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Letter to the Editor
Telomerase reverse transcriptase (TERT) plays a key role in the

maintenance of chromosomal ends by adding telomeric repeti-
tions (TTAGGG) and, thus, contributes to the preservation of
chromosomal stability [1]. TERT expression is typically absent in
normal somatic tissues. Notable exceptions are, besides sperma-
togonia, germinal center B-cells [2, 3]. In contrast to non-
malignant tissues, telomerase activity is present and TERT is
expressed in the majority of human cancers [4]. The regulatory
mechanisms behind this feature are heterogeneous and at least
partially interrelated. They include TERT promoter single nucleo-
tide variants [5], TERT locus amplifications or rearrangements [6],
TERT transcriptional activation via transcription factors such as
ETS1 and ETS2 [7], and epigenetic changes at the TERT promoter
and the TERT hypermethylated oncological region (THOR), a
region upstream of the TERT core promoter (Fig. 1A) [8]. TERT
promoter DNA methylation studies in solid tumors showed a
correlation of TERT transcription with high DNA methylation of the
THOR and low methylation at the TERT core promoter [8–11].
TERT expression and telomerase activity vary within and

between different types of B-cell lymphomas [12]. However,
despite the presence of structural variants activating TERT in B-cell
lymphoma, there is little detailed knowledge available regarding
the DNA methylation status at the TERT promoter and THOR in
B-cell lymphomas. Thus, we here focused on the analysis of the
TERT promoter and THOR DNA methylation pattern in a range of
lymphomas, predominantly of B-cell origin.
For this purpose, we first analyzed available DNA methylation

data generated with the Infinium® HumanMethylation450 (450 K)
or MethylationEPIC (EPIC) BeadChips of 156 cell lines derived from
various hematolymphoid neoplasms (137 published and 19 newly
generated, Supplementary Tables 1 and 2).
We observed a profound DNA methylation heterogeneity

between the two CpGs present on the array, one in the core
promoter (cg10896616) and one in the THOR (cg11625005). We
detected higher THOR methylation compared to core promoter
methylation in BL, MM, and cHL (median beta values THOR: 0.62,
0.72, 0.96 respectively; median beta values core promoter: 0.23,
0.16, 0.52 respectively, for p-values compare Supplementary
Table 3) (Fig. 1, Fig. S1). Moreover, compared to all other mature
B-cell lymphoma entities, cHL cell lines showed significantly
higher DNA methylation of both CpGs (Fig. 1B, Supplementary
Table 3). A similar DNA methylation pattern is only observed in
T-cell malignancies (Fig. 1B; median beta values core promoter:
T-cell leukemia 0.54, ALCL 0.72; median beta values THOR region:

T-cell leukemia 0.96, ALCL 0.96) (for p-values compare Supplemen-
tary Table 3). In contrast, LCLs, CLLs, and MCLs show comparably
low DNA methylation in both regions (beta value < 0.5).
We further investigated 30 CpGs in the TERT core promoter and

THOR in 43 cell lines (BS cohort: 40 lymphoma cell lines and 3 LCLs;
Supplementary Table 4) using a targeted bisulfite NGS approach in
order to determine if the methylation of the single CpG sites on the
array represent DNA methylation at the entire TERT locus (Fig. 2A).
The correlation between NGS and the array-based DNA methylation
analysis is high with r= 0.79 (p < 0.0001; Fig. S2A).
Again, DNA methylation segregates the cell lines into two

clusters with low DNA core promoter and THOR methylation in one
group (most BL, DLBCL, LCLs, and most LBCLs, avg. DNA
methylation < 0.05) and higher DNA methylation at both regions
in the other group. Of note, the cluster displaying higher DNA
methylation values is again enriched for cHL cell lines (8/14
samples are cHL cell lines in the cluster with higher DNA
methylation, 57%) compared to the cluster with lower DNA
methylation (2/29 cell lines are cHL cell lines, 7%, p < 0.001, Fisher’s
exact test; Fig. 2B). Besides B-cell origin cHL, also both T-cell-origin
cHL cell lines (HDML-2, L-540) were grouped in the cluster with
higher DNA methylation, where the majority of cHL cell lines lie.
As cHL cell lines showed the highest DNA methylation at the

TERT promoter and THOR, we next aimed to analyze TERT
expression in an EBV-negative subset of 7 cHL cell lines (3
published, 4 newly generated). By RNA sequencing we detected
low TERT expression to correlate inversely with DNA methylation
values in these cell lines (Fig. S3, Supplementary Table 5).
We next expanded our analyses to 277 primary B-cell

lymphomas (69 CLL/SLL, 4 MCL, 20 MZL, 30 MALT, 79 DLBCL, 25
PCNSL, 13 FL, 13 BL, 24 MM) and 110 samples from benign B-cell
and progenitor populations (Supplementary Table 1). The core
promoter CpG is unmethylated in the aforementioned popula-
tions which is in agreement with the lymphoma cell line data
(Figs. S1, S4, and S5). RNA expression data in primary B-cell
lymphomas showed a significantly higher expression of TERT in
sporadic BL compared to DLBCL (Fig. S4B).
In order to explore a potential relationship between DNA

methylation patterns and DNA sequence variants, we investigated
SNPs related to ETS binding sites in the TERT promoter in the BS
cell line cohort. We detected the alternative G allele of the SNP
rs2853669, which disrupts an ETS binding site, in 20/43 cell lines
by Sanger sequencing and BS, with the results of these two
methods being in complete agreement. Interestingly, again the
cHL subgroup stood out by carrying the alternative G allele at this
SNP in 6/10 cHL cell lines being supposedly homozygous in 3/6
cHL cell lines. Considering parental allele counts, the alternative G
allele was present in 9/20 alleles in cHL (allele frequency: 0.45) as
compared to other B-cell lymphoma cell lines (allele frequency:
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0.22) and the general population (GnomAD rs2853669 allele
frequency: 0.24; Supplementary Table 6).
We next analyzed DNA methylation at CpGs 25–26 neighboring

the ETS recognition site (Fig. S6) that is disrupted by the
alternative G allele of rs2853669 in the BS cohort. In line with
the results reported above, BL, DLBCL, most LBCL, and LCL cell
lines showed low DNA methylation of the CpGs 25–26 indepen-
dent of the presence of the G allele at rs2853669 (Fig. 2 and
Supplementary Table 7). Apart from the cell line U-HO1 which was
lowly methylated throughout the TERT promoter region (avg. DNA
methylation value: 0.01), cHL cell lines showed high methylation at
the CpGs 25–26 (Fig. 2, Supplementary Table 7). The high
prevalence of the ETS site-disrupting allele along with higher
DNA methylation at the neighboring CpGs in cHL cell lines
prompted us to investigate the allelic DNA methylation in each of
the two parts of the TERT promoter in cell lines carrying rs2853669.
As shown in Fig. S7, cHL cell lines with DNA methylation values
higher than 0.1 demonstrate differential allelic methylation in the
TERT promoter region, with the alternative G allele showing
elevated DNA methylation compared to the reference allele (Fig.
S7, Supplementary Table 8).
Taken together, we observe that normal benign B-cells look

similar to most of the lymphomas with respect to TERT promoter
methylation (Fig. S4). Outliers are BL, which shows low methyla-
tion throughout the whole TERT promoter accompanied by
activated TERT transcription compared to DLBCL and cHL, which
are highly methylated, especially at THOR but show lower TERT
expression (Figs. S1, S3, S4, and S5). Thus, the proposal that THOR
DNA hypermethylation is a prerequisite for active TERT transcrip-
tion in solid cancers [11] does not translate to BL or cHL.
Sequence variants that create ETS-family transcription factor

binding motifs are reported as a mechanism for the reactivation
of telomerase in solid cancers, i.e., melanoma [5]. Further

studies on hepatocellular cancers show that TERT mutations,
especially when occurring in combination with rs28553669, are
associated with high TERT promoter methylation, leading to
high TERT expression and poor prognosis [13]. DNA methylation
data on solid tumors containing rs2853669 but lacking further
TERT promoter mutations showed low methylation of THOR in
the area surrounding this SNP [11]. Contrastingly, we here
observed the presence of the alternative G allele of rs28553669
among all lymphoma subentities and no obvious correlation
with TERT methylation or TERT expression. Nevertheless, there
seemed to be an enrichment of the alternative G allele in cHL
cell lines.
Both the locus-specific DNA methylation analyses as well as the

allele-specific DNA methylation analyses presented herein do not
provide an unambiguous correlation between sequence variants
that interfere with ETS-family transcription factor motifs and TERT
promoter methylation. ETS1 is known to be downregulated in cHL
[14] and upregulated in many DLBCL [15]. Thus, it is intriguing to
speculate that ETS family transcription factor expression levels
dominate the DNA methylation status at the TERT promoter
independent of sequence variants in lymphoid neoplasms, with
high ETS levels correlating in a classic “inverse” way with low DNA
methylation and vice versa.
In conclusion, as compared to the TERT THOR methylation

patterns and their interplay with single nucleotide variants of the
TERT promoter published in solid cancers, we did not observe
similar patterns in B-cell lymphomas. Therefore, we believe that
TERT regulation in B-cell lymphoma is a complex process
governed by many different factors of both, genetic and
epigenetic origin, which likely differ from solid cancers. This
might be due to the fact, that TERT expression also physiologically
occurs in mature B-cells and, thus, needs to be tightly regulated
during B-cell differentiation.
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Fig. 1 TERT promoter DNA methylation in hematopoietic cell lines. A UCSC browser view showing the TERT promoter region (5′ end of TERT
gene indicated by black color with a black arrow indicating the transcription direction) and the CpG island located in this region (indicated in
green color according to the CpG Islands Track from the UCSC browser). The TERT core promoter and the THOR region are indicated in blue
and orange, respectively. CpGs present on the Illumina HumanMethylation 450k array are labeled with their TargetID. B DNA methylation data
of 155 hematopoietic cell lines [3 lymphoblastic cell lines (LCL), 4 chronic lymphocytic leukemia (CLL), 4 mantle cell lymphoma (MCL), 33
diffuse large B-cell lymphomas (DLBCL), 5 large B-cell lymphoma (LBCL), 18 Burkitt lymphoma (BL), 16 multiple myelomas (MM), 10 classic
Hodgkin lymphoma (cHL, including 2 T-lineage cell lines; HDLM-2 and L-540), 17 T-cell leukemia, 5 anaplastic large-cell lymphomas (ALCL), 29
acute myeloid leukemia (AML), 11 chronic myeloid leukemia (CML)]. DNA methylation is shown for two CpGs, one located in the TERT core
promoter, and the other in the THOR. T-cell and myeloid malignancies are separated from the rest samples with black lines.
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Fig. 2 DNA methylation at CpGs flanking the TERT promoter in selected hematopoietic cell lines. TERT DNA methylation using a targeted
bisulfite sequencing (BS) assay covering 30 CpGs in 40 lymphoma cell lines and three LCLs (BS Cohort). A UCSC browser view showing the
TERT promoter region studied with the NGS approach. The black track corresponds to the 5′ end of TERT gene (black arrow indicates the
transcription direction), orange track corresponds to THOR, blue track corresponds to the TERT core promoter as these two regions were
described in Lee et al. 2019 [ref. [8]]. The red track shows the extent of the BS assay and the purple track shows the CpGs included in the BS
assay. The CpG that both 450 K array and BS methods have in common can be seen in black. B Heatmap of relative DNA methylation [%]
values in the 43 cell lines with lowest DNA methylation depicted in blue and highest in yellow. Diagnosis, EBV status and the percentage of
reads with the alternative allele at the SNP position rs2853669 are annotated. Hodgkin cell lines are enriched among the samples with the
highest methylation in the lower cluster indicated by a red arrow (Fisher’s exact test, p= 0.0006667). There are two outliers in the cHL group
which display a low DNA methylation pattern in the core promoter and in THOR (U-HO1: mean DNA methylation value of 0.01 for both
regions; HD-70: mean DNA methylation values of 0.23 in core and 0.48 in THOR). The heatmap is divided into 3 parts with black lines. These
lines show the correspondence of CpG sites on the heatmap and the UCSC browser view.
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