
RESEARCH ARTICLE
www.advancedscience.com

Long-Read Sequencing Reveals Extensive DNA
Methylations in Human Gut Phagenome Contributed by
Prevalently Phage-Encoded Methyltransferases

Chuqing Sun, Jingchao Chen, Menglu Jin, Xueyang Zhao, Yun Li, Yanqi Dong, Na Gao,
Zhi Liu,* Peer Bork,* Xing-Ming Zhao,* and Wei-Hua Chen*

DNA methylation plays a crucial role in the survival of bacteriophages
(phages), yet the understanding of their genome methylation remains limited.
In this study, DNA methylation patterns are analyzed in 8848
metagenome-assembled high-quality phages from 104 fecal samples using
single-molecule real-time sequencing. The results demonstrate that 97.60% of
gut phages exhibit methylation, with certain factors correlating with
methylation densities. Phages with higher methylation densities appear to
have potential viability advantages. Strikingly, more than one-third of the
phages possess their own DNA methyltransferases (MTases). Increased
MTase copies are associated with higher genome methylation densities,
specific methylation motifs, and elevated prevalence of certain phage groups.
Notably, the majority of these MTases share close homology with those
encoded by gut bacteria, suggesting their exchange during phage–bacterium
interactions. Furthermore, these MTases can be employed to accurately
predict phage–host relationships. Overall, the findings indicate the
widespread utilization of DNA methylation by gut DNA phages as an evasion
mechanism against host defense systems, with a substantial contribution
from phage-encoded MTases.
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1. Introduction

Bacteriophages (phages) are viruses that
infect bacteria and archaea,[1] and modulate
many ecological and evolutionary processes
in complex microbial communities, includ-
ing the human gut microbiome.[2] Phages
often have narrow host ranges and are thus
ideal tools for precision manipulation of
the gut microbiota.[3] To defend the phages,
prokaryotic organisms adopt a variety of
defense mechanisms that are deployed
against xenogeneic DNAs, among which
the restriction-modification (RM) systems
are ubiquitous and have been found in
≈90% of sequenced bacterial genomes.[4]

RM systems often consist of a restriction en-
donuclease (REase) that recognizes a highly
specific target DNA sequence (i.e., a distinc-
tive, usually recurrent, molecular sequence,
or motif) and degrades the unmethylated
ones, and a corresponding DNA methyl-
transferase (MTase) that protects the same
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DNA sequence via the DNA methylation of the bacterial
genome.[4] RM systems thus enable bacteria to distinguish self-
genome from invading phage DNAs that are either unmethylated
or not properly methylated. To escape from the host immunity,
phages have developed strategies to overcome the RM systems,
which can involve the methylation of their genomes through
the hijacking of the host MTases, packing host MTase proteins
into their virions, or incorporating host MTase genes into their
genomes.[5]

Recent exploration of large human virome/phageome
datasets[6] has identified a substantial amount of novel gut
phage genomes and revealed their diversity in human gut.[2]

Furthermore, we have considerable anecdotal knowledge of
the vital roles of phages in shaping the microbial commu-
nity structure,[5a,7] mediating horizontal gene transfers among
bacteria,[8] and modulating host metabolic capacities.[9] In con-
trast, we know little about the epigenome landscape of entire
phage microbial communities and the abundance of particular
survival tactics, such as the encoding of their own MTases and
the potential impact on the survival of phages.

Long-read sequencing techniques such as the single-molecule
real-time (SMRT) and Nanopore have allowed us to explore the
large-scale, genome-wide DNA methylations; they were success-
fully applied to genomes of eukaryotes[10] and prokaryotes,[11]

and recently also were used to characterize the methyla-
tion patterns in individual viral genomes[12] and those in en-
vironmental samples.[13] Although the Nanopore sequencing
could identify more types of DNA methylations including the
N4-methyl-cytosine (m4C), N6-methyl-adenine (m6A), and N5-
methyl-cytosine (m5C),[14] the SMRT sequencing, especially in
its circular consensus sequencing (CCS) mode could provide
better resolution and higher accuracy (≈85%) in DNA methyla-
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tion detection,[15] and has been successfully used to characterize
viral DNA methylations in marine samples.[13a] Hence, we ap-
plied SMRT sequencing to 104 viral-like particles (VLPs) en-
riched human fecal samples and conducted a comprehensive
survey of the DNA methylation landscape of human gut DNA
phages, which allowed us to identify and quantify DNA methyla-
tions and their contributing factors at a large scale.

2. Results

2.1. A Set of High-Quality Phage Genomes Representing the
Human Gut Phageome

To obtain high-quality phage genomes for subsequent DNA
methylation analysis, we first established a Chinese Human Gut
Virome (CHGV) catalog consisting of 21 646 non-redundant
phage genomes, via the combined assembly of short-(Illumina)
and long-(PacBio in CCS mode) reads (Experimental Section;
see also ref. [16]) Briefly, we enriched double-stranded DNA
phages from fecal samples of 135 individuals of a Chinese
population, subjected them to short-read Illumina sequencing,
and selected 104 samples with sufficient amounts of high-
molecular weight DNA for PacBio SMRT long-read sequencing
(Experimental Section). We reconstructed the phage genomes
through a hybrid assembly pipeline using both the short- and
long-reads, followed by de-replication, and viral genome recog-
nition to generate a non-redundant set of phage genomes
(Figure 1A).[16] The viral recognition procedure included vi-
ral prediction by VirSorter,[17] VirFinder,[18] PPR-Meta,[19] pro-
tein annotation against the NCBI POG (Phage Orthologous
Groups) database[20] and comparing the assembled contigs to
NCBI Viral RefSeq using BLASTn,[21] followed by evaluation of
the outputs based on six commonly used criteria (Experimental
Section).

To avoid biases brought by the fragmented phage genomes, we
selected a subset of 8848 high-quality phages with ≥ 90% com-
pleteness (CHGV-HQ hereafter; Table S1, Supporting Informa-
tion) according to CheckV;[22] in addition to the CheckV recogni-
tion, 68.80% of the genomes were recognized by at least two viral
recognition criteria (Figure 1B).

We next examined whether the CHGV-HQ genomes could
allow us to obtain an unbiased view on the DNA methylation
landscape of the human gut phageome. Because the human gut
phageome was both diverse and individual-specific,[2] rather than
directly comparing the phage sequence to those in public human
virome databases, we instead checked if our CHGV-HQ phage
genomes represented most of the sequence signatures of known
human gut phages. Briefly, we trained a virus detection ma-
chine learning (ML) model using the 8848 genomes as the true
positives and a subset of the Unified Human Gastrointestinal
Genome (UHGG)[23] genomes as true negatives (the CHGV-HQ
model; Experimental Section). We first tested the model on an in-
dependent dataset consisting of viral genomes from the IMG/VR
database[24] and the left-out bacterial sequences in the UHGG.
The model could accurately distinguish the viral from bacterial
sequences with an overall area under the receiver operating char-
acteristic curve (AUC) value of 93% (94% precision and 92% re-
call rates; Figure 1C). We then applied the model to the public
virome databases including the gut virome database (GVD),[6a]
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Figure 1. The DNA methylation landscape of the human gut phageome identified using a representative set of 8848 high-quality gut phages. A) Gen-
eration of 8848 high-quality non-redundant double-stranded DNA phages from human fecal samples (CHGV-HQ) using combined assembly of short-
(Illumina) and long-(PacBio)read sequencing. B) Percentages of CHGV-HQ genomes annotated by the numbers of viral-recognition criteria in addition
to CheckV (Experimental Section). C) Left panel: Performance metrics of the viral-prediction machine learning model based on the CHGV-HQ genomes
(i.e., the CHGV-HQ model) in distinguishing the viral genomes in the IMG/VR database from the bacterial genomes in the )UHGG2 database (Experi-
mental Section). Y–axis: Accuracy—correct predictions out of all predictions, precision—ratio of true positives over the sum of false positives and true
negatives, recall—correctly predicted outcomes to all predictions, F1—combines the accuracy, precision, and recall metrics into one single metric that
ranges from 0 to 1, TNR—true negative rate, AUC—Area under the ROC (receiver operating characteristic) curve. Right panel: Proportions of correctly
recognized phage sequences in CHGV-HQ and public virome databases by the viral-cognition machine learning models. Top: proportions of the phage
genomes in public virome databases that were correctly recognized as phages by the CHGV-HQ model. Bottom: proportions of the CHGV-HQ phage
genomes that were correctly recognized by ML models based on the public virome databases (Experimental Section). D) DNA methylation sites and
their prevalence in the 8848 phages, stratified by methylation types, including N6-methyl-adenine (m6A or 6 mA) and N4-methyl-cytosine (m4C or 4mC).
E) Methylation motifs identified in this study and their overlaps with those in the REBASE (http://rebase.neb.com/rebase/rebase.html).

gut phage database (GPD),[6b] metagenomic gut virus catalog
(MGV),[6c] cenote human virome database (CHVD),[6d] and Dan-
ish enteric virome catalog (DEVoC).[6e] The CHGV-HQ model
correctly recognized ≈88% (≈73–95%) of the viral genomes at a
false-discovery rate of 5.72%, suggesting that the CHGV-HQ cat-
alog captured the key sequence characteristics of human gut vi-

rome/phageome. In addition, virus-detection ML models trained
on the true positives from the public virome datasets correctly
recognized ≈96% (≈95–97%) of our CHGV-HQ genomes as vi-
ral genomes (Figure 1C), further confirming their viral identity
and demonstrating that the sequence signatures were sufficient
for further analysis.
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2.2. The DNA Methylation Landscape of the Human Gut DNA
Phageome

We analyzed the long-read sequencing data in the 104 samples
(Figure 1A; Experimental Section) and identified DNA methyla-
tion sites using the SMRTlink tool, which had an ≈85% detec-
tion rate and ≈95% accuracy according to its manual.[15] For each
sample, we aligned the consensus reads (HIFI reads) of the sub-
reads generated by the PacBio CCS mode to the 8848 CHGV-HQ
phage genomes and then used the SMRTlink tool to detect the
methylated bases which compared the mean Inter Pulse Dura-
tion ratio (IPDr) of all the subreads at a position of the reference
genome with that of the unmethylated bases.[15] We obtained a
total of 8 448 009 non-redundant DNA methylation sites, among
which 50.73% and 49.27% were m4C and m6A modifications re-
spectively. In total, 8630 (97.53%) out of the 8848 phages were
methylated, and 8549 (96.6%) contained both types of modifica-
tions (Figure 1D).

We identified a total of 157 DNA methylation motifs using
an established method MEME tool[25] based on the large num-
ber of phages and identified methylation sites. Among these,
115 and 100 were m4C and m6A motifs, respectively, 58 motifs
were shared by both methylation types, that is, the same motif
sequence with different methylated bases (Table S1, Supporting
Information; Experimental Section). Of these, 155 motifs were
identical to the REBASE motifs[26] (Figure 1E; Experimental Sec-
tion).

We then characterized the methylation patterns of the phage
genomes, and identified genomic and evolutionary features that
favored them. To better capture signatures of the DNA methyla-
tion in different genomes, we combined the methylation sites of
all the CHGV-HQ genomes from all samples (Figure S1, Sup-
porting Information), assuming that all potential methylation
sites could be methylated in a genome. We observed a lower den-
sity of the m4C methylations in the coding regions (as measured
by the proportion of cytosines methylated per genome) than the
non-coding regions, but an opposite pattern for the m6A methy-
lations (Figure 2A, Table S1, Supporting Information; p < 0.001,
Wilcoxon Rank Sum Test; Experimental Section). We further dis-
sected these patterns by assigning the phages to four lifestyle
groups, namely temperate, uncertain temperate, uncertain vir-
ulent, and virulent using a DeePhage tool,[27] and observed an
increasing trend in the m4C densities with the increasing phage
virulence, that is, increased from temperate to virulent in both
coding and non-coding regions, but an opposite trend in the
m6A methylation densities (Figure 2A). Overall, we found sig-
nificantly higher methylation density of m4C than m6A in both
coding and non-coding regions. However, further analysis re-
vealed that the differences in the coding regions were caused by
lower proportions of m6A-methylated coding genes (CDSs with
at least one modified A base, Figure 2B; p < 0.001, Wilcoxon
rank sum test) rather than lower m6A densities in each of the
CDSs (Figure 2C; p> 0.05, Wilcoxon rank sum test). Additionally,
we also observed a correlation between the phage lifestyle with
the proportion of methylated CDSs. In particular, the proportion
of m4C methylated CDSs increases with increasing phage viru-
lence, while the opposite pattern was found for m6A (Figure 2B).
These results indicate different methylation pattern preference
in gut phages between lifestyle groups. Previous studies have

shown that the phage lifestyle is a determinant factor shaping
the phage defense strategies against the bacterial hosts.[28] Our
results thus suggested that the two methylation types (i.e., the
m4C and m6A methylations) may play different roles in phages
of different styles.

We also observed differential methylation patterns in genes
with various functions (Figure 2D). For example, tRNA genes,
and most genes encoding proteins with known viral functions
such as roles in lysis, immune evasion, integration, assembly,
packaging, and infection, were methylated by both m4C and
m6A in most genomes, in contrast to significantly lower propor-
tions observed for genes with less characterized functions such as
those coding for hypothetical and unsorted proteins (Figure 2D
and Figure S2, Supporting Information). These results suggest
that functionally important genes are more likely to be methy-
lated.

We also examined whether the methylation densities could cor-
relate with the viability of the gut phages. The latter could be
evaluated from two aspects, the ability of a phage to accumu-
late in one sample (i.e., abundance), and the ability to spread
and survive across samples (i.e., prevalence). Because the methy-
lation density is significantly affected by the sequencing depth
(e.g., the accumulative coverage of the CHGV-HQ genomes in
all samples) and the abundances (i.e., the higher the abundance,
the higher the coverage), we thus calculated a partial correla-
tion between the phage prevalence and the methylation densi-
ties, while controlling for the sequencing depth. We determined
the prevalence of the 8848 CHGV-HQ phages in the 104 sam-
ples using an arbitrary relative abundance cutoff of 0.5 calculated
from the short-read VLP sequencing data (Experimental Section),
and observed a strong positive correlation between the preva-
lence and methylation densities (Figure S3A, Supporting Infor-
mation; p < 0.001, Partial Pearson correlation r = 0.35 after the
sequencing depth was controlled) as well as the methylation mo-
tifs (p < 0.001; Figure S3B, Supporting Information). Because
virulent phages are generally more abundant and prevalent than
the temperate phages,[6a] we also stratified our analysis according
to the phage lifestyle groups and found similar trends (Figure 2E,
Partial Pearson correlation after the sequencing depth was con-
trolled). The same trends were found for both the m4C and m6A
methylation types (Figure S3C,D, Supporting Information). In
addition, changing the presence/absence threshold to other arbi-
trary abundance cut-off in our prevalence calculation did not af-
fect our main results (Figure S3E,F, Supporting Information). To
further remove discovery biases, we also limited our analysis to
phages with more than 100× coverages, and obtained similar re-
sults (Figure S4A,B, Supporting Information). Thus, our results
suggested that higher methylation densities and/or numbers of
methylation motifs might correspond to higher phage viability.

Together, our results show that the DNA methylation is uni-
versally present in gut phages and may play important roles in
their survival in the human gut.

2.3. Phage-Encoded MTases Are Prevalent and Associated with
Higher DNA Methylation Density and Phage Viability

To clarify the mechanisms underlying these frequent methy-
lations, we examined whether gut phages encode their own
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Figure 2. Distributions patterns of the DNA methylations in CHGV-HQ genomes as functions of phage lifestyles, gene functions, and phage prevalence.
A) Methylation density with different distribution patterns of m6A and m4C in coding versus noncoding regions, and the impacts of phage lifestyles.
The methylation density was calculated by the number of methylated bases divided by the total number of the related bases, for example, the number of
mA bases/number of A bases. The overall trend of coding region being enriched in m4C methylation remained in each lifestyle group (right-top panel).
Conversely, the m6A densities decreased with the increasing phage virulence (right-bottom panel); however, because the m6A densities decreased
further in the coding than the noncoding regions in the two virulent phage groups (i.e., uncertain virulent and virulent), we found significantly higher
m6A densities in the coding than the noncoding regions of the two virulent groups (right-bottom panel). We found significantly higher m4C densities
in both coding and noncoding regions than that of m6A (left panel). B) Differential distribution patterns between m6A and m4C in coding sequences
(CDS), and the impacts of phage lifestyles. The number methylated CDSs takes all the CDSs with at least one correlated methylation site into account.
C) The ratio of modified bases/genome length per CDS between m6A and m4C. D) Differential distribution patterns of m6A and m4C modifications
in coding genes with different functions; almost all tRNA genes and coding genes with known viral functions (Including Assembly, Immune evasion,
Lysis, Integration, Replication, Regulation, Packaging, and Infection) are methylated, as compared with much lower methylation rates in phage genes
coding for unsorted and hypothetical proteins. See Figure S2, Supporting Information for more detailed gene functional categories. E) The viability of the
CHGV-HQ phages, that is, the prevalence across 104 fecal samples, was positively correlated (partial correlation using Pearson correlation, p < 0.001)
with the overall DNA methylation density when the sequencing depth was controlled for (Experimental Section). Prevalence was calculated by using an
abundance cutoff of 0.5 RPKM as the presence/absence threshold (Experimental Section); the results obtained when using other abundance cut-offs
as the threshold were similar and can be found in Figure S3E,F, Supporting Information. Plotted here are the residuals of the prevalence (Y–axis) and
methylation density (X–axis) after the sequence depth was controlled for (Experimental Section).

MTases. We searched all annotated proteins of the 8848 CHGV-
HQ phage genomes against the conserved domain database
(CDD)[29] using RPS-BLAST[30] (v2.12.0+) (Experimental Sec-
tion), and identified a total of 4064 putative MTases with an E-
value cut-off of 1E-5. Overall, phage-encoded MTases are preva-
lent, and could be found in 34.09% (3205, Figure 3A) of the
CHGV-HQ phages (Table S1, Supporting Information), among
which, 72% of the MTase-containing phages encoded only one
MTase gene, whereas the others harbored multiple such genes
(Figure S5, Supporting Information).

In addition to the RM systems, DNA MTases may exist with-
out cognate REases, in which case they are referred to as the or-
phan MTases, and likely involved in processes other than anti-
phage immunity such as gene expression regulation,[31] and
DNA replication and repair.[32] We thus searched the phage-

encoded MTases against those in the REBASE database that were
already classified as orphan or non-orphan MTases. Out of the
total 4064 MTases, 4030 had significant BLASTp hits with an E-
value cut-off of 1E-5; among which, 93.25% (3758) had BLASTp
hits with the non-orphan MTases, significantly higher than the
overall 92.27% non-orphan MTases in the REBASE (207 303 out
of 224 651; Figure 3C, p < 0.001, Hypergeometric test). Fur-
thermore, the phage-encoded MTases with higher protein sim-
ilarities (e.g., ≥ 90%) with those in the REBASE were further
enriched with the non-orphan ones (97.71%, Figure 3C, p <

0.001, Hypergeometric test). Thus, most of the phages-encoded
MTases are likely to be involved in the phage–bacterium defense
processes.

We observed an increasing methylation density and number
of motifs in the phages with more MTases genes (Figure 3D,E;
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Figure 3. Phage-encoded MTases are prevalent in gut phages, and are associated with higher phage viability. A) Over one-third of the CHGV-HQ phages
encode their own MTase genes. B) Most (4030 out of 4064, 98%) of the phage-encoded MTases share significant protein similarities with those in the
REBASE (BLASTp e-value < 1e-5; Experimental Section). ≥0 stands for all phage-encoded MTases with BLASTp e-value < 1e-5. C) The phage-encoded
MTases are mostly non-orphan MTases, and contain significantly higher proportion of non-orphan MTases than the REBASE. Chi-square tests were per-
formed between REBASE and each of the CHGV-HQ groups with different protein similarity cutoffs; *p < 0.05, **p < 0.01, ***p < 0.001. D,E) Increasing
numbers of phage-encoded MTase genes are associated with higher methylation densities and more methylation motifs in the phage genomes. F) Vi-
olin plots showing prevalence of the phages with/without MTases (X–axis), stratified by the phage lifestyles (i.e., from temperate, uncertain temperate,
uncertain virulent, and virulent). Wilcoxon rank sum tests were performed between groups; *p < 0.05, **p < 0.01, ***p < 0.001. G) Bar plots on the
left showing the prevalence of MTase genes in the CHGV-HQ phages as a function of phage virulence: a decreasing MTase prevalence is obvious with
the increasing phage virulence (i.e., the highest in temperate phages, and lowest in virulent phages). Similar trends could be found in individual MTase
types (Figure S6B,C, Supporting Information). Bar plots on the right showing the heterogeneous distributions of the MTases in phage subgroups such
as the crAssphages and Gubaphages. H) The same trends could be found in GPD phages.

see also Figure S6A, Supporting Information for the trends for
the individual modification types), suggesting that these phage-
encoded MTases were indeed functional and contribute to the
methylation of their encoding phages. In addition, we also ob-
served that the phage-encoded MTases contributed to the signif-
icantly higher prevalence in two out of the four lifestyle groups
(Figure 3F; the prevalence was measured by using an arbitrary
abundance cut-off of an RPKM≥ 0.5 as the presence/absence
threshold across the 104 samples; Experimental Section). These
results suggest that the phage-encoded MTases may also con-
tribute to the spreading of the corresponding phages across hu-
mans.

Phage lifestyle was also associated with the distribution of
the MTase genes. For example, we found a significantly higher
prevalence of MTase genes in temperate phages than in the vir-
ulent ones (Figure 3G,H). The trends in the individual MTase
types, that is, MTases responsible for m4C and m6A modifica-
tions were mostly the same (Figure S6B,C, Supporting Informa-
tion, line charts; Table S2, Supporting Information). The higher
occurrence of MTases in temperate phages is likely due to their
increased time spent within host cells and hence higher chances
in exchanging genetic material horizontally.

However, heterogeneity in the lifestyle distributions was
observed among different taxonomic groups. For example,

Adv. Sci. 2023, 10, 2302159 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2302159 (6 of 12)
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Figure 4. Phage-encoded MTases are homologous to bacteria-encoded ones and can be used to predict phage–host relationships with high precision.
A) Most phage MTases (v-MTases) can be clustered into protein clusters (PCs) together with their bacterial homologs (b-MTase) using a Markov cluster
algorithm (MCL). B) Distributions of protein sequence similarities of phage MTases. C) Phage–host prediction AUROC in the golden-standard dataset
using at least one MTase at species- (upper) and genus- (lower) levels. D) Phage–host prediction precision in the golden-standard dataset using the two
or more MTase at species- (left) and genus- (right) levels. E) Host ranges for phages with predicted hosts using MTase.

although both crAssphages and Gubaphages, the two most preva-
lent viral clades in human gut, are known to be virulent,[6b] none
of the crAssphage genomes in our CHGV-HQ collection encode
MTase genes as compared to ≈38.9% of the Gubaphages (p <

0.001, Chi-squared test). Similar trends were found among the
high-quality gut phage genomes in the GPD;[6b] Figure 3H; Ex-
perimental Section), implying that crAssphages developed other
means of achieving high prevalence besides avoiding the RM-
systems.

In summary, our results show that over one-third of the
CHGV-HQ phages encode their own MTase genes, which are
associated with higher DNA methylation density and increased
phage viability.

2.4. Phage MTases Are Closely Homologous to
Bacterium-Encoded Ones and Can Be Used for Accurate
Phage–Host Prediction

To further characterize the phage-encoded MTases, and to quan-
tify previously observed similarity with bacterial genes,[5,33] we

annotated MTases from the Unified Human Gastrointestinal
Genome v2.0 (UHGG2),[23] a metagenome-assembled human
gut microbial genome collection by applying the same pipelines
used for CHGV-HQ (Experimental Section). We then combined
the 61 719 annotated MTases with the 4064 phage-encoded ones
identified in the CHGV-HQ genomes, performed all-against-all
protein similarity searches using BLASTp,[30] and built protein
clusters (PCs) using a Markov clustering algorithm (MCL).[34]

We obtained a total of 1409 MTase PCs (including singletons),
among which 7, 1228, and 174 clusters contained phage, bac-
terial, and both bacterial and phage MTase genes; we referred
to the last group of PCs as gene-sharing PCs (GS-PCs). Im-
portantly, 4048 (99.61%) of the total phage MTases (v-MTases)
were included in the GS-PCs, (Figure 4A) among which, 59.38%
of the v-MTases share over 90% protein sequence identities
with their bacterium-encoded homologs (Figure 4B). We ob-
served similar results between phage- and bacterial-encoded
MTases using experimentally validated phage–host relation-
ship data from the microbe-versus-phage (MVP)[3] database
(Figure S7A, Supporting Information). The high similarity of the
gut phage MTases with bacterium-encoded ones thus points to

Adv. Sci. 2023, 10, 2302159 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2302159 (7 of 12)
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not only a frequent gene exchange but also potential bacterial
hosts.

To validate that the exchange of MTases indeed occurred be-
tween phages and their hosts, we examined whether such genes
could be used to accurately distinguish phage–host relation-
ships in the MVP database from randomly generated phage–
bacterium pairs (Experimental Section). By using the BLAST re-
sults between phage and bacterial MTases as the only feature, we
achieved overall accuracies of 76.5% and 77.8% AUC values at
the species and genus levels, respectively (Figure 4C). Using at
least one MTase, the phage–host relationships could be predicted
at 67.20% and 82.08% precision at the species and genus levels,
respectively. The prediction precision could be further increased
to 73.5% and 85.2% (Figure 4D), by requiring that at least two
MTase genes were shared between the phage–bacterium pairs
with protein similarity higher than 90% (Experimental Section).
At the latter criteria, we could predict a total of 4.77% phages to
their hosts (Table S1, Supporting Information). We further vali-
dated the prediction results by calculating the host range for each
of the phages as the last common ancestor (LCA) of all predicted
bacterial hosts passing the above criteria, and found that 95.01%
of the phages whose hosts had LCA at the species level (Figure 4E;
Figure S7B, Supporting Information).

Together, these results support the assumption of the frequent
exchange of MTases between phages and their hosts. Since the
exchanges are bidirectional,[35] further work is needed to quantify
directionality, as acquisition by phages increases their viability,
the transfer of MTases to host bacteria could also confer changes
through the increased DNA methylation potential.

3. Conclusion

In this study, we use the SMRT technology to characterize the
first DNA methylation landscape of human gut phages at the
community scale. Our finding that the gut phages may use
DNA methylation to escape bacterial anti-viral immune mech-
anisms has several important implications. First, the similar
analysis could be applied to the phage communities in other
environments[13a] to better illustrate the role of methylation and
phage-encoded MTases in those environments. Since the RM
systems are universally present in bacterial genomes, survived
phages appear to encode the respective counter-mechanisms,
among them the DNA methylation. Second, the finding that dif-
ferential methylation patterns exist in genes with various func-
tions suggests that for some genes, by shielding themselves with
DNA methylation, are able to keep functioning in the bacte-
rial genome after the phage infection. Furthermore, the higher
methylation densities found in more virulent phages indicate
that DNA methylation is crucial for phages to escape the restric-
tion endonuclease recognization from their hosts. It has been
suggested that the phage-encoded MTases, which are mostly or-
phan ones, can be functional methyltransfereases and help the
phages to overcome the bacterial R-M Systems and even con-
tribute to the emergence of phages with broad host ranges.[36]

The fact that these genes are different in their methylation
pattern further indicates that they are of important functions,
such as those with known viral functions including the infec-
tion, immune evasion, and assembly. Third, the phage-encoded
MTase shared significant protein similarity (often >90%) to

bacterial-encoded ones, indicating that they were frequently ex-
changed between phages and bacteria and thus could be used
to infer phage–host relationships. Sequence similarity-based ap-
proaches have been used to establish such relationships in many
environments;[37] consistently, our analysis showed high preci-
sion in predicting phage–host relationships using MTases in an
experimentally validated dataset (Figure 4D). Last, the viability
benefits that we observed in phages with self-encoded MTases
might represent only a small part of the functional consequences
of the large numbers of genes frequently exchanged between
phage and their bacterial host genomes. We found that there are
≈20% genes share high similarity with bacterial genes (Figure S8,
Supporting Information), suggesting that there might be other
genes that help the virus survive in the bacteria, and these genes
could also be used to predict the host.

Our estimation on the extent of the phage DNA methyla-
tion and annotation of MTases may suffer from a few techni-
cal drawbacks. First, although the PacBio CCS mode allowed
us to more reliably detect methylation signals from the sub-
reads, that is, a genomic fragment from a single virion was se-
quenced multiple times and thus the consensus signals were
more reliable than using reads from multiple virions of the same
species/strains, heterogeneous DNA methylation patterns due
to the high micro-diversity caused by high viral mutation rates
and/or partial methylation within a viral population could lead
to increased false negative calls. The distribution of methyla-
tion density further confirmed that very few methylation-positive
genomes with low methylation density (Figure S9, Supporting
Information), thus reduces the possibilities of the overestimate
methylation prevalence due to the misalignment of the identi-
fied methylation fragment. In addition, phages infecting multiple
bacterial species may have different methylation patterns from
different hosts, although such cases could be rare because most
phages have rather narrow host ranges at the species and even
strain levels.[3] Sequence depth is critical factor in methylation
identification, too. Our rarefaction analysis indicated the num-
ber of unique methylation density increased with the increasing
sequence depth and the rarefaction curve is far from saturation
(Figure S4A, Supporting Information). Thus, our estimation may
present only part of the global picture of the full extent of the
phage DNA methylation landscape in the human gut. There is
still in need of a more reliable bioinformatics pipeline to identify
methylation sites in genomes outside the eukaryotic and prokary-
otic worlds. Second, our annotation of MTases was rather conser-
vative. In this study, we used an RPS-BLAST based search that
is known to less sensitive than hidden Markov (HMM)-based
search methods.[38] However, the latter might suffer from high
false positives.[39] Last, we identified too many sequence motifs
in the gut phages. For example, although we obtained on average
≈4–5 motifs per phage, some phages could contain more than 30
motifs. This was in part because that some MTases are not site
specific,[40] or the less stringent search criteria used by MEME.

Interestingly, we observed a significantly different distribu-
tion of the two modification types, namely m4C and m6A be-
tween the gut phageome and bacterial genomes. For example, the
two methylation types accounted for 50.75% and 49.25% in our
dataset, which was in sharp contrast to the bacteriome that the
m6A is dominant and accounts for ≈75% of the modifications,[41]

whereas m4C accounts for ≈20%.[42] The discrepancy could be
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due to biological reasons such as that some bacteria are asso-
ciated with more phages than others thus causing the overall
methylation patterns in phages to be biased toward those bac-
teria, or technical reasons such as detection biases because of the
lack of dedicated viral methylation identification tools. Of note,
we did not analyze m5C modifications because of two reasons.
First, currently the SMRT sequencing could not reliably detect
them for prokaryotes and phages.[15] Second, m5C modifications
are known to be rare in prokaryotic genomes.[42] Regardless, our
knowledge on methylation patterns of the human gut bacteriome
so far came from only a few studies with few fecal samples[41] and
a comprehensive understanding is still lacking. In summary, we
systematically characterized the DNA methylation landscape of
human gut phages at the community scale using PacBio SMRT
sequencing on 104 VLP-enriched samples. Our results suggest
that the gut DNA phages universally use DNA methylation to
escape from host defense systems with significant contribution
from phage-encoded MTases. Together with recent studies ex-
ploring the identification of human phages at large scales [6a-e],
our data and findings have only started to picture the survival
tactics of the gut phages, the functional consequences of the fre-
quent phage–bacterium gene exchanges to shape the gut micro-
bial communities, and more daring, their implications in human
health and diseases.[43]

4. Experimental Section
Generation of 8848 Near-Complete Double-Stranded DNA Phages from

the Human Gut: The Chinese Human Gut Virome (CHGV) catalog was
obtained from a previous study[16] that contains 21 646 non-redundant
viral contigs generated by combined assembly of short- (Illumina) and
long- (PacBio) reads. Briefly, a total of ≈500 g of feces from each of the
135 healthy volunteers of Chinese residence were collected and processed
by a virome enrichment protocol to obtain a large number of VLPs. High-
quality and high-molecular weight double-stranded DNAs were then ex-
tracted, and submitted to Illumina HiSeq2000 sequencer (Novogen, Bei-
jing, China) for viral next generation sequencing (vNGS, short-reads). A
subset of 104 samples with sufficient quantity of viral DNAs was also sub-
mitted to the PacBio RS II sequencer (Pacific Biosciences, Menlo Park,
CA, USA) with CCS mode for viral third-generation sequencing (vTGS,
long-reads). Human genome contaminations were identified and removed
from both the vNGS and vTGS datasets, followed by a combined assembly
pipeline to generate putative phage contigs (see ref. [16] for more details).

To identify viral genomes, the following tools were used: VirSorter
v2.0[17] (–min-score 0.7), VirFinder v1.1[18] (default parameters), and PPR-
Meta v1.1[19] (default parameters). A BLAST search against the Viral Ref-
Seq genomes was also performed using BLASTn v.2.7.1[21] with the default
parameters and an E-value cutoff of <1e-10; Release 201 (Jul 06, 2020) of
the Viral RefSeq database contained 13 148 viral genomes. In addition,
the annotated protein sequences were used for BLAST searches against
the NCBI POG (Phage Orthologous Groups) database.[20]

A contig was annotated as a virus if it was circular/met at least two
of the following criteria 1–5; the same criteria have been adopted by the
GVD.[6a]

1. VirSorter score ≥ 0.7,
2. VirFinder score > 0.6,
3. PPR-Meta phage score > 0.7,
4. Hits to Viral RefSeq with > 50% identity & > 90% coverage,
5. Minimum of three ORFs, producing BLAST hits to the NCBI POG

database 2013 with an E-value of ≤ 1e-5, with at least two per 10 kb
of contig length.

Alternatively, contigs met one of the above criteria and were annotated
as high-quality (≥ 90% completeness) by CheckV[44] and were also anno-
tated as viruses.

To avoid bacterial contamination, possible prophage regions were
first identified using PhageFinder[45] (v2.1) and they were removed from
UHGG genomes to prevent over-estimation of the contamination. The re-
sulting UHGG dataset was referred to as UHGG-Minus in this study. A
BLAST search was then carried out against the UHGG-Minus sequences
using BLASTn v.2.7.1[21] with the default parameters and an E-value cut-
off of <1e-10, and contigs with blastn hit of 90% identity over 50% of its
length were removed from further analysis. To avoid fragment genomes,
the contigs were filtered with length longer than 5 kb or circular contigs
longer than 1.5 kb.

In the end, a non-redundant set of 21 646 viral contigs was obtained
and referred to as the Chinese Human Gut Virome (CHGV) catalog.

The 8848 near-complete double-stranded DNA phages were then
screened from the CHGV catalog[16] using CheckV[44] based on a selec-
tion criterium of >90% completeness. In total, 5956 complete (with 100%
completeness) and 2892 high-quality (with >90% completeness) phage
genomes were selected for subsequent analyses.

Identification and Characterization of DNA Methylation Profiles of the
8848 Phages across 104 Fecal Samples: The Base Modification Analysis
Application module of the SMRT Link tool (v10.1) from https://www.pacb.
com/support/software-downloads was utilized on January 15, 2022, to
identify methylated sites in the genomes of 8848 gut phages across 104
fecal samples using SMRT sequencing data.[15] For each sample, the con-
sensus reads (HIFI reads) generated by the PacBio CCS mode were aligned
to the 8848 CHGV-HQ phage genomes and then the SMRTlink tool was
used to detect the methylated bases which compared the mean Inter Pulse
Duration ratio (IPDr) of all the subreads belonging to the aligned HIFI
reads at a position of the reference genome with that of the unmethylated
bases.[15]

MotifMaker (SMRTLink, https://www.pacb.com/support/software-
downloads/) was used to identify the methylated motifs, but did not prod-
uct any results. HOMER[46] (v4.11), a popular motif prediction tool for an-
alyzing ChIP-seq data, was also used to identify motifs; although it identi-
fied a lot of motifs from the data, HOMER did not report the exact locations
on the viral genome. It was speculated that these tools were designed for
analyzing prokaryotic/eukaryotic genomes that were significantly longer
than viruses, and thus might not be suitable for viral genome analysis.
Methylation motifs were thus identified using MEME-ChIP[25b] (v5.4.1;
default parameters). Motifs were then dereplicated with a customized
R pipeline (https://github.com/whchenlab/gutphagemethylome). To
further remove false positives, it was also required that the motifs should
be found in at least 100 phage genomes. In total, 157 non-redundant
motifs were identified (Table S1, Supporting Information). A customized
R pipeline was used to compare the motifs with those in the REBASE.[26]

A rather relaxed criteria was used to search for the overlap; for example,
motifs that were one of the possibilities of the motifs in public database
were considered overlapped, for example, AKCTCG was considered to
be overlapped by BCNC (the former was one of the possibilities of the
latter). In total, 155 were the same as compared with those in the REBASE
(Table S1, Supporting Information).

Annotation of MTases in Phage Genomes as well as Bacterial/Archaeal Ref-
erence Genomes (BRGs): Prodigal[47] v2.6.3 with default parameters was
used to predict genes from the 8848 gut phage genomes. The predicted
protein sequences were searched against the CDD[29] using RPS-BLAST
(v2.12.0+; part of the BLAST package;[21] e-value 1E-5). MTase proteins
were identified with the following domain: cd21179.smp, COG0350.smp,
KOG3191.smp, pfam05869.smp, pfam12047.smp, PRK10904.smp,
PRK11524.smp, TIGR00589.smp, TIGR00675.smp, TIGR01712.smp and
TIGR02987.smp. The MTases were further annotated by blast against the
REBASE[26] with BLASTp (e-value < 1e-5).

The same methods were used to identify MTase proteins in bacte-
rial/archaeal reference genomes in the Unified Human Gastrointestinal
Genome collection v2.0 (UHGG2)[23] and public phage genomes in the
GPD.[6b]

Adv. Sci. 2023, 10, 2302159 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2302159 (9 of 12)
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The search for MTases might be limited by the CDD search method, for
that it might underestimate/misclassify some of the MTase hits.

Selection of High-Quality Phage Genomes from GPD, the GPD: For
comparison purposes, 40 140 high-quality phage genomes (>90% com-
pleteness) were also selected from the GPD[6b] using CheckV.[44] Among
these, 17 743 (44.2%) were of 100% completeness; this subset of GPD
genomes was referred as to GPD-HQ in this study.

Machine Learning Models for Prediction of Human Gut Virome and Per-
formance Evaluation: To check the quality and representativeness of
CHGV-HQ and compare it with public human (gut) virome databases
including GVD,[6a] GPD,[6b] MGV,[6c] CHVD,[6d] and DEVoC,[6e] a series
of neural network models were trained with the same architecture as
DeepVirFinder.[48]

For CHGV-HQ, GVD, and DEVoC, all sequences were kept as the true
positive datasets, while for GPD and MGV, the longest sequence of each
viral cluster (considered as genus level of viruses) was selected as repre-
sentative genomes considering memory consumption and training time,
and referred to as GPD-rep and MGV-rep, respectively. As for CHVD,
the intestine-origin genomes were extracted. All the above-mentioned
datasets were kept as positive datasets separately.

The bacterial genomes over 1.5 kbp from the human intestine were col-
lected as negative samples from UHGG-Minus (Unified Human Gastroin-
testinal Genomes v2[23] without prophage sequence; prophage identified
with Phage_Finder[45] with default parameter).

80% of each collection was randomly selected as the training set, and
the other 20% as the test set. The DNA sequences in the training set were
consecutively segmented into non-overlapping fragments (1 kbs), then
encoded into numerical matrices with a one-hot encoding method. The
testing dataset was also segmented into non-overlapping fragments, and
for each sequence, the average score of its fragments was assigned. For
that the bacterial fragments significantly out-numbered the viral ones; the
negative bacterial training set was randomly down-sampled to match the
positive viral one for every model.

The representativeness of CHGV-HQ was assessed with two experi-
ments.The performance of the models built using the same method can
be regarded as an indicator of the quality and representativeness of each
dataset.

In the first experiment, a test on an independent dataset, IMG/VR
database[24] (https://img.jgi.doe.gov/cgi-bin/vr/main.cgi) and bacterial
sequences from the test set of UHGG-Minus, were carried out. To make
sure that the CHGV-HQ training set was independent with this IMG/VR
test set, the pairwise comparison was conducted, by blasting (BLASTn,[30]

v2.2.26+; E-value < 1e-5) IMG/VR sequences against CHGV-HQ. The
IMG/VR genome was kept only if it was with 90% nucleotide identity on
less than 70% (calculated with bedtools v2.29.1[49]) of its genome. The
same procedure was carried out for the bacterial test dataset.

Metrics such as accuracy, precision, true negative rate, recall, f1-score,
and AUC score were then calculated to evaluate the CHGV-HQ model.

In the second experiment, the CHGV-HQ model was applied to the
above human gut virome datasets to see if most of the latter sequences
could be correctly recognized.

In addition, viral-recognition models trained on the public datasets
were also applied to the CHGV-HQ genomes, to further validate the lat-
ter’s viral identity.

Estimation of the Prevalence of the CHGV Genomes at the Viral Contig:
To estimate the abundance of phage genomes, the VLP-Next generation
sequencing clean reads were mapped to the CHGV-HQ genomes using
Bowtie2. Then, the reads per kilobase million (RPKM) value of each phage
genome was calculated. An arbitrary abundance cutoff of 0.5 was used to
define the presence of a phage in each of the 104 samples. Changing the
presence/absence threshold up to 5 RPKM did not affect the main results.

Partial correlation calculation between the phage prevalence and
methylation densities with the sequencing depth control for partial corre-
lation was a measure of the strength and direction of a linear relationship
between two continuous variables whilst controlling for the effect of one or
more other continuous variables. The partial correlations between phage
prevalence and methylation densities, whilst controlling for sequencing
depth were calculated using R (v 4.0.5) with “ppcor” Rpackage.[50] To plot

the results after the sequence depth was controlled for, the residuals of
the prevalence and methylation densities were calculated using the “resid’
function implemented in R with commands like ‘resid(lm(prevalence ≈ se-
quencing_depth))” and “resid(lm(meth_density ≈ sequencing_depth)).”

Annotation of crAssphages and Gubaphages: crAss-like phages were
identified using the same method reported in a previous study (ref. [51])
First, phage nucleotide sequences were compared against the protein se-
quence of the polymerase (UGP_018) and the terminase (UGP_092) of the
prototypical crAssphage (p-crAssphage, NC_024711.1) using BLASTx[21]

(v2.2.26+). Second, the nucleotide sequence similarities between the
phages and the p-crAssphage genome were assessed using BLASTn.[21] A
phage was then classified as a crAssphage when it was longer than 70 kb
and met at least one of the following criteria:

1. had a BLASTx hit with an E-value <1e-10 against either p-crAssphage
polymerase or terminase

2. showed ≥95% nucleotide identity over 80% of the contig length with
the p-crAssphage genome

Gubaphages were identified by searching for the large terminase gene
of the Gubaphage genomes obtained from the GPD[6b] using BLASTp
(v2.2.26+, E-value< 1e-5). Gubaphage was then classified into four genera
(G1.1, G1.2, G1.3, and G2) according to the similarity of the large termi-
nase genes to those identified in the GPD.

In total, 245 crAssphage and 180 Gubaphage genomes were identified
in the dataset.

For comparison, 1490 Gubaphages and 2057 crAssphages were ex-
tracted according to the genome annotations in GPD-HQ.

Annotation of Phage Lifestyles: Phage lifestyles were predicted using
DeePhage[27] v1.0 with default parameters. DeePhage uses a scoring sys-
tem to classify phage genomes into four categories, including temper-
ate (with scores < = 0.3), uncertain temperate (≈0.3–0.5), uncertain
virulent (≈0.5–0.7), and virulent (>0.7). Higher scores indicate higher
virulence.[27] Among the 8848 phages, 1211 (13.68%), 5272 (59.58%),
1647 (18.61%), and 718 (8.11%) were classified as temperate, uncertain
temperate, uncertain virulent, and virulent respectively (Table S1, Support-
ing Information).

Clustering Analysis of the Phage- and Bacteria-Encoded MTase Pro-
teins: Protein sequences of MTases from phages, bacterial and archaeal
genomes were merged and a BLASTp (v2.2.26+; E-value 1e-5) algorithm
was used to search the merged dataset against itself for homologous se-
quences. The query-hit pairs were further filtered with a coverage >75%
on the query proteins. The filtered BLASTp results were used as input for
a Markov Clustering Algorithm[34] (MCL v14-137) with default parameters
to generate protein clusters (PCs). The clustering analysis was performed
separately for MTase proteins.

Phage Host Prediction Using MTases: To check if MTases can be used to
correctly predict phage hosts, and determine the best parameters for the
predictions, a published phage–host dataset was obtained from the MVP
database[3] and used as gold standard. Of note, only experimentally vali-
dated phage–host relationships and those inferred from prophages were
retained for further analysis, resulting in 778 relationships between 422
phages and 1517 prokaryotic hosts (Table S1, Supporting Information).
MTase proteins were identified for the phages and prokaryotic hosts, as de-
scribed in the previous section. BLASTp (v2.2.26+)[21] was used to detect
homologous relationships between phage- and bacteria-encoded MTases.
A sequence similarity score (BLASTp q-identity × query coverage, Sim-
Score) was calculated and AUC scores were used to evaluate the accuracy
of the SimScores to distinguish true interactions from randomly generated
non-interacting phage–host pairs. Such an analysis can help in determin-
ing the best SimScore cutoffs by taking specificity, sensitivity, or both into
consideration.

To predict hosts for the phages, phage-encoded MTase protein se-
quences were searched against those of the UHGG2 using BLASTp
(v2.2.26+). A bacterial/archaeal genome whose BLASTp SimScore to a
phage MTase protein was higher than the threshold was assigned as the
phage host. To avoid wrong host assignments because of the lack of bac-
terial reference genomes, a rather stringent threshold was adopted to
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assign a bacterial host to a phage if i) at least two phage-encoded MTase
proteins had SimScore higher than 90% with the host-encoded counter-
parts, and ii) at least two such sequence-matches agreed on the same host.
After filtration, the annotation for each protein with the highest BLASTp
SimScore was kept. At these criteria, the precision of 73.5% and 85.2%
were achieved at the species and genus levels respectively on the MVP
dataset (Figure 4D). The predicted phage–host relationships can be found
in Table S1, Supporting Information.

Host Range Calculation of Host-Prediction Results: Host prediction re-
sults were evaluated by calculating the host range for each phage. For
phages with only one predicted host, the host range was at the species
level. For those with multiple predicted hosts, the host range was cal-
culated as the last common ancestor (LCA) of all the hosts on the
NCBI taxonomic database using an in-house R script (https://github.com/
whchenlab/gutphagemethylome.).

Statistics and Other Bioinformatics Analyses: All processed data, if not
otherwise stated, were loaded into R (v4.0.5, https://www.r-project.org/),
analyzed, or visualized.
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