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A similarity scaling approach for organ-on-chip
devices†
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Organ-on-chip devices (OoCs) provide more nuanced insights

into (patho)physiological processes of the human body than

static tissue models, and are currently the most promising

approach to emulating human (patho)physiology in vitro. OoC

designs vary greatly and questions remain as to how to maximize

biomimicry and clinical translatability of the in vitro findings.

Scaling is critical, yet has largely been ad hoc, consisting in

matching one or a few variables between the OoC and the target

organ. This has limited the predictive value of OoCs. Here, we

propose a systematic approach based on the principle of

similitude widely used in the physical sciences, and present three

case studies from the recent literature to demonstrate how the

approach works. A lung-on-a-chip and a liver-on-a-chip both

satisfied important similarity criteria, and therefore yielded results

that were in good agreement with clinical data. A gut–liver

system failed to satisfy a key criterion of kinematic similarity, and

yielded unphysiological pharmacokinetic responses in vitro. The

similarity scaling approach promises to improve markedly the

design and operation of organ- and human-on-chip devices.

Introduction

The past decade has seen intensifying efforts to develop
complex in vitro models that closely replicate functions of
human organs.1,2 These typically involve multiple cell types
assembled in three dimensions to mimic the morphology and

functionality of the target organs, and are popularly known as
“organ-on-chip” (OoC) devices or microphysiological systems
(MPS).3–5 Such OoCs can be assembled into a multi-organ-on-
chip system to study inter-organ crosstalk.6–8 OoCs emulate
organ-level (patho)physiology and are currently the most
promising human-based approach in biomedical research.
Much of this research has been motivated by the prospect of
using OoCs to improve clinical translation and reduce
attrition rate in the drug development process, potentially
replacing animal testing.2,3,5,9–13

For a miniaturized on-chip culture to mimic a human
organ, scaling is a central issue: how to design OoCs so that
their performance in vitro can be extrapolated to the
functions of organs in vivo? Existing approaches are mostly
ad hoc, focusing on specific parameters or functions in a
specific OoC. In particular, they do not account systematically
for the many interlinked mechanisms and parameters in
OoCs. For example, direct scaling14 and allometric scaling15

use the OoC-to-human size or mass ratio to determine the
size of the organs on the chip. Such scalings do not involve
any time scales, and cannot ensure proper scaling of rate
parameters (e.g., perfusion and metabolic rates). In a gut–
liver system, direct or allometric scaling would produce drug
exposure times that are orders of magnitude below in vivo.16

Functional scaling strives for in vivo levels of key functions
for each organ, e.g., metabolic rate for the liver or filtration
rate for the kidney.17,18 But the difficulty lies in balancing the
often conflicting needs of multiple functions, especially in
multiple OoCs setups.6,16 From the earlier years of OoC
development, scaling has been recognized as an outstanding
problem.3,17,19,20 But a general framework for scaling remains
elusive, and recent reviews have consistently listed scaling as
an urgent problem to be tackled.1,8,21,22

We argue that the solution requires a shift in focus from
the ad hoc needs of specific OoCs to a systematic view that
accounts for the multiple factors involved. Here we propose
one such framework by adapting the techniques of
dimensional analysis and similarity, both classical tools in
physics and engineering.
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Similarity scaling

In any physical process, if the output P is determined by input
quantities qi (i = 1,…, n), then these inputs must be
algebraically linked in such a way as to yield the proper
dimension of P. The pi theorem23 asserts that the
relationship among P and qi can be reduced, without any loss
of generality, to one among a smaller number of independent
dimensionless Π groups, each formed by products of powers
of P and qi. This relationship then forms the basis for scaling
between a model and its prototype. The procedure is widely
used in scale-up in physics and engineering,24,25 and the
ESI† offers an example in aeronautics.

For an OoC, we first identify the key output P that is to be
translated to in vivo. Then the Π group Π1 that represents P
must be a function of the other Π groups, Π2,…, Πm,

Π1 = f (Π2, Π3,…, Πm),

with the total number m < n + 1. If we ensure that the inputs
Π2,…, Πm for the OoC match those in vivo, the output Π1

must be matched as well. Thus, we have achieved similarity
between the OoC and its target organ, and the in vitro
measurement of P can be translated to the in vivo organ.
Notably, this does not require knowledge of the function f,
which is almost always unknown in a complex system. The
procedure can be extended to multiple output functions for a
single OoC, or to multi-organ chips.

Similarity criteria

When scaling mechanical systems, one sometimes classifies
the dimensionless groups according to geometric, kinematic
and dynamic similarity.26,27 Geometric similarity governs the
Π groups describing length, area and volume ratios, angles
and shapes. Such ratios must be equal between the model
and the prototype. Kinematic similarity requires equality of
time-scale ratios in addition to length ratios. Thus, it
concerns Π groups that involve velocity and other rate
quantities. On the basis of these two, dynamic similarity
further introduces mass ratios so that dynamic quantities
such as pressure, shear stresses and forces, which typically
constitute the output Π groups in a mechanical system, are
scaled properly.

This scheme can be adapted and expanded for scaling
OoCs. The Π groups about OoC size, shape and volume
pertain to geometric similarity, those about residence time,
perfusion rates and kinetic rates belong to kinematic
similarity, and finally those involving forces and stresses fall
under dynamic similarity. For OoCs, we need to add
morphological similarity as a new criterion, which ensures the
proper structure and morphology of heterotypic cell
assemblies, e.g., to distinguish spheroids from dispersed
cells, and predominantly 2D from 3D structures.19,28 Finally,
metabolic outcomes such as concentration profiles are
central to pharmacokinetic/pharmacodynamic (PKPD) studies
using OoCs.16,29,30 Thus, we propose another new criterion

called metabolic similarity that ensures proper scaling of
dosage and concentrations.

It is also interesting to note that some of the ad hoc
scaling schemes proposed in earlier work8,16,18,19 may be
identified with the similarity criteria above. For example,
requirements on chamber size ratio and cell number are for
geometric similarity. Requirements on perfusion rates,
metabolic rates, organ- or cell-to-liquid ratios and residence
time concern kinematic similarity, and requirement on shear
stress concerns dynamic similarity. Thus, in carrying out the
proposed similarity scaling, one may also satisfy some such
ad hoc criteria by accident.

Partial similarity

In principle, the pi theorem guarantees similarity. In the
laboratory, however, complete similarity may not be
attainable because of limitations on the materials available,
fabrication techniques and accessible experimental
conditions. In such cases, one strategically omits certain Π

groups and strives for partial similarity.23 This is often
necessary even for mechanical systems. In the OoC, we may
have to determine which input Π's are more or less
important for the phenomena of interest, and carry out
scaling based on partial similarity. In multi-organ chips, the
greater complexity implies a larger number of Π groups.
Although the principle of similarity scaling applies to such
systems, partial similarity may become unavoidable.

Case studies

Similarity scaling differs from prior scaling methods in that
it accounts for all parameters and their interactions in a
systematic way. Although OoCs are vastly more complex than
mechanical systems, we show here that the success of
similarity scaling in the latter can be reproduced in the
former, provided that the OoC experiments are designed and
executed properly. For this purpose, we have selected three
studies from the literature based on the completeness of the
reported parameters, operating conditions, and quantitative
outputs for their respective OoCs. The availability of such
data make them proper test cases for the similarity scaling
approach.

Lung-on-a-chip (LOAC)

Huh et al.31,32 developed the LOAC as a mimic for an
alveolus. It features an air–liquid interface that can be
cyclically stretched to replicate the alveolar stretching during
breathing. As a disease model for pulmonary edema due to
cancer treatment by interleukin-2, the LOAC manifests a
gradual loss of barrier function; the increase in permeability
agrees well with ex vivo data from whole mouse lungs.32

To examine the success of LOAC from the angle of
similarity scaling, we take the permeability to be the output
that depends on a host of input variables and parameters,
including the drug dosage, the frequency and amplitude of
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membrane stretching, and the medium perfusion velocity.
Our dimensional analysis (see ESI† for details) produces 6
Π groups, with the output Π1 = k/D2 being the ratio of the
membrane permeability to the chamber width squared. The
authors have matched the Π groups between the LOAC and
in vivo. In particular, the following similarity criteria are
satisfied:

• Geometric similarity: the LOAC matches the chamber
size and the air–liquid-interface thickness with the alveolus
in vivo.

• Morphological similarity: the LOAC has confluent
endothelial and epithelial monolayers apposed on either side of
the membrane, approximating the air-blood boundary in vivo.

• Kinematic similarity: the membrane stretching
amplitude, frequency and the medium perfusion velocity are
all chosen to match the in vivo conditions.

• Metabolic similarity: the interleukin-2 dosage and
application time are matched with in vivo conditions.

Thus, the LOAC and the operating conditions of Huh
et al.32 have achieved similarity with the in vivo counterpart.
This ensures that the output of the LOAC, the membrane
permeability enhanced by interleukin-2 treatment, is
translatable from the LOAC to the alveolus. Note that this is
a somewhat special case of 1 : 1 size ratio between the model
and the prototype. Moreover, all the Π groups are matched
for a rare attainment of complete similarity.

More recently, second-generation LOACs have been
developed that continue to maintain similarity scaling with a
1 : 1 size ratio, but with improved and refined features,
including the use of primary alveolar epithelial cells instead
of a cell line33 and the modeling of cytokine production and
leukocyte recruitment following an influenza infection.34

Liver-on-a-chip

Ewart et al.35 studied drug-induced liver injury (DILI) on a
Liver-Chip, an OoC that models a liver sinusoid. Judging by
suppressed albumin production and other symptoms, the
OoC distinguished toxic drugs from their non-toxic structural
analogs, and correctly ordered the toxicity of drugs according
to the Garside DILI rank. We will demonstrate below that this
success is again rooted in satisfying similarity scaling to the
in vivo organ, which is the human liver sinusoid in this case.

The details of the dimensional analysis can be found in
the ESI,† and only a brief summary is given below. Without
drug treatment, the Liver-Chip produces albumin in vitro in
the physiologic in vivo range of 20–105 μg per 106 hepatocytes
per day. In the DILI study, therefore, the main output is the
albumin production as a fraction of the control without drug
treatment: Π1 = ϕ. The input variables and parameters are
listed in Table 1, along with the values of the input Π groups,
Π2,…, Π5. Of these, Π2, Π3 and Π4 match reasonably well
between in vitro and in vivo. Π5 differs considerably, but its
small magnitudes suggest that permeation through the cell
layers happens rapidly, and is not the rate-limiting step.
Thus, we can disregard Π5 and claim partial similarity

between the Liver-Chip and the liver sinusoid in vivo. This
ensures translatability of albumin suppression Π1 = ϕ, and
therefore the proper detection of DILI.

Even though the Liver-Chip is much larger than the liver
sinusoid in vivo, the perfusion and drug clearance rates also
differ so as to compensate through the Π groups. This
systematic treatment is the principal advantage of similarity
scaling over prior scaling that focuses on matching individual
parameters.

Gut–liver system

Cirit et al.16,36,37 linked a gut and a liver module into a multi-
OoC system that captured the key functions of both organs—
the permeation of orally administered drugs across the
membrane in the gut and drug metabolism in the liver—as
well as their crosstalk. The gut OoC has an apical chamber
and a basolateral chamber, but the liver OoC has a single
chamber. Both are connected to a mixing chamber that
supplies the common perfusion. This system has been used
to study drug metabolism in a multi-organ system.16,37

The system involves a larger number of parameters, and
requires a lengthier dimensional analysis resulting in 12 Π

groups (details in ESI†). For the present purpose, we need
only discuss the parameters and Π groups relevant to
kinematic similarity, more specifically the transport and
kinetic rates. These are listed in Table 2 for the drug
diclofenac. The dimensionless groups Π6 and Π7 indicate the
gut and liver metabolic rates of the drug relative to its
transport rate by perfusion. Π8 gives the ratio between the
drug permeation and perfusion. The small values of Cg and
Π6 indicate negligible drug metabolism in the gut. The most
prominent discrepancy is in Π7 = Cl/Q, which is more than
10 000 times greater in vitro than in vivo. This severely
violates the kinematic similarity.23 Π7 is also the ratio
between the circulation time T0 = Vm/Q and the liver
clearance time Tl = Vm/Cl. Not only is the circulation too slow

Table 1 Similarity scaling for the Liver-Chip in a DILI study.35 The input
parameters are L: chip dimension, u: perfusion velocity, c: initial drug
concentration, c50: required drug concentration to produce a 50%
reduction in albumin, D: drug diffusivity in perfusate, P: permeability
through the membrane, k: drug clearance rate. The various rates are for
the drug diclofenac. See ESI† for details of dimensional analysis and the
sources for the parameter values

Parameters In vitro values In vivo values

L (μm) 200 5
u (μm min−1) 2500 6.67 × 104

k (μm3 min−1) 1.67 × 109 2.93 × 107

D (μm2 min−1) 4.50 × 104 4.50 × 104

P (μm min−1) 6.53 × 106 6.53 × 106

c (μM) 0.05 0.05
c50 (μM) 0.1 0.1
Π2 = c/c50 0.5 0.5
Π3 = uL2/k 5.99 × 10−2 5.69 × 10−2

Π4 = uL/D 11.1 7.41
Π5 = u/P 3.83 × 10−4 1.02 × 10−2
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in vitro, the clearance is also too fast. As a result, the time
concentration profile fails to translate to the clinical data,
with a much shorter time scale than in vivo (Fig. 1).16

Similarity scaling not only pinpoints the cause of the
mis-scaling, but can also suggest ways to correct it. Since Cl

depends on the metabolism of individual cells, it cannot be
easily varied in vitro. Thus one can only raise the perfusion
rate Q to lower Π7. To maintain the value of Π8, already
roughly matched with in vivo, one must increase the gut
epithelial area S in proportion to Q. This systematic
approach to managing the parameters is the hallmark of
similarity scaling.

Discussion

Similarity scaling offers a systematic scheme for matching
OoCs and their target organs, as opposed to matching
individual parameters. It is also mathematically guaranteed to
work by the pi theorem. In practice, limitations in available
materials and fabrication techniques often make complete

similarity impossible. But even partial similarity can provide
highly useful guidelines, as demonstrated in the above.

OoCs being biological systems puts special constraints on
similarity scaling. An individual cell is in a sense the
minimum unit and cannot be scaled further down. Thus, an
OoC typically contains a smaller number of the same cells as
in vivo, not the same number of “smaller cells” as perfect
similarity would dictate. Moreover, certain parameters, e.g.,
cellular metabolic rates, will be more or less fixed at their
in vivo values and not subject to large variations for scaling.
Despite these limitations, we have shown the utility and
potential of similarity scaling in the case studies. It will offer
a general framework for designing the next generation of
organ- and human-on-chip systems.

Materials and methods

The method of dimensional analysis is illustrated with
examples in the ESI,† which also contains detailed analysis
and all the data for the three case studies.
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