucial. The most informative trial design will 
be driven by a clear hypothesis with the intent to further 
investigate responders and non-responders with detailed 
retrospective molecular analyses to generate a revised or 
new hypothesis.

An innovative trial design, including platform trials, 
should be employed. Approaches include ’pick the 
winner’ designs and adaptive (Bayesian) models. Flexible 
dosing regimens of novel combination should be employed.

11.9. What are rational combinations, based on the 
knowledge of biology, which may be novel-novel 
combinations?

Combinations should be based on and test robust biological 
hypotheses, underpinned by preclinical in vivo data gener-
ated by panels of representative models and/or adult clinical 
studies. ITCC P4 [123] and PIVOT [124] are well placed to 
provide these preclinical data. The principles employed in 
prioritising single agent for evaluation, as described above, 
should be employed. Novel-novel combinations of agents 
with non-overlapping toxicity should be evaluated, and 
there should be caution of combinations with che-
motherapy as overlapping, particularly haematological, 

toxicity may limit the ability to deliver clinically active 
doses. There is a strong rationale for combinations of 
PARP and ATR inhibitors.

12. Conclusion

The DDR pathway is important in cancer drug develop-
ment in children, but strategies must be cognisant of the 
different biology in childhood tumours compared to adults 
(Text Box 1). Rational combinations and approaches need 
to be designed based on the relevant biology. The overall 
approach should be collaboration and prioritisation. In-
vestigators should learn the lessons from the past and apply 
them to the future, working collaboratively – research ef-
forts should be linked, integrated and sustainable. The most 
informative trial design will be driven by a clear hypothesis 
with the intent to further investigate responders and non- 
responders with detailed retrospective molecular analyses to 
generate a revised or new hypothesis.

There has been a substantial delay in the paediatric de-
velopment of DDR pathway inhibitors. Four years elapsed 
between the first trial in adults of a PARP inhibitor and the 
first-in-child trial, and four years between the first reg-
ulatory approval of olaparib in adults by the EMA and 
FDA and approval of a PIP for olaparib. In the future, for 
the benefit of children, this timeline should be shorter.

Three major concrete actions will be taken as a result 
of this Forum: (1) a consensus between academia and 
industry on the relevant biomarkers will be developed in 
early 2023; (2) academic investigators and industry to 
work collaboratively to collect and investigate the 
biology of tumours from patients exposed to PARP 
inhibitors, to analyse and compare responders to non- 
responders to provide further insights; and (3) a focused 
meeting on ATR inhibitors in mid-2023 will be con-
vened. As the paediatric development of the four ATR 
inhibitors currently in development is in its early phase 
in paediatrics, with no drugs yet approved in adults, 
coordination of their development through early inter-
actions with regulators, ensuring timely and adequate 
data generation to support subsequent PIPs life cycle 
decision-making based on evidence, with the same type 
of biomarker information generated in each paediatric 
trial and commitment from the pharmaceutical industry 
to merge the clinical/biological data to inform strategic 
decisions, would be enormously advantageous.

In order that inhibition of the DDR pathways in 
children with cancer is maximally explored and if de-
termined beneficial, development should be based on the 
relevant biology, simultaneous and parallel research in 
preclinical and clinical settings, and an overall colla-
borative strategy, including all stakeholders.
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