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Magnetic resonance imaging (MRI) of the brain is commonly used to detect

where chronic and active lesions are in multiple sclerosis (MS). MRI is also

extensively used as a tool to calculate and extrapolate brain health by way of

volumetric analysis or advanced imaging techniques. In MS patients, psychiatric

symptoms are common comorbidities, with depression being the main one. Even

though these symptoms are a major determinant of quality of life in MS, they

are often overlooked and undertreated. There has been evidence of bidirectional

interactions between the course of MS and comorbid psychiatric symptoms. In

order to mitigate disability progression in MS, treating psychiatric comorbidities

should be investigated and optimized. New research for the prediction of

disease states or phenotypes of disability have advanced, primarily due to new

technologies and a better understanding of the aging brain.
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1. Introduction

Multiple sclerosis (MS) is a neuroinflammatory and chronic disease that affects the
brain, spinal cord, and optic nerves (Thompson et al., 2018). With no permanent cure
for this neurological disorder, it is a lifelong affection. Patients and clinicians must decide
on optimal treatment regimens, which are often changed based on already observable
increases in disability (e.g., motor, cognitive, bowel, and bladder) (Gajofatto and Benedetti,
2015; Dalmau, 2018). However, it has long been hypothesized and recently shown in large
population-based cohorts, that the earlier this disease is treated, the better the prognostic
outcome will be of these patients; even without evidence of disease activity (Stangel et al.,
2015; Prosperini et al., 2018; Wandall-Holm et al., 2022). Thus, it would be of interest to all
those researching brain health, neurological aging, and predictive modeling in neuroscience
to be able to diagnose and treat patients prior to any manifestations of disease-related
disability. Moreover, for a better prognostic outcome in MS patients, treatment regimens
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may also require addressing mental health comorbidities, such as
depression. Psychiatric symptoms are common comorbidities in
MS and have been shown to interact with the disease course as
well as influence patients’ adherence to the therapy (Tarrants et al.,
2011; Moore et al., 2012; Marrie et al., 2015; McKay et al., 2018;
Binzer et al., 2019). Despite its importance, mental health remains
overlooked in this patient group (Marrie et al., 2009). Treating
psychiatric symptoms is crucial for developing new treatments
for MS, as improving mental health will contribute to the quality
of life of MS patients. This mini-review of brain health in MS
will aim to give a comprehensive overview of state-of-the-art
magnetic resonance imaging (MRI) research that has advanced our
understanding of personalized diagnosis and treatment strategies.
To further shine a light on this complex neurological condition in
relation to brain and mental health, this review will include current
research on comorbidities related to MS, such as depression and
anxiety (Figure 1).

2. Magnetic resonance imaging
characteristics

2.1. Brain and spinal cord lesions

Magnetic resonance imaging has been used to evaluate lesions
in the brain of suspected MS patients for over 2 decades and focused
on brain and spinal cord (SC) lesions (Barkhof et al., 1997). In
the 2017 revised McDonald Diagnostic Criteria for MS (Thompson
et al., 2018), MRI lesion identification in the entire central nervous
system (CNS) is a cornerstone for correctly diagnosing patients
with a dissemination in time and space. However, due to the
complex nature of MS and its unpredictable disease course, lesions
in the brain and SC only account for a minor amount of the
symptoms observed in patients, termed the “clinico-radiological
paradox” (Chard and Trip, 2017). Long-term motor disability
is better reflected by location and length of SC lesions (Eden
et al., 2019), but lesions can be asymptomatic and longitudinal
monitoring with MRI is required (Brownlee et al., 2017; Ciccarelli
et al., 2019). Thus, it would seem that lesions, which indicate
demyelination in the WM and degeneration of axons in the GM,
cannot be the sole imaging marker evaluated when assessing MS
patient prognosis (Absinta et al., 2021). Recent advances in MRI
technology and analysis methods, disease subtypes, brain and SC
gray matter (GM) and white matter (WM) atrophy, WM/myelin
analysis, functional MRI networks, along with lesion counts and
volumes are able to be evaluated (Sastre-Garriga et al., 2020;
Granziera et al., 2021; Romanello et al., 2022).

2.2. Brain and spinal cord atrophy

With increased computational research, more accurate
parcellations of whole brain/SC GM and WM from MRI can be
achieved in MS research (Gros et al., 2019; Guo et al., 2019; Chien
et al., 2020). Atrophy in the brain and SC have been shown to
relate to normal aging, but also associated with clinical disability
in patients with MS when taken together with lesion load (Oh
et al., 2014; Opfer et al., 2018). Since the term “atrophy” refers to a

decrease in measures of particular regions, it can only be evaluated
when comparing two groups or time points. Especially in the last
decade, much has been elucidated about which regions of the brain
are important to investigate for different MS-related disabilities.
Therefore, many recent studies have focused on longitudinal
analysis of MRI data to answer questions regarding changes in the
brain and SC of MS patients during their disease course.

2.2.1. Brain regions of interest
Previously, MS researchers have focused on using brain atlases

to parcellate regions of interest and have found that especially
cortical GM and deep GM substructures are shown to be atrophied
(Rocca et al., 2010; Narayana et al., 2012; Cooper et al., 2021)
leading to more clinical disability accrual. Since whole brain
atrophy is also found in normal aging and confounded by sex
and head size (Malone et al., 2015; Opfer et al., 2018; Azevedo
et al., 2019), it has been proposed to compare MS patients’
predicted “brain age” with that predicted in healthy age- and sex-
matched individuals (Raffel et al., 2017). Brain age is commonly
calculated by training a machine learning algorithm to create an age
regression model using 3D structural MRI (raw or extracted data)
as independent values with chronological age as dependent values.
Then a multivariable model of healthy brain aging/maturation is
constructed which can be applied to new MRI data for “brain age”
prediction (Franke and Gaser, 2019). Several studies have found
relevance in the brain age gap/difference between the predicted
MS brain age and chronological age of the patients, where larger
differences in predicted brain age are associated with WM lesion
load and more rapid disability progression (Høgestøl et al., 2019;
Cole et al., 2020). Recently, it was found that predicted brain age
differences also contribute significantly to cognitive performance
scores, with larger brain age differences associating with cognitive
dysfunction in MS patients (Denissen et al., 2022).

Other studies found that including ventricular cerebrospinal
fluid (CSF) volume as an MRI-extracted metric in advanced
statistical models increased the prediction of confirmed disability
progression (Zivadinov et al., 2016). Also, higher change in lateral
ventricular volume over time is associated with disease activity
(Millward et al., 2020; Barnett et al., 2021). Recently, the choroid
plexus (CP) within the lateral ventricles showed enlarged volumes
in MS patients (Gauthier, 2023) and were found to occur in
conjunction with chronic lesions and brain atrophy (Klistorner
et al., 2022). Enlargement of the CP have also been indicated as
markers of inflammatory/acute disease activity (Fleischer et al.,
2021; Ricigliano et al., 2021; Margoni et al., 2023); where increased
gadolinium enhancement in T1-weighted MRIs (Kim et al., 2020)
and T2-weighted intensity have predicted higher disease activity in
MS patients (Chien et al., 2022).

2.2.2. Spinal cord regions of interest
It was thought that chronic lesions in the SC lead to atrophy at

those specific levels in the cord, since large post-mortem findings
of WM affection in the cervical cord was in-line with MS pathology
(Gilmore et al., 2005). Although SC lesions and atrophy occur
in the cervical cord at the same time (Valsasina et al., 2018), it
has recently been shown that there is no such relationship and
lesions and whole cord atrophy occur independently from each
other in MS (Bussas et al., 2022). Thus, many MRI researchers have
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FIGURE 1

MR imaging, advanced analysis and modeling methods that aid in our understanding of brain health in MS, including cognition, neuroinflammation,
structural and functional networks and overall mental health.

begun to evaluate more closely, the location of where atrophy in
the cervical cord occurs and found that GM cross-sectional area
and the posterior/lateral regions of the WM are most associated
with disability as measured by the Expanded Disability Status Scale
and different MS subtypes (Schlaeger et al., 2014; Bonacchi et al.,
2020; Valsasina et al., 2022). This indicates that perhaps MRI can
detect GM and WM regional affection in patients earlier in the
disease course than expected, where decreased areas and volumes
posteriorly and laterally lead to sensory deficits and motor disability
(Mercadante and Tadi, 2022; Natali et al., 2022).

2.3. White matter affection

The WM contains the majority of myelin in the CNS and it
is well researched that MS is primarily a demyelinating disease
(Rosenthal et al., 2020). Axonal loss is evident in smaller fibers
of the corticospinal tracts (from the cortex to the lumbar SC
regions), and the sensory tracts from the cervical to lumbar SC
levels, in post-mortem brain and SC samples (DeLuca et al., 2004).
It has been found in every MS stage, many of the WM tracts
in the brain are damaged and can be detected using diffusion
tensor imaging (DTI) (Preziosa et al., 2011). Fractional anisotropy
(FA) can be calculated from DTI-modeled MRI. DTI models the
diffusion of water through space, where an FA value closer to
1 indicates restricted water movement (i.e., in axons that are
myelinated) and an FA value closer to 0 indicates non-restricted
water movement (i.e., demyelinated axons) (Basser and Pierpaoli,
1996). Reduced FA is widespread even in early relapsing-remitting
MS and can be observed to decrease over time mostly in the corpus
callosum, cerebral peduncle, corticospinal tract, and the posterior
thalamic/optic radiation (Asaf et al., 2015). Since WM tracts are

connected to GM regions in the brain, it has been of interest to
look at how detected WM tract damage can affect the regional
GM. One relatively large longitudinal MS study found that over a
short period of time (mean follow-up time of 13.7 years), thalamic
atrophy could be detected and interestingly, the mean FA in the
thalamocortical tracts at baseline could predict the annual thalamic
atrophy rate (Weeda et al., 2020). Recently, a longitudinal study
in healthy participants observed age-related decreases in WM FA
values that are associated with cognitive decline in the dimensions
of memory, executive function and general cognition (Coelho et al.,
2021). With MS being a demyelinating disease, it could be that the
extra WM degradation occurs prior to GM atrophy, which then
leads to increased “brain age” estimates and cognitive decline over
time.

Diffusion-weighted imaging (DWI) can also be used to model
WM tracts using probabilistic tractography, which calculates a
connectivity index per voxel in the brain that can be used to
evaluate the most likely path of a WM tract with the average
number of streamlines that traverse it (Reid et al., 2022). WM
lesions, especially those often found in MS, have been thought
to impede tractography modeling in MS, thus researchers often
use atlas-based versus individual-MRI-based methods (Kuchling
et al., 2018). However, it is becoming more common, especially
in MS studies, to identify and evaluate which WM tracts are
affected by brain lesions using normative high-resolution atlases.
These affected WM tracts can be seen as disconnections or as
disconnectomes in the brain (Thiebaut de Schotten et al., 2020).
These calculated disconnectomes based on individual brain lesion
masks have recently been shown to associate well with serum
neurofilament light chain levels, a known biomarker of axonal brain
damage (Rise et al., 2022).
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Another method for evaluating DWI WM tracts is using
connectivity matrices calculated between regions of interest (or
nodes) in the brain that can indicate less connected nodes
using streamline weights and accounting for regional volumes
(Kuceyeski et al., 2013). This method includes brain lesion masks
that account for structural network modifications (an estimated
structural connectivity). One study using this method showed that
decreased connectivity in networks structurally related to visual,
somatosensory, and attention functions were found in MS patients
with higher Expanded Disability Status Scale (EDSS) score (Tozlu
et al., 2021). In another study, the modularity, clustering, global
and local efficiencies of the WM and GM structural networks were
found to differ in a temporal fashion, based on disease duration,
indicating that network reorganization occurs along with clinical
disability in MS (Fleischer et al., 2017). Probabilistic tractography
streamlines have also used to calculate structural connectivity
matrices that were used as input features into ensemble machine
learning algorithms to predict EDSS score by Barile et al. (2021)
Feature importance in predicting disability based on EDSS was also
evaluated that highlighted microstructural changes in WM tracts
between different cortical regions were related to low, medium, and
high clinical disability.

2.4. Functional MRI networks

Using resting-state functional MRI (rs-fMRI) and task-based
fMRI, researchers have identified “Neural Networks” that are
related to different brain functions. By measuring the blood oxygen
level dependent (BOLD) signal in the brain using echo planar
imaging (EPI) sequences (Kirilina et al., 2016), it is possible to
extract information regarding the Amplitude of Low Frequency
Fluctuations (ALFF) and regional homogeneity (ReHo) (Lv et al.,
2018). These metrics can be used to reconstruct localized regional
brain function, where the BOLD signal detected during tasks
given to participants indicate specific neuronal activity (Christie
et al., 2017). Using this type of functional-connectivity MRI has
led to defining a default-mode network, where there is baseline
activity detected in rs-fMRI from just wakefulness (Greicius et al.,
2004). Recently, it has been found that altered functional brain
states and connectivity dynamics, or analysis of the temporal,
non-static rs-fMRI networks are related to cognitive decline and
clinical disability in MS patients, even at an early stage of the
disease (Broeders et al., 2022; Romanello et al., 2022). Task-based
fMRI investigations in MS patients have often revealed increased
activations of higher-order brain functional areas, such as in
classical motor, frontal, and parietal regions, which is thought of as
functional networks acting in a compensatory fashion to maintain
normal good performance (Rocca et al., 2022). This was recently
shown using visual attention paradigms, where higher visual and
attention-related, as well as the default-mode network connectivity,
was associated with better Brief Visuospatial Memory Test–Revised
scores. However, reduced connectivity was found between visual
cortical regions with eye-fields (Veréb et al., 2021). Another study
hypothesized that task-based fMRI networks may show increased
or decreased activation in a disease-related temporal fashion.
Indeed, using a visually guided force-matching task, it was found
that fMRI activation was lower in the cerebellar, occipital and

superior parietal cortical regions, which also correlated with higher
EDSS in minimally impaired early MS patients (Strik et al., 2021).

Interestingly, SC lesions have also been found to interrupt
the functional connectivity in the cervical cord and may be the
pathophysiological reason for disability based on the ventral motor
and dorsal sensory networks in later MS (Conrad et al., 2018). These
findings suggest there will become a larger role for rs- and task-
based fMRI in evaluating brain and CNS health of MS patients in
the future (Nejad-Davarani et al., 2016).

3. Mental health and MS

In MS patients, psychiatric symptoms are common
comorbidities, with depression being the main one (Marrie et al.,
2015; Gold et al., 2020). In addition to withholding pharmacological
treatment and rehabilitation programs, depressive symptoms result
in worsening functional outcomes (Binzer et al., 2019). Even
though these symptoms are a major determinant of quality of
life in MS, they are often overlooked and undertreated (Marrie
et al., 2009). MS patients have a 30.5% prevalence for developing
depression and 22.1% for anxiety, with clinically significant
depressive or anxiety-related symptoms found in 35% and 34% of
patients (Boeschoten et al., 2017). Prevalence for depression raises
up to 44.5% during relapses and lifetime prevalence increases to
50% (Feinstein, 2011). Clinically isolated syndrome (CIS) and early
MS patients from a meta-analysis of 51 studies were reported to
exhibit depressive and anxiety-based symptoms in 17% and 35% of
patients, respectively (Rintala et al., 2019).

There has been evidence of bidirectional interactions between
the course of MS and comorbid psychiatric symptoms. Two
large longitudinal cohort studies have suggested that the presence
of psychiatric comorbidities increased the risk of MS disability
progression (McKay et al., 2018; Binzer et al., 2019). In the
retrospective cohort study from the Canadian provinces of British
Columbia and Nova Scotia, McKay et al. (2018) followed 2,312
incident cases of adult-onset MS for around 10 years and
found 38.5% of participants met the criteria for mood and
anxiety disorders. They were associated with subsequent neurologic
disability progression as measured by the EDSS score and the
effect was statistically significant among women but not men.
Interestingly, more than 40% of these MS patients met the criteria
for comorbid psychiatric disorder prior to the MS onset. With
37%, the most prevalent psychiatric comorbidity was depression,
while anxiety was present in 22.1% and bipolar disorder in 5.1%
of MS patients. A further separate analysis of the individual
effect of each psychiatric comorbidity showed that only depression
was significantly associated with higher EDSS scores. The results
of a Swedish cohort study by Binzer et al. (2019) showed that
MS patients with depression, defined as being diagnosed with
depression or requiring treatment with antidepressants, have faster
disease progression than non-depressed MS patients. Moreover,
they reported significant results for both men and women,
indicating that the lack of significant results for men in the
Canadian study could have been because of the small number of
male participants. A nested case-control study with 10,204 incident
MS cases investigated the occurrence of different symptoms in MS
versus healthy participants from the first record of the disease and
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up to 10 years before it (Disanto et al., 2018). MS patients showed a
significantly higher risk of being diagnosed with depression up to 10
and with anxiety up to 5 years before the disease onset. Disanto et al.
(2018) found that psychiatric symptoms were reported years before
the first record of the disease, which suggests mood disturbances
are not a consequence of the pathology, but rather an integral part
of it (Feinstein et al., 2014). On the other hand, clinical relapses and
neurological disability in MS have been linked with higher rates of
depressive symptoms (Moore et al., 2012). In a study by Moore et al.
(2012) that looked at clinically significant depression symptoms
during and post-MS relapse the point prevalence of depression
during a confirmed MS relapse was 44.5%. It significantly decreased
but stayed high in the follow-up, 29.2% at two and 34.4% at
6 months follow-up, suggesting that although the improvement in
disability leads to improvement of depressive symptoms, they still
stay persistent and high.

3.1. Biological correlates of psychiatric
symptoms in MS

In order to mitigate disability progression in MS, treating
psychiatric comorbidities should be investigated and optimized.
Studies investigating biomarkers of psychiatric symptoms in MS
may be relevant for understanding the biology that underlies
the comorbidity of inflammatory and mood disorders with
implications for prevention and treatment. Neuroinflammation
seems to be one of the major correlates as studies show
that hippocampal neuroinflammation, measured as microglial
activation in the hippocampus (Colasanti et al., 2016) was related to
depression in MS patients. Moreover, the data show how subclinical
intrathecal inflammation, even without detrimental symptoms, can
induce mood alterations (Rossi et al., 2017), which can further
predict inflammatory reactivation in MS relapses. Relapsing MS
patients showed greater values for state anxiety and depression
[measured as State-Trait Anxiety Inventory (STAI)-state and Beck’s
Depression Inventory II (BDI II)] in comparison to the remitting
MS patients, but similar trait anxiety scores. Along with the
reduction of neuroinflammation, Rossi et al. (2017) found that
there was a reduction in state anxiety and depression scores
suggesting that (subclinical) inflammation affects anxiety and
depression in MS. Taken together, this suggests that inflammation
may be a critical biological event involved in mood disorders and
in MS. When it comes to studies investigating proinflammatory
cytokines, known to be associated with depression severity, there
is evidence for the correlation of cytokines in cerebrospinal fluid
(CSF) and mood changes. The levels of tumor necrosis factor-
alpha (TNF-a) interleukin-1 beta (IL-1b) (Rossi et al., 2017), and
interleukin 6 (IL-6) (Brenner et al., 2018) were found to be
associated with depression severity as measured by BDI II, while
levels of Interleukin-2 (IL-2) were found to be correlated with
anxiety measured by STAI-state. A study investigating cellular
frequencies in the peripheral immune system identified CD4+ T
central memory cells expressing low levels of CCR7+ as a
robust biological correlate of MS-associated depression. These
cell frequencies were correlated with depression severity, but
not MS disease severity, and associated with neuroinflammation
measured as lesion load on MRI (Brasanac et al., 2022). Thus,

indicating inflammation and immune system changes as biological
pathways implicated in the shared pathobiology of MS and
depression (mood and immune disorders). Among other biological
correlates of MS-associated depression, studies have pointed to
hypothalamic-pituitary-adrenal axis hyperactivity (Gold et al.,
2011), hippocampal atrophy (Gold et al., 2014), and larger cerebral
T2 lesion load (Feinstein et al., 2004). Furthermore, a study testing
the association of depression and lesions in amygdala-prefrontal
fiber tracts found that depressed MS patients were less able to
regulate negative emotions, indicating that emotional regulation
in MS-associated depression was affected by lesion load (Meyer-
Arndt et al., 2022). In addition, disruption in frontal–parietal white
matter tract over the course of 5 years could predict a diagnosis of
depression in multiple sclerosis (Ashton et al., 2021).

3.2. Cognition and age in MS-related
depression

Studies have shown that severely depressed MS patients
have difficulties with working memory (Arnett et al., 1999a,b),
information processing speed (Lubrini et al., 2012), and executive
functioning (Arnett et al., 2001; Feinstein et al., 2014). The
biology underlying this comorbidity could be the atrophy of the
hippocampus as one study has shown that enlarged temporal
horns are linked to depression and consolidation deficits in
memory tasks (Kiy et al., 2011). In a large cohort of MS patients
with 13,821 individuals, depressive symptoms were found to
be correlated with worse cognitive performance measured as
information processing speed, manual dexterity and walking speed
(Chan et al., 2021). This association was related to the age of
participants, younger MS patients experiencing moderate to severe
MS showed slower processing speed while older MS patients had
slower walking speed. In the animal model of MS, the experimental
autoimmune encephalomyelitis (EAE), data show that changes in
cognition and behavior appear even before demyelination starts
and correlates with cytokines TNFa and IL1b in the hypothalamus,
as well as with corticosteroid hormone levels (Acharjee et al.,
2013).

When it comes to the link between psychiatric symptoms and
age in MS, results are ambiguous. Several studies are showing
a trend toward a decreasing prevalence of depressive symptoms
with increase in age of MS patients (Patten et al., 2003; Garcia
and Finlayson, 2005). Furthermore, data show that younger age
at onset is correlated with the occurrence of depression in MS
patients (Beiske et al., 2008) and that the shorter the duration of MS
(relapses) the higher the risk for depression (Williams et al., 2005).
A possible explanation for the change in prevalence of depression
could be the underlying biology of MS. While depression has
been associated with inflammation in the early phases of the
disease characterized by relapses, with age inflammatory processes
are replaced with neurodegeneration characterized by motor and
cognitive disability (Gold and Irwin, 2009; Musella et al., 2018).
In contrast with these results are studies reporting a positive
association between depression and age of MS patients (da Silva
et al., 2011; Mattioli et al., 2011), while several other studies did
not find any relationship between age and depression in MS.

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1151531
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1151531 May 4, 2023 Time: 14:33 # 6

Brasanac and Chien 10.3389/fnhum.2023.1151531

More studies are needed to further investigate and elucidate this
aspect of MS.

4. Discussion and future directions

Increasingly more research is going into the
neuroinflammatory and metabolic substrates involved in MS,
using positron emission tomography (PET) imaging. PET imaging
gives information about metabolism of in vivo organs, such as
the brain, since it uses radiotracers that are actively taken up into
tissues in active catabolism or can bind to receptors on cell surfaces
(Politis and Piccini, 2012). PET tracer detection was initially
conducted using computed tomography (CT) machines due to its
function in detecting X-ray photons (radiation); however, hybrid
PET/MRI machines are becoming more prominent in the research
field due to the superior contrast that MRI can image between
soft-tissues (Antoch and Bockisch, 2009). Since PET allows for
identification of active metabolism, researchers have begun to
evaluate its capability in visualizing task-based and resting-state
networks (Rischka et al., 2018; Fang et al., 2021). Very recently, an
amyloid radiotracer (11C-PiB) (Rabinovici et al., 2007), which also
has a high capacity to bind to myelin, was used to longitudinally
evaluate remyelination in MS patient brains (Tonietto et al., 2023).
Tonietto et al. (2023) found that enlargement of the CP was
associated with failure to remyelinate periventricular WM leading
to possible regional cortical atrophy in relapsing-remitting MS
patients.

With new technological advancements, machine learning (ML)
and deep learning in CNS disorders have become more popular,
especially using MRI data due to its complex extraction of metrics
and 3D or 4D nature (4th dimension is related to the temporal
aspect as in fMRI). There have been several studies in the last
few years that have given rise to interesting information related
to brain health and MS. Recently, it has been found that ML can
be used to predict MS future disease activity in patients using
unprocessed MRIs, where within the periventricular region and
CP there seems to be higher T2-weighted intensities in people
with higher future disease activity (Chien et al., 2022). Along
the same line, unsupervised ML in combination with advanced
statistical methods have been used to identify different MS-related
MRI-extracted subtypes that lead to different confirmed disability
progression and relapse rates (Eshaghi et al., 2021). Also, using a
deep learning algorithm trained on unprocessed Alzheimer’s brain
MRIs, one study found a way to transfer this learned algorithm
(transfer learning) to identify MS brains versus healthy participant
brains (Eitel et al., 2019). Thus, it can be seen that the assessment of
brain health and patient prognosis in MS is moving toward the use
of more advanced imaging related to networks and use of ML and
deep learning technologies.

Even though the majority of MS patients have comorbid mental
health disorders there are not so many studies exploring their long-
term effects (McKay et al., 2018). Having a non-treated comorbid
psychiatric disorder may hamper adherence to disease-modifying
therapies (Tarrants et al., 2011) or promote unhealthy coping
strategies (McKay et al., 2016) in MS patients. It is of paramount
importance to treat comorbid mood disorders in MS as mental
health represents one of the major determinants of the quality of

life (Marrie et al., 2009) and underlying mood disorder is associated
with suicidal ideation in this population at a rate higher than the
general population (Feinstein and Pavisian, 2017). For developing
new treatments for MS patients and for successful therapy, it
is crucial to understand and treat psychiatric symptoms as well.
Therefore, the way forward could be to combine therapies targeted
for a specific disease phenotype, such as MS-associated depression.

Although depression has been identified as one of the main
mental health disorders found in MS, high comorbidity with
mental health disorders is not specific to MS or limited to
inflammatory diseases. Besides MS, other chronic conditions
such as cardiovascular, neurological, and metabolic disorders also
share depression as one of the most frequent accompanying
comorbidities (Gold et al., 2020). Contributing factors to this
comorbidity range from shared genetics to converging underlying
biology, as well as various psychological and lifestyle factors.
Numerous studies in recent decades have compounded evidence
that points to the contributions of the immune system and
inflammation in developing mood disorders (Beurel et al., 2020).
Recently, more emphasis on identifying subtypes of depression has
been made in mental health research. For example, the subtype
of inflammatory depression has been identified (Lynall et al.,
2020), which also involves depressed patients with underlying
inflammatory disorders such as MS. Further investigation of these
disease subtypes can help identify patient populations that can
benefit from targeted therapeutic strategies.

In the last decades, imaging studies in the field of depression
research have significantly grown in number (Zhuo et al., 2019).
However, real progress has been hampered by underpowered
studies and a lack of reproducibility. To address these issues
ENIMGA MDD consortium was formed a decade ago and they
have been able to identify subtle structural brain changes related
to distinct clinical and demographic characteristics of depression
(Schmaal et al., 2020). Despite new technological advancements in
MRI and mental health research in MS, there are still limitations
particularly in answering questions about psychiatric disorders.
In almost all MRI studies, there are confounding variables that
are required to be considered, such as age (Opfer et al., 2018),
sex (Voskuhl et al., 2020; Chyzhyk et al., 2022), and often brain
lesion load (Sinnecker et al., 2012). However, with more and more
confounders, the importance of variables of interest in predicting
outcomes may be lost or become biased, especially in machine
learning applications (Snoek et al., 2019). Larger and standardized
benchmark MRI datasets may help reduce bias and increase
prediction accuracies (Eitel et al., 2021). There is also speculation
that our general lack of understanding of the mechanisms of
psychiatric illnesses is a potential reason as to why we have no
concrete neurobiological insights from over 30 years of functional
neuroimaging (Nour et al., 2022). Thus, it will be important to
move toward a more holistic understanding of neurobiology and
mental health by conscientiously designing prediction models that
inherently reduce bias and allow for comprehensive real-world data
usage (Hooker, 2021).
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