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BSTRACT 

cute coronary syndrome (ACS) remains a major 
ause of worldwide mortality. The syndrome occurs 

hen blood flow to the heart m usc le is decreased 

r blocked, causing muscle tissues to die or mal- 
unction. There are three main types of ACS: Non- 
T-elev ation myocar dial infar ction, ST-elev ation my- 
car dial infar ction, and unstable angina. The treat- 
ent depends on the type of ACS, and this is de- 

ided by a combination of clinical findings, such as 

lectr ocar diogram and plasma biomarkers. Circulat- 
ng cell-free DNA (ccfDNA) is proposed as an addi- 
ional marker for ACS since the damaged tissues can 

elease DNA to the bloodstream. We used ccfDNA 

eth ylation pr ofiles f or differentiating between the 

CS types and pr o vided computational tools to re- 
eat similar analysis for other diseases. We lever- 
ged cell type specificity of DNA methylation to de- 
onvolute the ccfDNA cell types of origin and to find 

ethylation-based biomarkers that stratify patients. 
e identified hundreds of methylation markers as- 

ociated with ACS types and validated them in an 

ndependent cohort. Many such markers were asso- 
iated with genes involved in car dio v ascular condi- 
ions and inflammation. ccfDNA methylation showed 

romise as a non-invasive diagnostic for acute coro- 
ary events. These methods are not limited to acute 
o
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NTRODUCTION 

espite a marked mortality reduction driven by improved 

iagnosis and medical care, ischemic heart disease, a.k.a. 
cute coronary syndromes (ACS) remains a leading health 

urden in the 21st century ( 1 ). There is an utmost demand 

or novel diagnostic tools that refine stratification and mon- 
toring of patient care to improve therapy choice. Chest dis- 
omfort is the predominant initial symptom of A CS , but a 

ombination of criteria is r equir ed to achie v e the diagnosis 
f acute myocardial infarction. First, patients with persis- 
ent electrocardiogram (ECG) abnormalities are defined as 
T-segment elevation myocardial infarction (STEMI) pa- 
ients ( 2 ). STEMI is a life-threatening episode accounting 

or around 30% of ACS cases that can lead to ventricu- 
ar fibrillation or sudden cardiac arrest and r equir es im- 

ediate intervention ( 3 ). Plasma biomarkers such as car- 
iac troponin I (TnI) and T (TnT), or creatine kinase isoen- 
yme MB (CK-MB) determine the e xtent of myocar dial 
njury and are additionally used for diagnosis of non-ST- 
egment ele vation myocar dial infarction (NSTEMI) ( 4–7 ). 
ecent advances in cardiac-specific-troponin (cTn) assays 

uch as high sensiti v e car diac Troponin (hs-cTn) have in- 
reased their sensitivity and diagnostic value ( 8 ). Although 

his biomarker is highly sensitive, cardiomyocyte-specific 
nd allows estimation of cell stress injury of only cardiac 
rigin, the effects of se v ere hypoxia on other cell types 
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present in the ischemic area remain unknown. Patients with
normal ECG and no rise of myocardial injury markers (hs-
cTn) and chest pain at rest are defined as unstable angina
(U A). U A pa tients have a lower risk of dea th and may ben-
efit from less invasi v e strategies within 72 h ( 9 ) of symp-
tom onset. The causes of UA can be numerous and inde-
pendent of a thrombotic e v ent, but patients often get the
same invasi v e interv ention as NSTEMI. It is currently un-
kno wn ho w much the diagnosis of UA pr edicts futur e my-
ocardial infarction, but it is widely anticipated to be a po-
tential warning indication. Respecti v e mar kers could help
here in the treatment and pre v ention setting of acute my-
ocardial infarctions. It would also be extremely beneficial
to identify new non-invasive biomarkers that could improve
the stra tifica tion between thrombotic (Type I MI) or non-
thrombotic e v ents (Type II MI) leading to different types
of myocardial infarction ( 10 ). More accurate and less in-
vasi v e diagnostic methods are needed. CcfDN A recentl y
emerged as a new type of biomarker that is associated with
many diseases. Nucleosome-sized DNA fragments released
from dying apoptotic or necrotic cells make up the ccfDNA,
which circulate for a short time in body fluids before they are
cleared mainly by the li v er ( 11 , 12 ). Increased concentrations
of ccfDNA have been detected in many conditions: several
types of cancer ( 13–15 ), acute and chronic systemic inflam-
mations ( 16 ), sepsis ( 17 ), stroke ( 18 ) and myocardial infarc-
tion ( 19 ), arising as potential biomarkers for many patholo-
gies. Recently, se v eral studies demonstrated a strong corre-
lation between ccfDNA and cardiovascular disease risk fac-
tors and status ( 19–21 ). For e xample, le v els of ccfDNA hav e
been associated with se v erity in AMI patients ( 20 ) as well as
with cardiometabolic risk factors ( 19–21 ). However, a whole
genome methylation by bisulfite sequencing of ccfDNA has
not been utilized so far for stra tifica tion of ACS pa tients.
The onl y a pproach in this respect was undertaken by fo-
cusing on the methylome of human heart chambers, identi-
fying a cluster of cytosines alongside the FAM101A locus.
This cardiac-specific methylated region adjacent to the gene
FAM101A has been investigated as a possible biomarker
for human cardiomyocyte death ( 19 , 22 ). One of those stud-
ies found significant differences in the methylation of the
six CpGs in this region on ccfDNA from STEMI patients
and sepsis ( 19 ). More commonl y, anal yzing ccfDN A frag-
ments by next-generation sequencing (NGS) is used for the
detection of different types of cancer signatures by iden-
tifying mutations related to cancer types ( 15 ), monitoring
transplant rejection by detecting increased le v els of ccfDNA
from organ donor ( 23 ) and fetal genetic diseases screening
( 24 ). Besides variant detection, DNA methylation patterns
of ccfDNA enable the quantification of cell death in a tis-
sue specific manner, leading to a better understanding of the
pathophysiological processes and can serve as biomarkers
for diseases ( 25 , 26 ). 

In this work, we used whole genome bisulfite sequenc-
ing (WGBS) of patient-deri v ed ccfDNA and computational
analysis to associate methylation patterns to ACS types:
STEMI, NSTEMI and UA. We observed changes in cell
type proportions associated with the disease status us-
ing methyla tion pa ttern deconvolution. We obtained dif-
ferentially methylated regions (DMR) from ACS patients
compared to healthy controls, as potential biomarkers for
ACS pa tient stra tifica tion. We also de v eloped a more cost-
effecti v e targeted sequencing approach to validate the po-
tential biomarkers in an independent cohort of patients.
Furthermore, we de v eloped an R package and reproducible
notebooks for other r esear chers to investigate ccfDNA
methylation as potential biomarkers for other diseases. In
summary, this work shows the utility of ccfDNA methy-
lation markers in cardiovascular disease diagnostics and
serves as a blueprint for expansion of ccfDNA methylation
markers into other cardiovascular disease areas. 

MATERIALS AND METHODS 

Ethics appro v al and consent to participate 

The study has been conducted according to the declara-
tion of Helsinki and was approved by the Berlin State
Ethics Committee in Berlin, Germany (EA4 / 122 / 14 and
EA1 / 270 / 16). 

P atient r ecruitment and sample collection 

A total of 29 individuals wer e r ecruited for the first discov-
ery cohort. This group included 8 healthy individuals (con-
trol), 8 STEMI patients, 7 NSTEMI patients and 6 UA pa-
tients, with an avera ge a ge of 61.5 ranging from 38 to 84.
Tw enty-eight individuals w ere men and one healthy control
was a woman. For our validation, using a target sequencing
approach, we used a cohort of 2 healthy subjects, 4 STEMI,
3 NSTEMI and 2 UA patients (Table S1). 

All included patients gave their consent after being fully
informed about the study and its purpose. 

Fresh blood samples from patients and healthy controls
were collected into Na-Citrate tubes (BD), centrifuged at
1200g at room temperature (RT) for 10 min in a swing-
bucket centrifuge. The supernatant (SN) was transferred to
a 15 ml Falcon tube (Greiner) and the tube was spun again
at 1200g for 10 min. Double-centrifuged plasma was then
transferred into a screw cap plasma collection tube (3 ml
Kisker) and immediately frozen at -80 

◦C until ccfDNA ex-
traction. STEMI pa tients were immedia tely submitted to
PCI after confirmed ST-elevation via ECG and parallel tro-
ponin measur ement.NSTEMI ar e pa tients tha t show no ST
elevation in the ECG and were tested for hsTroponin T us-
ing two-time points and showed either a 15–20% troponin
rise or a le v el > 52 ng / ml and were submitted to the catheter
lab for PCI within a maximum of 72 h. UA patients do not
show a rise in troponin and have a largely normal troponin
base le v el, but suf fer from chest pain a t r est and wer e also
submitted for PCI below 72 h of admission. All subjects
gave their written consent after being fully informed about
the study and its purpose before the blood was drawn. Pa-
tient characteristics , including age , disease status , concen-
tration and the total amount of ccfDNA obtained, and car-
diac biomarkers are described in Table S1. 

Measurement of clinical parameters 

All clinical parameters and biomarkers wer e measur ed di-
rectly in plasma or serum by Labor Berlin using standard-
ized assays and pr ocedures r outinely used in diagnostics for
Charite hospital. 
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CS classification by classical biomarkers 

o classify disease se v erity based on classical biomark- 
rs, m ultinomial lo gistic r egr ession models ar e used via the
ultinom () function in nnet package. We have created sin- 

le variable multinomial logistic r egr ession models to pre- 
ict ACS type: STEMI, NSTEMI and UA. In each model, 
e used one of the ccfDNA le v els in b lood or classical clini-

al biomarkers as the predictor variable. Patients which did 

ot have data available for certain markers (NA values) were 
xcluded from the corresponding model. The misclassifica- 
ion rate is calculated as the percentage of misclassified sam- 
les output by the model. 

cfDN A e xtraction 

cfDNA was extracted from freshly thawed double cen- 
rifuged (1200g at RT) citrate-plasma using the Qiagen QI- 
amp Circulating Nucleic Acid Kit (Cat. #55114) and col- 

ected using ultrapure nuclease-free water in a total volume 
f 50 �l and quantified using a Qubit fluorometer 2.0 and 

he Qubit dsDNA HS Assay kit (Cat. # Q32854). Fragment 
ize was confirmed and validated using Agilent Tape Station 

200 and the ccfDN A screenta pe or the hsD1000 screen- 
ape. Total amount of cfDNA was then normalized to the 
mount of plasma it was extracted from. 

hole-genome bisulfite sequencing (WGBS) 

solated ccfDNA was sent to Novogene and rechecked for 
uality and concentration by the company. Bisulfite conver- 
ion and sequencing was performed using their low-input 
S-seq (PBAT) protocol. Data was analyzed using previ- 
usly in-house programmed R software packages ( 27 ). 

argeted methylation sequencing 

nput amount and pulldown were optimized using sheared 

enomic DNA (ZymoResearch Cat. # D5014). A total 
f 10 ng of isolated cell-free DNA per sample, quanti- 
ed and checked for quality, was used as starting mate- 
ial. For enzymatic conversion as an alternati v e to bisulfite 
onversion, we applied the NEBNext Enzymatic Methyl- 
eq Module (Cat. #E7120S) together with the Nonacus 
ell3TMTarget: Libr ary Prepar ation kit. Up to 8 libraries 
f individuall y ada pter-tagged samples were pooled to a to- 
al amount of 1 �g for probe hybridization and capture en- 
ichment. Ca ptured library DN A was quantified and qual- 
ty checked using Qubit Fluorometer and qPCR as well Agi- 
ent 2200 TapeStation with High Sensitivity D1000 reagents 
nd screentape. Samples were loaded onto a SP flow cell and 

equenced using the Novaseq 6000 platform acquiring 400 

illion reads. 

equencing quality control, alignment to the r efer ence and 

ethylation calling 

aw r eads wer e processed using the PiGx BSseq pipeline 
 28 ). First, they were checked for quality with FastQC (,ver- 
ion 0.11.8). Then, the read sequences were trimmed us- 
ng Trim Galore wrapper ( 29 ) (version 0.6.4, cutadapt ver- 
ion 2.6, with arguments ‘–clip R2 19 –three prime clip R2 
0’ ‘–clip R1 9’ ‘–thr ee prime clip R1 30’), r emoving Il- 
umina adaptors and sequences with quality Phred score 
maller than 20. For the WGBS samples (discovery), bwa- 
eth (version 0.2.2) ( 30 ) was used to map reads to ref-

rence the human genome (hg38), Picard MarkDuplicates 
 https://broadinstitute.github.io/picar d/ ,v ersion 2.20.4) for 
eduplication and methylDackel software package ( https: 

/github.com/dpryan79/MethylDackel , version 0.5.1, with 

rguments –minDepth 1 -q 5 -p 5) for methylation call- 
ng. For the targeted sequencing (validation), the reads were 
ligned using Bismark (version 0.20.1, with arguments -N 0 

L 20 –pba t), deduplica ted using samb laster (v ersion 0.1.24) 
nd methylKit (version 1.16.0) ( 27 ) was used for methyla- 
ion calling. 

ell type / tissue deconvolution 

he deconvR R package was created for the omics-based 

econvolution of cfDNA to cell types of origin. The de- 
onvolute function within deconvR ( https://github.com/ 
IMSBbioinf o/decon vR ) offers f our choices of models, 
on-negati v e least squares (NNLS, nnls package v.1.4), 
upport vector r egr ession (SVR, e1071 package v.1.7.4), 
uadr atic progr amming (QP, quadprog package v.1.5.8), 
nd robust linear r egr ession (RLM, MASS package). The 
est model for methylation-based deconvolution was de- 
ermined as follows. Using the simulateCellMix from the 
econvR package, we simulated a dataset containing 1000 

ixed samples based on the r efer ence atlas from Moss et al. 
 26 ) with duplicate CpGs removed (25 tissues / cell types and 

105 CpGs). This simulated dataset was deconvoluted using 

ll four different models and the predictions were compared 

o the actual cell type proportions, to calculate the accura- 
ies and weaknesses of each model. The lowest root-mean- 
quare error (RMSE) value was obtained with the NNLS 

odel, followed by the RLM model. 
The comprehensi v e array-based human cell type methy- 

a tion a tlas as genera ted by Moss et al. ( 26 ) was ex-
ended by adding three more heart tissues to the full ref- 
rence methyla tion a tlas (25 tissues / cell types and ∼390K 

pGs) and performing tissue-specific CpG feature se- 
ection as f ollows. EPIC Methylation-arra y data f or the 
ight atrium auricular region ( n = 2, ENCSR517JQA 

nd ENCSR280LMY), heart left ventricle ( n = 2, 
NCSR515ZCU and ENCSR190PQG) and the coronary 

rtery ( n = 2, ENCSR688OHW and ENCSR582BMR) 
er e acquir ed from the ENCODE portal ( 31 ). The 
ethyla tion-array ida t files wer e r enamed to r especti v e

 ed / gr een channels and then pre-processed using the script 
rovided via the meth atlas GitHub repository ( https:// 
ithub.com/nloyfer/meth atlas ) to normalize the data using 

n arbitrary r efer ence sample, filter b y P -v alue, sex chro-
osomes and bead number, and finally remove SNPs and 

on-CpG sites. The pre-processed ENCODE methylation 

ata was merged with the full r efer ence atlas based on CpG 

robe ID to construct the raw extended methylation at- 
as (28 tissues / cell types and ∼390K CpGs). Then CpGs 
ith missing values or sites where the row-wise variance was 
 0.1% were omitted and replicates were pooled per tissue. 
For the selection of tissue-specific CpGs from our ex- 

ended atlas two approaches were followed. First, the top 

https://broadinstitute.github.io/picard/
https://github.com/dpryan79/MethylDackel
https://github.com/BIMSBbioinfo/deconvR
https://github.com/nloyfer/meth_atlas


4 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 most h ypometh ylated and h ypermeth ylated CpGs for
each cell type were selected as described by Moss et al. ( 26 )
with the minor adjustment of defining a list of already used
CpGs in any tissue, to select another CpG for a tissue if
the top hits are already in use. Briefly, the methylation atlas
was scaled by dividing each row of the atlas by the summed
methylation values of the respecti v e row, then for each cell
type, the top 100 h ypermeth ylated CpGs with the highest
scaled methylation values were selected and recorded to pre-
vent repeated selection of the same CpGs. This procedure
was repeated for the re v ersed scaled methyla tion ma trix to
identify the top 100 h ypometh ylated CpGs per cell type.
Secondly, using the unscaled extended atlas, the dmpFinder
function of the minfi R package ( 32 ) was used to identify for
each cell type the 200 most differential CpGs compared to
any other tissue. 

The sets of tissue-specific CpGs were joined and based
on those, neighboring CpGs within a distance of 50 bp and
pairwise-specific CpGs were added as explained in Moss
et al. ( 26 ) 

To deconvolve the WGBS ccfDNA samples into cell types
of origin, genomic loci were first mapped to CpG probe
IDs using the BSmeth2Probe function in deconvR. The ge-
nomic locations of CpG probe IDs were specified according
to the Illumina Infinium MethylationEPIC v1.0 B5 Mani-
fest File. The cell type of origin proportions per sample were
estimated using the deconvolute function of deconvR em-
ploying the NNLS model and the extended cell type spe-
cific CpG methylation signature matrix (28 Cell types) as
r efer ence. 

Differential methylation 

The dif ferential methyla tion was called on tiled regions (500
bp sliding windows with a step size equal to 500 bp) using
the R package methylKit ( 27 ) (version 1.16.0), q -value cut-
off 0.01 via SLIM method ( 33 ) and minimal methylation
difference of 25%. 

DMR annotation 

The DMRs were annotated by Genomic Regions En-
richment of Annotations Tool (GREAT) ( 34 ) using the
rGREAT package (release 3.12). The model used was the
‘Basal plus extension’, annotating genes on proximal re-
gions (5 kb upstream, 1 kilobase downstream) plus distal
(up to 1000 kb). We also annotate the DMRs for CpG
r egions, genomic r egions and r egulatory r egions using the
AnnotateR package ( 35 ) and additionally we annotate en-
hancer regions using the chromHMM bed files from the
Roadmap Epigenomics Project ( 36 ) (Core 15-state model). 

The list of gene symbols obtained was submitted to
DisGeNET (v 7.0), a comprehensi v e pla tform integra t-
ing information on human disease-associated genes and
variants ( 37 ), using its R package disgenet2r (v.0.0.9,
database = all). The gene symbols obtained from GREAT
were converted to Entrez gene ids and used for DisGeNET
enrichment analysis (enrichDGN) with R package DOSE
(v 3.12) with parameters P -value cutoff < 0.05, adjusted
P -value < 0.2, minGSSize = 2, maxGSSize = 500, pAd-
justMethdod = BH, background genes = whole human
genome). We looked for heart-related disease by search-
ing terms from the disease name and disease class name
from DisGeNET, assigning to each DMR the annotation
obtained. 

Linear models of the methylation levels on DMRs 

In order to obtain ACS type associated DMRs, we defined
the ACS type as a numeric vector of severity (UA = 1,
NSTEMI = 2, STEMI = 3). This follows the classical clin-
ical understanding of ACS where UA is the least se v ere and
STEMI is the most se v ere type of ACS. We have used lin-
ear r egr ession models using R lm () function, we have con-
structed following models, where Y is either disease se v erity
as explained above or the clinical biomarkers: 

Y ∼ β0 + β1 · DNAmeth + β2 · c c f DNAle ve l

We have constructed such a model for each DMR. This
way we associated DMRs with disease se v erity by testing
r egr ession coefficients by t-test, and retained DMRs that
are significantly associated with disease se v erity. Similarly,
we have also associated DMRs with clinical markers simply
building models for each clinical marker where the response
variable Y is the clinical marker. In addition, in order to test
if DNA methylation le v els provide important value for pre-
diction of disease se v erity ov er ccfDNA le v el we hav e also
built a reduced model for each DMR w here onl y ccfDN A
le v els are used as a pr edictor variable. We compar ed these
reduced models with the full models using ANOVA test.
This way we would be able to control for ccfDNA le v els and
their contribution to model fit. 

DMR validation analysis with targeted sequencing 

After the detection of a systematic bias of methylation per-
centages in the targeted sequencing data (see Supplemen-
tary Figure S5), log transformation using pseudo-counts
(log((observed + 1) / ( (100 – observed) + 1)) and quan-
tile normalization using the R package’s ‘pr eprocessCor e’
(version 1.58.0) function ‘normalize .quantiles.use .target ()’
were applied. In addition, ComBat adjustment from the
R package ‘sva’ (version 3.44.0) using the function ‘Com-
Bat ()’ with subsequent back transformation, served to nor-
malize the data. Mean differences (condition - healthy con-
trol percentage of methylation) were computed per DMR
and compared to the discovery cohort’s values. The Pear-
son correlation coefficient was computed using the R pack-
age’s ‘ggpubr’ (version 0.4.0) function ‘stat cor ()’. The PCA
on DMRs which were associated with disease groups was
generated using the R ‘stats’ (version 4.2.1) ‘prcomp ()’
function. 

Machine learning models for prediction of ACS type 

In order to predict the ACS type from ccfDNA methylation
profiles, we trained thr ee pr edicti v e models (random for-
est (RF), partial least squares regression (PLS), penalized
multinomial r egr ession (PMR)) on a 70 / 30 train-test-split
of the discovery data. We have used PLS and r andomFor ests
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ackages via the caret package to build and test the mod- 
ls. We used the methylation values from 193 DMRs shared 

etween discovery and validation as features. The features 
er e pr e-processed by centering and scaling. We have used 

ross-Validation (10 fold, repeated 10 times) for model as- 
essment. We then applied these models on the batch nor- 
alized validation cohort. 

ESULTS 

cfDNA levels and classical clinical biomarkers are predictive 
f ACS status but can not accurately differentiate ACS types 

or diagnosis and patient characterization, we measured 

lassical biomar ker le v els of the study participants (Tab le 
1) next to ECG and the patients were assigned to the ACS 

roups by a clinician according to ESC guidelines (Collet J. 
., ESC guidelines, EHJ2021). High-sensiti v e car diac Tro- 
oninT (hs-cTnT) was mostly undetected in healthy con- 
rols and had low le v els in UA patients, and highest val- 
es in STEMI and NSTEMI (Supplementary Figure S1A). 
s expected, the left ventricular ejection fraction (LVEF) 
as higher in healthy controls (ranging from 64% to 74%) 
nd lower in ACS patients, with some patients from the UA 

roup showing very low values (minimal value of 30%, Sup- 
lementary figure S1B). For creatine kinases (CK) we see 
n increase of the le v els with increasing se v erity of ACS
STEMI exhibits the highest median, followed by NSTEMI 
nd UA medians) (Supplementary Figure S1C–F). 

The total amount of ccfDNA extracted per mL of plasma 

rom the 29 discovery samples ranged from 2.68 ng (healthy 

ontrol) to 60.65 ng (STEMI) (Figure 1 A, Table S1). All 
CS groups showed higher le v els of ccfDN A w hen com-
ared with the healthy control group (Wilco x on rank- 
um test P -values 0.0001 for STEMI, 0.0003 for NSTEMI 
nd 0.0006 for UA), confirming previous findings where 
cfDNA le v els were raised on diseased states. Howe v er, to-
al ccfDNA was not statistically different between ACS 

ypes, pre v enting the distinction of ACS types solely by 

cfDNA le v els. This finding shows that ccfDNA quantity 

y itself cannot be a very specific marker for ACS stratifica- 
ion, which is also evident when we tried to classify patient 
amples for the ACS type using ccfDNA le v els in a multino-
ial logistic r egr ession (Figur e 1 B). In addition, using clin-

cal biomarkers in the same fashion as predictor variables 
o m ultinomial lo gistic r egr ession models also do not yield 

ighly predicti v e models to distinguish ACS types (misclas- 
ifica tion ra te is between 20% and 60% for dif ferent models 
ith different predictor variables, Figure 1 B). 
In addition, we checked the Pearson correlation between 

ll the classic biomarkers and the concentration of ccfDNA 

for ACS patients only). The classical biomarkers are an im- 
ortant part of the diagnosis although ccfDNA concentra- 
ion in plasma was inversely correlated with left ventricu- 
ar ejection fraction (LVEF) ( R 

2 = 0.56) and unexpectedly, 
eakl y inversel y correlated to troponin. On the other hand, 

cfDN A was weakl y positi v ely correlated to CK and CK-
ax and positi v ely correlated to CK-MB ( R 

2 = 0.42) (Fig- 
re 1 C). These findings show that traditional biomarkers 
nd ccfDNA le v els hav e a comple x relationship. Although 

cfDNA le v els show correlation to multiple classical mark- 
rs, just the ccfDNA le v el cannot account for the variation 

bserved in other markers in this cohort of patients. 

ell type proportions obtained via deconvolution of ccfDNA 

ethylation are associated with ACS 

ince ACS causes reduced blood flow to the heart and 

s associated with inflammatory processes, we expect that 
he cell types that gi v e rise to ccfDNA might be disease 
pecific. We used methylation-based cell type deconvolu- 
ion to quantify the cell type composition that gave rise to 

atient-deri v ed ccfDNA. To this end, we applied WGBS 

n ccfDNA samples obtained from the ACS patients and 

ealthy controls. Our quality control analysis showed that 
e had a satisfactory bisulfite (BS) conversion r ate, r anging 

rom 97.92% to 99.63% and the average CpG read cover- 
ge ranged from 4.2 sequenced reads to 9.1 (Supplemen- 
ary Figure S2). Briefly, our deconvolution method le v er- 
ges cell type specific methylation patterns in the shape of a 

igna ture ma trix. The deconvolution algorithm makes use 
f those patterns to find optimal proportions of cell types 
hat might gi v e rise to the observ ed bulk DNA methylation 

attern. We used a cell type specific CpG methylation sig- 
a ture ma trix built from a comprehensi v e methyla tion a t-

as ( 26 ) extended with additional heart tissue samples (see 
ethods for details). The deconvolution algorithm outputs 

he percentage of cell cell types observed in plasma rather 
han ccfDNA amount attributed to cell types (the ccfDNA 

er cell type can be found in Supplementary Figure S6 and 

able S3). Percentage of cell types in plasma provides a nor- 
alized quantity that is not influenced by ccfDNA amount 

er patient which is variable but uniformly high compared 

o healthy samples. Overall, ccfDNA associated with blood 

ells was the most abundant in all samples, with neutrophils 
resenting the most abundant cells, ranging from 21% (in 

he healthy control sample) to 61% (in NSTEMI sample). 
r eviously, granulocytes wer e found to be the most abun- 
ant blood cells in healthy donors (average 32% of the cell 
omposition) ( 26 ), matching our results for neutrophils, the 
ost abundant type of granulocytes, with an average of 28% 

or the healthy group. In our data, in all ACS groups, neu- 
rophils were elevated when compared with the healthy con- 
r ol gr oup. The neutr ophils ar e known to infiltrate infar cted
reas in the first hours after ischemia and they play a ma- 
or role in the subsequent acute inflammation ( 38 ). We also 

ould detect increased CD4 

+ T cells (in NSTEMI and UA). 
n the other hand, ccfDNA from monocytes was decreased 

n STEMI and proportions of natural killer (NK) cells, ery- 
hr ocyte pr ogenitors and hepatocytes wer e r educed in all 
CS types (Figure 2 ). We also note that increased ccfDNA 

s associated with kidney tissue in all ACS types and specif- 
cally in STEMI patients. Acute kidney injury is known to 

e associated with ACS ( 39 ). Furthermor e, compar ed to 

ealthy donors, ACS patients showed an increase in vascu- 
ar endothelial cells, heart left ventricle and coronary arter- 
es in ACS type specific manner (Figure 2 ), which indicates 
here might be ACS type specific tissue damage specific for 
especti v e ACS types. 

The decora tion indica tes Wilco x on test P -values be- 
ween boxplots (significance le v els * P -value < 0.05, ** P -
alue < 0.01, *** P -value < 0.001). 
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Figure 1. ( A ) Total amount of extracted ccfDNA normalized to plasma volume. ( B ) Misclassification of ACS type by classical biomarkers and ccfDNA 

le v els. ( C ) Correlation analysis of the classic cardiac biomarkers and ccfDNA concentration. LVEF, Left ventricular ejection fraction. CRP, C reactive 
pr otein. Tr oponin T, troponin T high-sensiti v e. CK, creatinine kinase. CK max, maximum value of CK measured. CK-MB, creatinine kinase isoform MB. 
CK-MB max, maximum value of CK-MB measured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identifying differentially methylated regions as biomarkers
specific to ACS type 

In order to further investigate disease-specific ccfDNA
methylation markers, we conducted a tiled differential
methylation analysis using logistic r egr ession based statis-
tical testing as implemented in the methylkit R package. We
compared ACS types to healthy subjects in a pairwise man-
ner. Using a threshold of minimal 25% difference on methy-
lation between the ACS type and healthy subjects and a q-
value maximum of 0.01, we identified a total of 688 DMRs
in STEMI patients, 388 in NSTEMI patients and 865 in
UA. Of those, 486 w ere STEMI specific, 223 w ere NSTEMI
specific and 684 UA specific. Figure 3 A illustrates how the
DMRs are shared across the three groups. Those disease
 

specific DMRs are relevant as candidate biomarkers to clas-
sify patients in ACS types. 

Using all identified DMRs, we generated a principal com-
ponent analysis (PCA). The results show a clear separation
of healthy patients from the ACS groups (Supplementary
Figure S3). The UA group is also separated from STEMI
and NSTEMI, while the latter two groups are not clearly
separated from each other. Howe v er, the ability to differen-
tiate UA and healthy patients from NSTEMI and STEMI is
already of great use, as the ECG is used as a first stratifica-
tion of STEMI and NSTEMI. In addition, further filtering
of DMRs to strictly disease specific biomarkers are possible
as we have shown in the following sections. 

Next, we wanted to check if genomics features were
associated with the obtained DMRs and if they were
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ssociated with disease related genes. For this purpose, 
e assigned genes that are likely to be regulated by 

hose DMRs using the r egulatory-r egion association tool 
REAT ( 34 ). Supplementary Figure S4 shows the number 

f genes per region for each group, and also the distance 
rom DMRs to the transcription start sites (TSS). Addition- 
lly, we annotated DMRs with CpG island-associated fea- 
ur es, genomic featur es (such as intron / exon, UTRs etc.), 
pigenomics Roadmap enhancers and long non-coding 

N As (lncRN A). Most DMRs were in the open sea, out of 
pG islands (CpG inter) (564 for STEMI, 329 for NSTEMI 
nd 765 for UA) (Figure 3 B). The genomic annotations 
how most DMRs on introns (around 60% of all DMRs, 
igure 3 B) and a large part of it is annotated as enhancers 

608 for STEMI, 323 for NSTEMI and 589 for UA) and 

ncRNAs (340 for STEMI, 230 for NSTEMI and 230 for 
A) (Figure 3 B). This points out that differ ences ar e pos- 

ib ly dri v en by cell type specific r egulatory r egions. 
Following this, we also performed a gene set enrich- 
ent test (using the curated canonical binomial test) for 

he genes associated with DMRs. Here we found pathways 
nvolved in the regulation of immune response, hemosta- 
is and phagocytosis enriched for the three ACS groups 
Figure 4 A). For STEMI, the most significantly enriched 

athw ay w as ‘Genes in volved in hemostasis’ f ollowed by 

Leukocyte transendothelial migration’ (adjusted P -values 
.0003 and 0.0004, respecti v ely). The hemostasis gene set 
ontained genes involved in coagulation, a process known 

o be triggered during ACS e v ents ( 40 ). For NSTEMI, we
ould not detect enriched pathways using the conservati v e 
hreshold adjusted p-value of 0.05. The lowest adjusted p- 
alue was 0.12 (unadjusted p-value 0.003, Regulation of 
38-alpha and p38-beta). For UA, the most enriched path- 
ays were ‘Genes involved in Regulation of IFNA signal- 

ng’ and ‘Fc gamma R-mediated phagocytosis’ (both ad- 
usted p-values 0.0001). Fc � receptors (Fc �R) are plasma 
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Figure 3. ( A ) DMRs shared across the three ACS groups (compared to healthy control). ( B ) CpG regions, genomic and regulatory annotations for DMRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

membrane-associated receptors for IgG and the pentraxins
C-reacti v e protein (CRP), a known risk factor for cardio-
vascular diseases, and its role on inflammation in cardio-
vascular disorders have been already investigated ( 41 ). 

Using the DisGeNET database for gene-disease asso-
ciations ( 37 ), we assigned the DMR-related genes to dis-
eases. In total, 74.13% of DMRs from STEMI, 72.68%
from NSTEMI and 61.62% from UA were annotated
with heart-related diseases. The high proportion of DMRs
regulating genes involved in heart-related diseases pro-
vided us with additional evidence that those DMRs are
promising biomarker candida tes. La ter, we ran a Dis-
GeNET enrichment analysis to check if the DMRs were
statistically enriched ( q -value < 0.05) for ACS related
diseases. We found 505 diseases enriched for STEMI,
253 for NSTEMI and 326 for UA. Filtering by car-
diovascular and inflamma tory-rela ted diseases, 18 dis-
eases were enriched for STEMI and the most significant
was ‘Cardiomegaly’ ( q -value 0.00038). For NSTEMI, 14
cardiovascular / inflammatory diseases were enriched, with
‘Inflammation’ being the most enriched ( q -value 0.01). For
UA, only six cardiovascular / inflammatory diseases were
enriched with ‘Congenital Heart Defects’ presenting the
most enriched ( q -value 0.007). Figure 4 B shows all the
cardiovascular / inflammatory diseases enriched in at least
one group, with an adjusted P -value cutoff of 0.05. 

DMRs are associated with ACS types independently of
ccfDNA levels in plasma 

Since the classic clinical biomarkers cannot be effectively
used to stratify ACS patients in this cohort (Figure 1 B &
Supplementary Figure S1), we decided to further investi-
gate the potential of using DMRs for stra tifica tion. W hile
the unique 1637 discovered DMRs were all potential mark-
ers for separating each ACS gr oup fr om healthy individu-
als (because the differential methylation analysis was done
in comparison to the control), they are not necessarily use-
ful for discriminating ACS types. Ther efor e, we decided to
further narrow down DMRs to a subset that are strongly
associated with the disease. For this purpose, we used lin-
ear models predicting numeric disease se v erity encoding of
ACS types or clinical biomarkers from methylation values
of DMRs across samples using ccfDNA amount as a co-
variate (see methods). The disease se v erity encoding simply
shows UA as the least se v ere and STEMI as most se v ere
w hich is generall y accepted ( 42 ). We have fit such models for
each DMR to distinguish DMRs that are associated with
disease and clinical biomarkers. We found 254 (15.51%)
DMRs significantly associated ( P -value ≤ 0.05) with dis-
ease se v erity, showing that those DMRs were good candi-
dates for disease stratification The details of those DMRs
can be found in Table S4 and S5). From those, 158 DMRs
were annotated as involved in cardiovascular diseases or in-
flammation using DisGeNET ( 37 ) and 163 overlapped with
enhancers from the Roadmap epigenomics project ( 36 ). Fig-
ure 5 A shows the percentage of DMRs significantly associ-
ated with clinical biomarkers and ACS type (shown as ‘dis-
ease’) encoded as disease se v erity. Throughout this analy-
sis we controlled for ccfDNA le v els in the linear model by
adding it as a covariate. As expected, in almost all the linear
models ccfDNA le v els did not hav e a significant association
with ACS types encoded as disease se v erity. 

Following this, we performed a PCA on the methylation
le v els of the 254 DMRs which were significantly associ-
ated with the disease group (Figure 5 B). We observed that
this narrower list of DMRs achie v ed complete separation of
ACS types and healthy samples. In Figure 5 C, we can see the
top fiv e DMRs w hich are most significantl y associated with
disease se v erity. These analyses suggest that DMRs can be
used as biomarkers that can distinguish ACS versus healthy
samples as well as different ACS types. 

Disease-specific DMRs are validated on an independent pa-
tient cohort 

In order to validate the discriminati v e DMRs, we de v el-
oped a targeted sequencing approach and applied it on an
independent cohort of patients. We used 2 healthy sub-
jects, 4 STEMI, 3 NSTEMI and 2 UA patients as the
validation cohort. The participants’ characteristics can be
found in Table S1. Overall, we targeted 18831 CpGs that
are either involved in disease-specific DMRs or part of
the deconvolution signature matrix, and 75% of those tar-
geted CpGs were covered with at least 5 reads for each
sample. 

We ran a dif ferential methyla tion analysis with the vali-
dation samples restricting it to the regions of discovery co-
hort DMRs (using a q-value cutoff < 0.01). We found that
570 of 615 DMRs for STEMI, 308 of 338 for NSTEMI
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nd 252 of 636 for UA were also differentially methylated 

n the validation samples (DMR subset characterisation in 

upplementary Table S2). When also taking directionality 

f methylation difference into account to ensure that hypo- 
r h ypermeth yla tion of the valida tion cohort compared to 

he controls was present with the same effect as in the dis- 
overy cohort, the numbers decreased to 566, 306 and 248 

MRs respecti v ely. Howe v er, the ef fect size (methyla tion 

ifference) is in general lower in the validation cohort. 
As from the 1637 unique discovery cohort DMRs only 

314 unique validation DMRs were available due to se- 
uencing covera ge, percenta ges in the following refer to this 
ubset. 

After a ppl ying an absolute 25% cutoff to differential 
ethylation and by keeping the q -value cutoff < 0.01, 171 

TEMI, 115 NSTEMI and 82 UA DMRs remained sig- 
ificant. Quantile normalization and ComBat adjustment 
f methylation per centages ensur ed comparability between 

equencing techniques and showed the validation of 23% 

nique DMRs for the validation cohort. These DMRs sat- 
sfy q-value and the stringent methyla tion dif ference cut- 
ffs in the validation cohort as well (Figure 6 A). Howe v er, 
 larger proportion of discovery cohort DMRs (STEMI: 
2%; NSTEMI: 91%; UA: 39%) are significantly differen- 
ially methylated in the validation cohort when the stringent 
ethyla tion cutof f is not a pplied and onl y the q -value cutoff

s consider ed (Figur e 6 A). In addition, a strong linear cor- 
ela tion of methyla tion dif ference values between discovery 

nd validation cohorts (NSTEMI: R = 0.98, P < 2.2e–16; 
TEMI: R = 0.99, P < 2.2e–16; UA: R = 0.98, P < 2.2e–16)
as evident. When using the 254 DMRs from the discov- 

ry cohort which were identified to distinguish best between 

CS types, we could again observe good separation of the 
ifferent ACS types and healthy subjects via PCA (Figure 
 B) regardless of the different sequencing techniques used 

n validation and discovery cohorts. Only one STEMI sam- 
le from the validation cohort was evident to present as an 

utlier. In addition, we built multi variate predicti v e models 
sing multiple machine learning methods (random forests: 
F, penalized multinomial r egr ession: PMR and partial 

east squar es r egr ession: PLS, see methods for details). In all 
ases, the models were trained on the discovery cohort and 
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Figure 5. ( A ) Percentage of the discovery DMRs showing significant association with biomarkers and disease group on linear model adjusted by ccfDNA 

concentration on plasma. ( B ) PCA on methylation le v els of 254 DMRs found significantly associated ( P < 0.05) with ACS types encoded as disease se v erity 
using linear models. ( C ) Correlation plot with the top fiv e DMRs most significantly associated with disease groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tested on the validation cohort. We have achieved almost
perfect accuracy across models (RF: 0.8182, PLS: 1, PMR:
1, see also Supplementary Figure S7 for cross-validation re-
sults). The loss in accuracy in the RF model is due to a sin-
gle STEMI sample that clusters with the NSTEMI group as
can already be seen in Figure 6 B. 

DISCUSSION 

In recent years, ccfDNA emerged as an interesting new
molecular biomarker for diverse diseases ( 12 , 16–18 , 24 ).
Howe v er, most of the studies investigated the increase in the
total amount of ccfDNA, and the correlation of ccfDNA
le v els with the se v erity of the diseases. While useful, such
an approach is limited because it cannot discern which tis-
sue is being damaged, nor can it measure the le v el of injury.
The ccfDNA fragments contain DNA methylation patterns
which enable their unique assignment to the cell type where
the fragment origina ted. ccfDNA methyla tion profiling has
been used to determine the cellular contributors of the dam-
aged tissue, for example, in islet transplantation and sepsis
( 26 ). 
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Figure 6. DMR validation in validation cohort. ( A ) DMRs from DM anal- 
ysis compared to healthy controls ( n = 1589). Using a 25% methylation dif- 
ference cutoff 37.3% (115 out of 308 DMRs) of NSTEMI, 30.0% (171 out 
of 570) of STEMI and 32.5% (82 out of 252 DMRs) of UA DMRs from the 
discovery cohort could be validated in the validation cohort. Linear Pear- 
son correla tion coef ficients are sta ted and dotted lines indicate absolute 
25% cut offs. ( B ) PCA on DMRs found significantly associated ( P < 0.05) 
with disease groups on linear models in discovery cohort ( n = 193). Clus- 
tering of samples according to condition without regard to the sequencing 
method. 
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diometabolic diseases or inflammation. 
In the present study, we present a proof of principle 
pproach, by using WGBS to de novo investigate differ- 
ntial methylation profiles of ccfDNA in three different 
CS types and a healthy contr ol gr oup. We analyzed both 

he ccfDNA methylation-based cell composition and the 
hanges of methylation in response to the disease state. Ad- 
itionally, we used a validation cohort to validate the dis- 
overed DMRs, using a targeted sequencing approach. The 
argeted sequencing a pproach greatl y reduces the profiling 

osts, increases the speed and makes the method amenable 
or possible clinical usage. 

As previously shown, we found that all ACS groups had 

ncreased le v els of ccfDN A, w hen compared to the healthy 

ontr ol gr oup (Figur e 1 ). Inter estingly, both MI groups 
howed slightly higher amounts of ccfDNA than UA. The 
ifference was howe v er not statistically significant, possibly 

ue to the lack of sta tistical power. A dif ferent stud y re-
orted similar, linearly increasing le v els of ccfDNA from 

A, NSTEMI and STEMI ( 43 ). It is important to state 
hat the ccfDNA fragments can originate from different cell 
ypes, and not only cardiomyocytes. 

In fact, our cell composition analysis showed an in- 
reased proportion of neutrophils in A CS , a cell type known 
o be involved in the immune response to MI ( 38 ). Neu- 
rophils are the first cell type recruited to the site of in- 
ury and contribute different functions in cardiovascular 
iseases ( 44 ). During A CS , neutrophils release extracellu- 

ar traps. Neutrophil extracellular traps (NETs) are secreted 

tructures formed by decondensed chromatin, histones and 

eutrophil granular proteins, which have been proposed 

o contribute to ccfDNA ( 45 ). These structures have pro- 
hrombotic activity and their increased le v els ar e r elated 

o larger infarct size and major cardiovascular events 
 44 , 46 ). 

On the other hand, we observed a decrease in the propor- 
ions of erythrocyte progenitors in the ACS groups. Con- 
rary to the other cell types, ccfDNA from those cells does 
ot reflect cell death but rather the process of erythrocyte 
a tura tion, when the progenitors lose their nuclei ( 26 , 47 ).
he decreased proportion of erythrocyte progenitors might 

eflect a shift in the hematopoietic process, increasing the 
roduction / ma tura tion of immune cells while decreasing 

rythrocyte ma tura tion. Sim ultaneousl y, we also observed 

n increase of CD4 

+ T-cells, especially in NSTEMI and UA. 
umulati v e e vidence from animal models showed a dou- 
le role of CD4 

+ T-cells in ischemia-reperfusion injury and 

issue recovery ( 48 ). We did not detect ccfDNA from the 
eart’s left and right atriums in any of the ACS groups. 
hese r esults ar e consistent with the rarity of the atrial in- 

arction, due to the lo wer o xygen demand of the atrium, 
hen compared to the ventricle. We detected on average 1% 

f cells from the heart left ventricle in healthy controls, with 

mall increases in A CS , where NSTEMI was on average the 
ost prominent (howe v er the maximum value was observed 

n a STEMI patient). 
Our dif ferential methyla tion analysis found a total of 

637 DMRs when comparing each of the ACS groups with 

he healthy controls (Figure 3 ). Those DMRs clearly sepa- 
ated the ACS groups from healthy controls. These DMRs 
re mostly located on introns and enhancer regions. The 
enes they are associated with are clearly associated with 

oronary artery disease and inflammation (See Figure 4 B). 
he pa thways associa ted with the same genes indicate im- 
une system related pathways such as ‘Leukocyte Migra- 

ion’ and ‘IFN signaling ’ (Figure 4 A). In addition, one 
f the most significantly enriched pathwa ys f or the STEMI 
MR set was ‘Genes involved in hemostasis’. The hemosta- 

is gene set contained genes involved in coagulation, a pro- 
ess known to be triggered during ACS e v ents. In summary, 
ur DMR set can be associated with disease relevant genes 
nd processes. 

Howe v er, the initial DMR set lacked the power to accu- 
 ately separ ate the STEMI from NSTEMI patients (Sup- 
lementary Figure S3). In order to distill the initial DMR 

et, we have employed linear modeling to find DMRs where 
he methylation le v els are significantly changed between the 
ifferent disease groups. This procedur e r esulted in a set 
f 254 DMRs, and significantly improved the disease pa- 
ient stra tifica tion (Figur e 5 B). The r eduction in the number
f DMRs which are necessary for accurate patient strati- 
cation, reduces the sample preparation costs and implies 
 possible clinical a pplication. Interestingl y, 96 of those 
MRs are currently not known to be involved in car- 
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In order to validate our findings, we used a targeted se-
quencing approach. We managed to cover ∼75% of the
targeted regions, which was expected due to the technical
limitations of probe design. We are able to validate ∼23%
unique DMRs using stringent cutof fs. W hile investiga ting
the DMRs, we observed that the majority of ACS related
DMRs are located in intr onic regions. The intr onic DNA
methylation e v ents wer e also pr eviously associated with
the etiology of dila ted cardiomyopa thy ( 49 ) and coronary
artery disease ( 50 ). 

It is of utmost importance to mention that the methy-
la tion pa ttern of the released ccfDNA goes beyond the
cell death of cardiomyocytes. It highlights that multiple
cell types contribute to ccfDNA, through different bio-
logical processes in a disease like acute coronary syn-
dr ome. Thr ough the ccfDNA methylation signatur es, we ar e
measuring information about a whole spectrum of cellu-
lar functions related to acute heart disease, with the final
goal of improving both the patient stratification and long-
term outcome prediction. Usage of ccfDNA methylation
as biomarkers is, however, not limited to acute events, but
could be used for measuring disease progression in chronic
conditions, such as coronary artery e v ents and heart fail-
ure. This utility merits the expansion of ccfDNA methyla-
tion biomarkers into larger clinical investigation efforts for
cardiovascular diseases. 

CONCLUSIONS 

Here, we show the potential of using a set of ccfDNA
DMRs for ACS patients’ stratification without undermin-
ing the reliability in identifying of STEMI and NSTEMI
via ST elevation through ECG and the standardized guide-
lines of the gold standard of hsTnT measurements. By us-
ing 254 DMRs w e w ere able to separate the groups with-
out any other car diac biomar ker without needing any addi-
tional clinical finding or biomarker. We were able to a ppl y
a targeted sequencing approach using our identified DMRs
in order to validate our findings in the second cohort of pa-
tients in a more cost-effecti v e way. We also publish an R
package and reproducible code base to carry out similar
analysis for different diseases. In the future, we plan to ex-
pand the cohort types and sizes and to improve the targeted
sequencing method to make it useful as a non-invasi v e tool
in clinical settings. 

DA T A A V AILABILITY 

For reasons of reproducibility scripts are provided on https:
//github.com/BIMSBbioinfo/ccfDNA ACSS manuscript 
with a comprehensi v e Readme.md file on the scripts’
content (permanent DOI: https://doi.org/10.5281/zenodo.
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