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A B S T R A C T   

Background: Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory diseases caused by 
demyelination and axonal damage in the central nervous system. Structural retinal imaging via optical coherence 
tomography (OCT) shows promise as a noninvasive biomarker for monitoring of MS. There are successful reports 
regarding the application of Artificial Intelligence (AI) in the analysis of cross-sectional OCTs in ophthalmologic 
diseases. However, the alteration of thicknesses of various retinal layers in MS is noticeably subtle compared to 
other ophthalmologic diseases. Therefore, raw cross-sectional OCTs are replaced with multilayer segmented 
OCTs for discrimination of MS and healthy controls (HCs). 
Methods: To conform to the principles of trustworthy AI, interpretability is provided by visualizing the regional 
layer contribution to classification performance with the proposed occlusion sensitivity approach. The robustness 
of the classification is also guaranteed by showing the effectiveness of the algorithm while being tested on the 
new independent dataset. The most discriminative features from different topologies of the multilayer segmented 
OCTs are selected by the dimension reduction method. Support vector machine (SVM), random forest (RF), and 
artificial neural network (ANN) are used for classification. Patient-wise cross-validation (CV) is utilized to 
evaluate the performance of the algorithm, where the training and test folds contain records from different 
subjects. 
Results: The most discriminative topology is determined to square with a size of 40 pixels and the most influential 
layers are the ganglion cell and inner plexiform layer (GCIPL) and inner nuclear layer (INL). Linear SVM resulted 
in 88% Accuracy (with standard deviation (std) = 0.49 in 10 times of execution to indicate the repeatability), 
78% precision (std=1.48), and 63% recall (std=1.35) in the discrimination of MS and HCs using macular 
multilayer segmented OCTs. 
Conclusion: The proposed classification algorithm is expected to help neurologists in the early diagnosis of MS. 
This paper distinguishes itself from other studies by employing two distinct datasets, which enhances the 
robustness of its findings in comparison with previous studies with lack of external validation. This study aims to 
circumvent the utilization of deep learning methods due to the limited quantity of the available data and 
convincingly demonstrates that favorable outcomes can be achieved without relying on deep learning 
techniques.  
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1. Introduction 

Multiple sclerosis (MS) is a chronic inflammatory and neurodegener-
ative disease of the central nervous system (CNS) that causes progressive 
neurological disability over time. MS is determined by demyelination and 
neuro-axonal damage that results in tissue loss and progressive neurologic 
deficits (Reich et al., 2018). While the most established method to 
monitor the degree of CNS damage in MS is magnetic resonance imaging 
(MRI) (Filippi et al., 2019), MS leads to widespread changes in the retina 
and optic nerve, which may be assessed with optical coherence tomog-
raphy (OCT) to obtain useful disease biomarkers (Graves et al., 2022, 
Costello and Burton, 2018). OCT-derived imaging markers like peri-
papillary retinal nerve fiber layer thickness (pRNFL) and composite 
thickness of macular ganglion cell layer (GCL) and Inner plexiform layer 
(IPL) (named GCIPL) have been proposed as promising biomarkers for 
neurodegeneration (Paul et al., 2021, Oertel et al., 2019). Inflammatory 
disease activity may also lead to changes in inner nuclear layer thickness 
(INL) (Oertel et al., 2019). Layer thinning can be measured by aligning 
and subtracting retinal layer thicknesses from a normal healthy popula-
tion (Hu et al., 2019, Shi et al., 2019). 

Artificial intelligence (AI) is a promising area of health innovation 
(Pesapane et al., 2018, Oren et al., 2020). Its application in ophthal-
mology is also evident in analysis of different ocular images (Li et al., 
2021, Ting et al., 2019), with purpose of segmenting the retinal 
boundaries (Maloca et al., 2021), discriminating different diseases 
(Yoon et al., 2020, De Fauw et al., 2018) or interpretation of neuro-
logical diseases using quality control (QC) criteria (Petzold et al., 2021). 
Cross-sectional OCTs are successfully employed in AI for detection of 
ophthalmologic diseases. However, the alteration in thicknesses of 
various retinal layers in MS are noticeably subtle to be diagnosed with 
raw cross-sectional OCTs. The other limitation of AI in medical appli-
cations is its black box nature which contradicts with interpretability in 
trustworthy AI. Furthermore, limiting the training and testing datasets 
to single clinical centers leads to less generalizable algorithms. Finally, 
cross-validation (CV) in most of medical AI works is performed 
instance-wise, which overestimates algorithm prediction accuracy 
(Saeb et al., 2017). 

Here we propose an AI method that aims to capture ultra-fine 
changes in thicknesses of various retinal layers by using multilayer 
segmented OCT. The method is interpretable using a novel proposed 
approach, which means regional layer contribution to classification 
performance is visualized using the proposed occlusion sensitivity 
approach. We test the trained model on an independent second dataset 
to show robustness. The patient-wise CV is used where the training and 
test folds contain eyes from different subjects; therefore, in testing stage, 
the performance is measured on a new subject whose data from the 
fellow eye has not been used for training. 

By considering the mentioned concepts, feature selection from 
different topologies of multilayer segmented OCTs is done. We compare 
the performances of support vector machine (SVM), random forest (RF), 
and artificial neural network (ANN), and identify the most discrimina-
tive topology and the most influential retinal layers. This study aims to 
obtain a classification algorithm using AI method based on changes in 
different retinal layers of OCT in the neurodegeneration process to help 
neurologists in the early diagnosis of MS disease. 

2. Materials and methods 

2.1. Structure of the datasets 

Generalizable algorithms are of interest in medical AI, but when both 
training and testing datasets come from single clinical centers, attaining 
this goal cannot be evaluated. We therefore concentrate on two inde-
pendent datasets with different devices in different countries to be used 
as separate training and testing datasets in measuring the robustness of 
the algorithm. 

2.1.1. Charité dataset 
The first OCT dataset is from the NeuroCure Clinical Research Center 

(NCRC) at Charité – Universitätsmedizin Berlin, Berlin, Germany. It 
consists of 422 HC and 106 MS OCTs from two multimodal register 
studies to evaluate quantitative measurements of neuro-axonal damage 
in MS. The OCT data in this dataset includes 40 to 51 B-scans with a size 
of 496 × (479 to 555) pixels for each B-scan. All OCT measurements 
were carried out with an Spectralis SD-OCT and Heidelberg Eye Explorer 
(HEYEX) version 5.7.5.0 by eight individual operators and an automatic 
real-time function for image averaging and an activated eye tracker in a 
dimly lit room. All scans were quality controlled according to the 
OSCAR-IB criteria (Tewarie et al., 2012, Schippling et al., 2015). 
Retrospective inclusion criteria for the study were participants in a 
healthy condition, aged between 18 and 70 years, Caucasian ethnicity, 
and high-quality macular OCT scans. Collecting this dataset was 
approved by the ethics committee of Charité - Universitätsmedizin 
Berlin and was conducted according to the Declaration of Helsinki in the 
applicable version. The macular OCT scans were produced from the 
device and stored in HEYEX vol file format and then a segmentation 
approach was carried out using a segmentation pipeline. All segmenta-
tion results were quality controlled and manually corrected (Motamedi 
et al., 2019). Demographic features of the subjects in this dataset are 
summarized in Table 1. 

2.1.2. Isfahan dataset 
The second OCT dataset is from the Kashani Comprehensive MS 

center in Isfahan, Iran, between April 2017 and March 2019 (Ashtari 
et al., 2021). The images were obtained using Spectralis SD-OCT and 
Heidelberg HEYEX version 5.1 by one trained technician with an auto-
matic real-time (ART) of 9 frames function for image averaging. All 
scans were checked for sufficient quality using OSCAR-IB criteria 
(Tewarie et al., 2012) The dataset consists of 45 HC and 45 MS eyes. The 
automated segmentation was carried out using a graph-based method 
(Kafieh et al., 2013, Kafieh et al., 2015). All segmentation results were 
quality controlled and manually corrected in case of errors by an 
experienced grader using custom-developed software (Ashtari et al., 
2021, Montazerin et al., 2021). However, because of using high-quality 
OCT images, the segmentation errors are not significant and in average, 
don’t have significant effect on classification results. Demographic and 
clinical features of the subjects in this dataset are summarized in Table 2. 

2.1.3. Standardized quality control criteria 
OSCAR-IB criteria is a standard for quality assessment of OCT images 

based on manual evaluation by expert grader. Several indicators are 
considered as quality indicator, forming the abbreviation OSCAR-IB: (O) 
obvious problems, (S) poor signal strength, (C) centration of scan, (A) 
algorithm failure, (R) unrelated retinal pathology, (I) illumination and 
(B) beam placement (Tewarie et al., 2012). This criteria has been vali-
dated for MS (Schippling et al., 2015). 

Table 1 
Demographic and clinical characteristics in participants of Charité dataset.   

HC MS 

Current age, y, mean ±SD 36.5±12.3 41.42±10.11 
Sex, F, n (%) 280 (66%) 70(66%)  

Table 2 
Demographic and clinical characteristics in participants of Iran dataset.   

HC MS 

Current age, y,mean ±SD 26.3±3.06 34.5±8.03 
Sex, F, n (%) 12 (66%) 30 (85%) 
Disease duration, y, mean ±SD NA 7.67±1.37 

AQP4-Ab: aquaporin 4 antibody, y: year, SD: standard deviation 
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2.2. Preprocessing and feature extraction 

Intra-retinal thickness changes in MS are often noticeably subtle 
compared to primary eye disorders (Petzold et al., 2017). Multilayer 
segmented OCTs are therefore used and the distances between pairs of 
retinal layers, called retinal thickness maps, are calculated (Fig. 1). The 
area covered by B-scans around the macula may be oriented. As one 
possible hypothesis, the effect of compensating the orientation angle is 
studied in this work. For this purpose, the thickness maps are rotated to 
have a unique format as input to the next processing steps. The angle 
between a horizontal line through the disc center and the disc–foveal 
line (angle Fovea ONH SLine) (Fig. 2(a)); and the relative direction of 
each B-scan to a horizontal line through the disc center (slope Bscan) 
(Fig. 2(b)) are calculated. The left eyes are also flipped. The value of 
correcting rotation (rotation angle – Fig. 2(c)) is calculated by:    

The rotated thickness maps are cropped to a unique size of 450 × 450 
pixels (Fig. 2(d)). The thickness maps (with/without rotation) from 
different retinal layers including mRNFL, GCIP, sum of GCIP and INL 
layers (GCIP+INL), parallel use of GCIP and INL (GCIP/INL), parallel use 
of mRNFL, GCIP, INL, ONL, and the total macular thickness are 
considered as input to the classification stage. 

To extract different topological information from each thickness 
map, the regions of interest typically follow those defined by the Early 
Treatment Diabetic Retinopathy Study (ETDRS) (Ashtari et al., 2021). 

ETDRS concentric circles are calculated with diameters of 1 mm, 3mm, 
and 6 mm around the fovea, divided into quadrants and forming nine 
macular areas demonstrated in Fig. 1. As alternative topologies, we also 
used different resolutions of the thickness maps in squares ranging be-
tween 20 × 20, 30 × 30, and 40 × 40 pixels. A combination of retinal 
layers, classifiers, evaluation, and dimension reduction approaches are 
used and summarized in Fig. 3. 

2.3. Dimension reduction 

To decrease the model complexity and avoid overfitting, we used 
principal component analysis (PCA) (Shlens, 2014) that deduces infor-
mation from the feature set to make a new feature subspace. Recursive 
feature elimination (RFE) (Chen, 2003) is also used to select subsets of 
the main features. 

2.4. Machine learning algorithms and evaluation method 

Machine learning algorithms are used to explain the patterns in the 
data and to extract information from it. The algorithms in this study are 
SVM, RF, and ANN. 

2.4.1. Support Vector Machine (SVM) 
Support Vector Machine is driven by a linear function wTx + b that 

predicts the classes according to the sign of this function (G et al., 2016). 
In two-class problems, SVM looks for a hyper-plane to divide two 
different classes with a maximum margin. When the original data is not 
separable linearly, a nonlinear transformation with a kernel function can 

Fig. 1. Retinal parameters acquired by OCT. (a) location of sectors and ring scan on SLO image. (b) A-scan, B-scan, and thickness map of OCT data. (c) quadrants in 
ETDRS: central fovea (CF), inner superior (IS), inner nasal (IN), inner inferior (II), inner temporal (IT), outer superior (OS), outer superior (OS), outer nasal (ON), 
outer inferior (OI) and outer temporal (OT). (d) quadrants in the peripapillary circle: superior (S), inferior (I), temporal (T), and nasal(N) (Ashtari et al., 2021). 

rotation angle = angle Fovea ONH SLine if slope Bscans = 0
rotation angle = abs( − 90 − angle Fovea ONH SLine) if 88 < slope Bscan <= 90

rotation angle =
(
angle Fovea ONH SLine deg

)
+ (slope Bscan) otherwise

(1)   
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be used to transfer the feature space to a higher dimension space with 
good separability (Cavaliere et al., 2019). Kernel functions used in this 
study are linear, polynomial, radial basis, and sigmoid. 

2.4.2. Random Forest (RF) 
RF includes many decision trees, and each decision tree prepares a 

classification for input data. RF gathers the trees and chooses the most 
voted prediction as the result. The input of each tree is the sampled data 
from the whole dataset. Moreover, a subset of features is randomly 
chosen from the optimal features to grow the tree at each node (Mao and 

Wang, 2012, Zheng et al., 2017). We used the grid search method 
(Syarif et al., 2016) to optimize parameters of a random forest like the 
number of trees, criterion (the function to measure the quality of a split) 
including Gini and entropy, and maximum features (the number of 
features to be considered when looking for the best split) such as sqrt, 
log2, and auto modes. 

2.4.3. Artificial Neural Network (ANN) 
An artificial neural network (ANN) includes an input layer of neu-

rons, one or two hidden layers, and an output layer that is the universal 

Fig. 2. (a) SLO image in clockwise and counterclockwise rotations. (b) B-scans in different directions. (c) Example of finding the rotation angle), (d) Process of 
rotating a thickness map. 

Fig. 3. (a) Retinal layers investigated by the proposed method. (b) Classification model: SVM, RF, and ANN on four groups of extracted features: square 20 × 20, 
square 30 × 30, square 40 × 40, and 9 ETDRS sectors. (c) Different evaluation and dimension reduction methods in the study. 

Z. Khodabandeh et al.                                                                                                                                                                                                                         



Multiple Sclerosis and Related Disorders 77 (2023) 104846

5

function approximator of the interconnection of human neurons (Asa-
dollahfardi, 2015). To avoid overfitting due to complex networks or 
getting low accuracy due to simple networks with few layers, we used 
the grid search method to find the model with the best performance. In 
this study, we found a good performance with a sequential model with 
four dense layers. The neurons in each layer are 100, 80, 20, and 1, 
respectively, by grid search method. Rectified linear unit (ReLu) is used 
as the activation function in the first three layers, and the last layer uses 
the sigmoid activation function. 

2.5. Evaluation methods 

Ten-fold patient-wise CV is used with no combination of subjects’ 
eyes in the training and test folds. This approach reduces the over-
estimation of prediction accuracy (Saeb et al., 2017) in instance-wise CV 
with leakage of information between training and testing phases. Clas-
sification performance is evaluated according to the confusion matrix 
and the values of accuracy, precision, recall, and f1-score are reported. 
The reproducibility of the results is checked by removing the constant 
random state in the k-fold CV and executing the model ten times and 
calculating the standard deviation of the results. 

2.6. Interpretability 

One of the main limitations of AI in medical applications is the black 
box nature that contradicts with interpretability of trustworthy AI. 
Conventional machine learning methods are mostly designed to work 
with vectors as input. Therefore, the images are changed into vectors, 
and the original image structure is ignored. On the other hand, recent 
methods like Convolutional Neural Networks are introduced as powerful 
competitors, preserving the image structure and providing image-based 
interpretability, expected to be humanly interpretable (Shukla et al., 
2020). 

In this study, we propose a novel approach to add interpretability to 
current machine learning approaches. We used occlusion sensitivity 
(Zeiler and Fergus, 2014) and modified it to fit the vector-like inputs. 
After training the model, we created a black mask with the size of 10 ×

10 pixels and moved it to the test set with a single step to sweep the 
whole image. The locations of the pixels covered by the mask are 
transferred to vector-shaped positions (Fig. 4). The masked vector is sent 
as input to the model and the accuracy is calculated. It is expected that 
the occlusion of regions with important discriminative information leads 
to lower accuracy. The interpretability is shown by regenerating the 
occlusion with the original image size, with the value of accuracy in the 
location of each pixel (called the heat map). An interpretability heatmap 
indicates how important each location is concerning the class and vi-
sualizes the regional contribution to classification. 

3. Results 

For classification purposes, different topologies of the thickness maps 
around the macula in squares with resolutions of 20 × 20, 30 × 30, 40 ×
40 pixels, and mean thicknesses in 9 sectors of ETDRS are considered. 
The effect of compensating rotation on thickness maps is examined. The 
classification models are first trained and tested on the Charité (first) 
dataset. To show the generalizability of the method, the trained classi-
fier with the best performance (on the first dataset) is tested on the 
Isfahan (second) dataset. The proposed occlusion sensitivity is also 
shown for interpretability. 

Different combinations of features, two different dimension- 
reduction methods and different machine learning methods are used 
with 10-fold patient-wise CV on Charité (first) dataset. The comparison 
of metrics on each parameter is presented by keeping the other pa-
rameters fixed on the best-performing set. Table 3 compares the effec-
tiveness of different retinal layers and the effect of rotation in the correct 
classification. In this comparison, other parameters are fixed on the best 
performing set including square size of 40 × 40 pixels, linear SVM as 
classifier, 10-fold cross-validation, and PCA for dimension reduction. 
The results are compared in both situations (with and without rotation 
in the preprocessing step). As can be seen, GCIP&INL (GCIP/INL) 
without rotation is the most informative combination of the retinal 
layers. The selection of the best topology is performed based on Table 4. 
When the best set of parameters are fixed (GCIP/INL without rotation as 
input feature, linear SVM as a classifier with 10-fold cross-validation, 

Fig. 4. The proposed process for creating a black mask, moving it to the test set, and transferring the locations to vector-shaped positions  
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and PCA for dimension reduction), the best topology is related to the 
square size of 40 × 40 pixels. Accuracy of different classification 
methods with different topologies is presented in Table 5. As can be 
seen, linear SVM has better results than RF and ANN in terms of accu-
racy. For SVM method in classification, Table 6 compares the perfor-
mance of the different kernels. Moreover, the dimension reduction 
methods are compared in Table 7. Ten-fold cross validation with PCA for 
dimension reduction has the best results when other parameters are 
fixed on the best-performing set of information (GCIP/INL with square 
size of 40 × 40 without rotation as input feature, linear SVM as a 
classifier). 

To explore the application of RFE in cross-validation, the importance 
of each feature is obtained through a coefficient attribute and features 
with a correlation coefficient above a threshold of 0.8 are removed. The 
diagram of accuracy against the number of features is shown in Fig. 5. 

To show the generalizability of the method, the trained classifier 
with the best performance on the Charité dataset (GCIP/INL with square 
size of 40 × 40 without rotation as input feature, linear SVM as a clas-
sifier, and PCA for dimension reduction) is tested on Isfahan dataset and 
the performance is shown in Table 8. 

3.1. Visual interpretability 

The proposed method for visual interpretability is demonstrated by 
plotting the heatmap of the occlusion sensitivity. The results in the 
previous section showed that GCIP/INL (parallel use of GCIP and INL) 
are the most effective layers in distinguishing MS patients from HCs; 
therefore, these two layers of the best-performing set of hyper-
parameters are used for analyzing the interpretability in Fig. 6. 

4. Discussion 

The model with the highest accuracy based on our optimization 
approach is able to discriminate MS and HCs with an accuracy of 88% 
and F1-score of 68% with standard deviation of 0.48 and 0.94 in 10 
times of execution to indicate repeatability, using GCIPL and INL in-
formation. Indistinct changes in thicknesses of various retinal layers are 
captured with multilayer segmented OCT. An interpretable result is 
acquired to indicate the regional layer contribution to classification 
performance using occlusion sensitivity. The generalizability is evalu-
ated by training on a first dataset and then testing on a second inde-
pendent dataset with a new device from another country. The 
performance is similar (accuracy of 88% and F1-score of 84%) when 
testing on data, which proves the generalization ability of the proposed 
method (more detail is presented in Table 8). To avoid overestimation, 
patient-wise CV is used to a separate set of patients in the training and 
test datasets. Different combinations of the retinal layers as input fea-
tures, two different dimension reduction methods and different machine 
learning methods are compared. 

Table 5 
Comparison of machine learning methods in classification of MS and HC. The 
other parameters are fixed on the best-performing set of information (GCIP/INL 
for a square size of 40 × 40 without rotation as an input feature, and PCA for 
dimension reduction).   

Accuracy (SVM-liner) Accuracy (RF) Accuracy (ANN) 

Square 20 × 20 84% 84% 82% 
Square 30 × 30 86% 85% 84% 
Square 40 × 40 88% 85% 85% 
9 sectors 84% 85% 82%  

Table 6 
Comparison of kernels for SVM method in the classification of MS and HC. The 
other parameters are fixed on the best-performing set of information (GCIP/INL 
for a square size of 40 × 40 without rotation as an input feature, SVM as a 
classifier with 10-fold cross-validation, and PCA for dimension reduction.   

Accuracy Precision Recall F1-score 

Linear 88% 78% 63% 68% 
Polynomial 85% 87% 28% 41% 
Radial basis (RBF) 86% 91% 33% 47% 
Sigmoid 83% 67% 38% 47%  

Table 7 
Comparison of different dimension reduction methods in the classification of MS 
and HC. The other parameters are fixed on the best-performing set of informa-
tion (GCIP/INL for a square size of 40 × 40 without rotation as input feature, 
linear SVM as a classifier with 10-fold cross-validation).   

Accuracy Precision Recall F1- 
score 

10-fold cross validation without 
dimension reduction 

88% 79% 59% 65% 

10-fold cross validation with PCA for 
dimension reduction 

88% 78% 63% 68% 

10-fold cross validation with RFE for 
dimension reduction 

86% 76% 50% 57%  

Table 3 
Comparison of input features in the classification of MS and HC. The other pa-
rameters are fixed on the best-performing set of information (square size of 40 ×
40, linear SVM as classifier with 10-fold cross-validation, PCA for dimension 
reduction). The effect of rotation is shown in the upper and lower part of the 
table, respectively.  

Square 40 × 40 – (10-fold with PCA) - without rotation  

Accuracy Precision Recall F1-score 

mRNFL 79% 47% 41% 43% 
GCIP 87% 72% 60% 64% 
GCIP&INL(GCIP/INL) 88% 78% 63% 68% 
GCIP+INL 82% 56% 51% 52% 
mRNFL&GCIP&INL&ONL 84% 64% 58% 59% 
Whole macular volume 80% 52% 45% 47% 
GCIP & whole macular volume 80% 51% 49% 49% 
GCIP & INL & macular volume 81% 54% 52% 52%  

Square 40 × 40 - (10-fold with PCA) - with rotation  

Accuracy Precision Recall F1-score 

mRNFL 74% 33% 33% 33% 
GCIP 82% 56% 56% 55% 
GCIP&INL(GCIP/INL) 82% 56% 51% 52% 
GCIP+INL 83% 63% 50% 54% 
mRNFL&GCIP&INL&ONL 82% 58% 47% 50% 
Whole macular volume 80% 53% 44% 45% 
GCIP & whole macular volume 80% 51% 47% 48% 
GCIP & INL & macular volume 79% 47% 51% 48%  

Table 4 
Comparison of square size in the classification of MS and HC. The other pa-
rameters are fixed on the best-performing set of information (GCIP/INL without 
rotation as input feature, linear SVM as a classifier with 10-fold cross-validation, 
and PCA for dimension reduction).   

Accuracy 
(SVM-linear) 

Precision 
(SVM-linear) 

Recall 
(SVM- 
linear) 

F1-score 
(SVM-linear) 

Square 20 
× 20 

84% 64% 57% 57% 

Square 30 
× 30 

86% 74% 57% 61% 

Square 40 
× 40 

88% 78% 63% 68% 

9 sectors 84% 75% 33% 44%  
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Simultaneous data from GCIP and INL (GCIP/INL) were found to be 
the most informative combination of the retinal layers (Table 3). This 
finding is in accordance with clinical studies (Petzold et al., 2017, Oertel 
et al., 2019). The rotation of the thickness maps did not improve the 
performance. One possible reason for this finding is using the traditional 
machine learning methods which change the image format to vectorized 
data. This vectorization process may be responsible for reducing the 
effect of the rotation. 

The best topology is a square size of 40 × 40 (Table 4). It seems that 
this resolution is relevant to the number of B-scans in each OCT data (40 
to 51 B-scans). Namely, 40 × 40 square extracts the most possible in-
formation without suppressing the data between the B-scans. 

The interpretability heatmap of classification with this novel pro-
posed algorithm is a new strategy in conventional machine learning 

methods and makes them comparable to their main competitors like 
CNN. As demonstrated in Fig. 6, the temporal region in the thickness 
map of GCIP is found to have more effect on the classification of MS 
disease. It is related to occurring the most degree of loss in the temporal 
preponderance of RNFL in MS eyes (Bock et al., 2010). 

Among the machine learning methods, SVM achieved the best results 
(Table 5) with linear kernel (Table 6). This finding seems reasonable 
since linear kernels are proven to be more effective when the number of 
features is large in comparison to the training samples (Hsu et al., 2003). 
Dimension reduction improved the results and PCA method was found 
more appropriate (Table 6). The selected model with the highest accu-
racy based on our optimization approach discriminates MS and HCs with 
an accuracy of 88% and F1-score of 68%, using GCIPL and INL infor-
mation. Table 9 shows a summary of previous similar methods in 

Fig. 5. RFE with cross-validation diagram that shows accuracy with the number of features.  

Table 8 
Classification of MS and HC on Isfahan (second) dataset using a best-performing classifier trained on Charité (first) dataset.   

Accuracy Precision Recall F1-score 

SVM (linear) with PCA for dimension reduction and 88% 89% 88% 84%  

Fig. 6. Visual interpretability on thick-
ness maps of GCIP and INL. (a) Thickness 
map of GCIP in one sample from MS 
dataset (x and y axis in mm), (b) heatmap 
of occlusion sensitivity in the classifica-
tion of MS and HC, (c) overlap of the 
heatmap and the GCIP layer, (d) Thick-
ness map of INL in one sample from MS 
dataset, (e) heatmap of occlusion sensi-
tivity in the classification of MS and HC, 
(f) overlap of the heatmap and the INL 
layer. As can be seen, the temporal region 
in the thickness map of GCIP have more 
important information in classification of 
MS disease   

Z. Khodabandeh et al.                                                                                                                                                                                                                         



Multiple Sclerosis and Related Disorders 77 (2023) 104846

8

comparison with the proposed algorithm. Direct comparison of the re-
sults with these works is not possible since the codes and datasets are not 
released in any of those works. Furthermore, none of the previous works 
considered the patient-wise CV and accordingly higher performance is 
reported with leakage of information between train and test data in 
instance-wise approaches. It should also be noted that in this work, the 
state of being affected by optic neuritis (ON) was not considered and 
accordingly, MS patients with/ without ON are combined for classifi-
cation. Therefore, compared to work considering MS with ON, a lower 
performance is convincing since the eyes without ON show less thinning 
and are less discriminable from the HCs (Oertel et al., 2019, Petzold 
et al., 2017, Aly et al., 2022). Finally, some previous works include the 
pRNFL data as the input of the classification and a correspondingly 
higher performance is achieved compared to the limited focus of mac-
ular region. 

This article differentiates itself from prior investigations by utilizing 
two separate datasets, thereby augmenting the reliability and validity of 
its results. Conversely, a noteworthy constraint of previous studies 
pertains to their absence of external validation. The objective of this 
study is to overcome the use of deep learning methods, given the scarcity 
of accessible data. The research convincingly exhibits that desirable 
outcomes can be attained without dependence on deep learning 
techniques. 

There are several limitations to the present study. First, the state of 
having a history of ON – a frequent clinical feature in MS - has not been 
considered (Petzold et al., 2022, Denis et al., 2022). Second, a longitu-
dinal follow-up data from patients were not taken into consideration. 
Third, as we didn’t have access to other devices, two devices that were 
used are Heidelberg with different HEYEX versions (5.7.5 and 5.1). If we 
had access to other devices like TOPCON or ZEISS, we had to test the 

Table 9 
Summary of previous similar methods.  

Previous works Number of 
datasets 

Input retinal 
layers 

Being affected 
by ON 

patient-wise/ 
instance-wise 
cross validation 

Performance metrics The most discriminant 
retinal layer 

Classification method 

Garcia-Martin et al. ( 
Garcia-Martin et al., 
2013) 2013 

106 MS, 
115 HC 

Peripapillary area 29% (31) with 
ON, 71% (75) 
without ON 

instance-wise AUC=0.945 pRNFL ANN 

Garcia-Martin et al. ( 
Garcia-Martin et al., 
2015) 2015 

112 MS, 
105 HC 

Peripapillary 
area 

36.6%(41) 
with ON, 
63.4% (71) 
without ON 

instance-wise Recall=89.3% 
Specificity=87.6% 
Precision=88.5% 

pRNFL ANN 

Palomar et al. (del 
Palomar et al., 
2019) 2019 

80 MS, 
180 HC 

Peripapillary, 
macular 
and extended 
(between macula 
and papilla) areas  

with ON instance-wise Decision tree in 
macular area: 
Accuracy=97.24% 
AUC=0.959 
In extended area: 
Accuracy=95.3% 
AUC=0.998 

pRNFL Decision tree, ANN, 
SVM 

Cavaliere et al. ( 
Cavaliere et al., 
2019) 2019 

48 MS, 
48 HC 

Peripapillary and 
macular areas 

Without ON instance-wise Accuracy=91% 
Recall=89% 
Specificity=92% 
AUC=0.97 

GCL++

(between inner limiting 
membrane to INL) and 
nasal quadrant of outer 
and inner ring in pRNFL 

SVM 

Garcia-Martin et al. ( 
Garcia-Martin et al., 
2021) 2020 

48 MS, 
48 HC 

Macular area Without ON instance-wise  Recall=98% 
Specificity=98% 
AUC=0.83 

GCL++ SVM, 
ANN 

Zhang et al. (Zhang 
et al., 2020) 2020 

58 MS, 
63 HC 

Macular area 33 with ON, 
25 without ON 

instance-wise Recall=64% 
Specificity=94%  

GCIPL LR, LR-EN, SVM 

Montolio et al. ( 
Montolío et al., 
2021) 2021 

108 MS, 
104 HC 

Peripapillary and 
macular areas 

34 with ON, 
74 without ON 

instance-wise EC: 
Accuracy=87.7% 
Recall=87% 
Specificity=88.5% 
Precision=88.7% 
AUC=0.8775 
K-NN: 
Accuracy=85.4% 
SVM: 
Accuracy=84.4% 
LSTM: 
Accuracy=81.7% 
Recall=81.1% 
Specificity=82.2% 
Precision=78.9% 
AUC=0.8165 

pRNFL MLR, SVM, decision 
tree, k-NN, NB, EC, 
LSTM recurrent neural 
network 

Proposed algorithm 
With training and 
testing on first 
dataset 

106 MS, 
422 HC 

Macular area With and 
without ON 

Patient-wise Accuracy = 88% 
Precision = 78% 
Recall =63% 
F1-score = 68% 

GCIPL and INL Elaborated in the text 

Proposed algorithm 
With training on 
first dataset and 
testing on second 
dataset 

Train: 106 
MS, 
422 HC 
Test: 
67 MS 
45 HC 

Macular area With and 
without ON 

Patient-wise Accuracy = 88% 
Precision = 89% 
Recall =88% 
F1-score = 84%  

GCIPL and INL Elaborated in the text 

LR: logistic regression, LR-EN: logistic regression regularized with the elastic net penalty, MLR: multiple linear regression, k-NN: k-nearest neighbors, NB: Naïve Bayes, 
EC: ensemble classifier, LSTM: long short-term memory 

Z. Khodabandeh et al.                                                                                                                                                                                                                         



Multiple Sclerosis and Related Disorders 77 (2023) 104846

9

trained model first. It is possible that the model is not generalizable in 
this stage. In the next step, it should add a limited number of the new 
data in train set to help the model get involved with this new dataset. We 
expect that would yield to better results that can somehow indicate the 
generalizability. In conclusion, this machine learning approach is 
designed to fill the gap in previous automatic methods for discrimina-
tion of MS and HCs. The relatively big sample size with manually cor-
rected multilayer segmented OCT is used. Various topologies from 
thicknesses maps of various retinal layers are individually analyzed to 
find the best combination. Interpretability and generalizability are 
guaranteed with the proposed approaches and the overestimated results 
are avoided with patient-wise techniques. Future work should be done 
on more comprehensive datasets to prove the effectiveness of such 
methods in clinical applications. 
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