
Supplementary Materials and Methods  

Single-cell RNA-seq data preprocessing  

First, we performed quality control to remove poor-quality cells and badly detected genes on CD4+ 

cells. In detail, we loaded into the scanpy environment all count data for the 7 patients and their 

relative TCR data, we matched them through the scirpy pp.merge_with_ir function, and then filtered 

out cells with a mitochondrial read rate >0.6 and expressed <1250 genes detected in less than 10 

cells, except for patient 3 for which PB sample was missing, so we excluded it from our dataset. We 

preferred to preserve cells with such a high mitochondrial rate, since the sample contains 

populations with a high respiratory activity or with an exhausted phenotype. To handle the risk of 

doublets, we applied the scrublet algorithm [Wolock S.L. et al., 2019] which identified and marked 

a small number of doublets. Cell-specific biases were normalized by dividing the measured counts 

by the size factor obtained through the scran computeSumFactors method, which implements the 

deconvolution strategy for scaling normalization [Lun A.T. et al., 2016]. Next, all counts were log-

transformed after addition of a pseudocount of 1. Later, we mitigated the batch effect through the 

matching mutual nearest neighbors (MNN) algorithm. In detail, we took the union of highly variable 

genes whose expression was common across all samples, thus resulting in 4000 genes that were 

used for the MNN batch correction [Haghverdi L. et al., 2018], performed through the python mnnpy 

package [https://github.com/chriscainx/mnnpy access on 10/12/2022]. Then, we used these genes 

to perform the dimension reduction on the MNN batch corrected data through principal component 

analysis (PCA) and the first 50 principal components (PCs) were used to construct a neighborhood 

graph of observations through the pp.neighbors function, which relies on the UMAP algorithm to 

estimate connectivity of data points [McInnes et al., 2018]. Next, we clustered data by tl.louvain 

function at multiple resolutions (0.5, 0.7, 1) and 0.7 revealed to better capture functional states, 

producing seven clusters of CD4+ cells. To annotate them, we defined their markers by running the 

tl.rank_gene_groups function and adopting the Wilcoxon rank-sum method. By looking at cluster 



markers we observed presence of monocytes, defined by CD14 and ITGAM co-expression, so we 

removed them from dataset and recalculated the neighborhood graph on the latent space in order 

to cluster and annotate the resulting cleaned data. Next, we evaluated the composition of our 

dataset by looking for the expression of canonical markers from key immune cell types, states and 

pathways, already used by Julie et al. [11] and genesets adopted by Mashmeyer at al. [10], in detail 

NAIVE_VS_EFF_MEMORY_CD4_TCELL_DN (GSE11057) containing genes whose expression have 

been found to be downregulated in naive CD4+ T cells as opposed to effector memory T cells, the 

curated REACTOME_TCR_SIGNALING (M15381) and REACTOME_CELL_CYCLE (M543) gene sets, 

from the Reactome database, containing genes that are associated with TCR signaling and with the 

cell cycle, respectively, and TRM_CELLS_UP containing genes that were found to be upregulated in 

TRM cells (CD69, ITGAE, RUNX3, ITGA1, CXCR6, KCNK5, RGS1, DUSP6, PD-1) [Siracusa F. et al., 2019 

and Kumar B.V. et al.,2017]. To show the presence of Th1- and Th17- like cells, we defined them 

looking for the expression of typical markers already used in previous works [Yost K.E. et al., 2019, 

McCluskey D. et al., 2022, Andreatta M. et al., 2021], and calculated their distribution density 

through the tl.embedding_density scanpy function. To define the PDCD1-TIGIT subtypes, we 

resambled the previous process but, first, we looked for cells expressing PDCD1 and TIGIT 

exclusively or in combination and we annotated them as “both expressed” if the expression of both 

genes was co-occurent over a defined treshold (0.5), “Neither expressed” if was under for both, 

“TIGIT not PDCD1” and “PDCD1 not TIGIT” if only one gene passed the threshold.  

Next, we proceded with the TCR analysis through the scirpy module. After categorizing cells on the 

basis of the detection of productive antigen receptor chains (tl.chain_qc function), we selected cells 

with a single pair of productive chains for further analysis. T cell clonotypes were defined at the 

amino acid level (pp.ir_dist, tl.define_clonotypes and tl.clonotype_network functions), considering 



both receptor chains. TCR diversity and TCR clonal size were estimated using tl.alpha_diversity and 

tl.clonal_expansion functions, respectively.   

Finally, we used the tool Slingshot to infer trajectories. In detail, to better define the development 

trajectories, we first regressed-out the cell-cycle effect from our dataset [Vento-Tormo R. et al., 

2018, Büttner M. et al., 2018] through the scanpy pp.regress_out function, passing as input the 

previously calculated S and G2M scores. Cell cycle analysis was performed by creating two lists of 

genes associated to the S and G2/M phases based on cell cycle genes previously defined, passed to 

the tl.score_cell_cycle_genes function to score S and G2/M phases. 

Once the cell cycle was regressed-out, we recalculated the neighborhood graph on the latent space 

in order to cluster and annotate the resulting data which was then prepared for slingshot analysis 

(keeping only the 4000 highly variable genes) conducted through the slingshot function, using UMAP 

as visualization method and choosing Tcm as starting cluster, based on two aspects. First, the 

distribution of naïve-like cells compared to the memory- and effector-like ones, second, the clonal 

distribution. Tcm cluster revealed to be rich in naïve-like cells and poor in highly expanded clones. 

Finally, to evaluate the presence of shared clones along trajectories, we binned clones basing on 

clone-size intervals, keeping only clones with size > 5, we evaluated their expansion in each cluster 

and we plotted this information as a matrix showing the dataset clusters on an axis and the clone 

size bins on the other, in order to know the clone id, its size based on the belonging bin and its 

sharing level.    

The same analysis was conducted on CD8+ cells. We collected and merged data for 6 patients (we 

excluded patient 3 to be consistent with CD4+ analyses) we filtered out cells based on previous 

thresholds, normalized, batch corrected through MNN and then visualized. Next we clustered, 

through the tl.louvain function, at multiple resolutions and we preferred 0.7 as for CD4+ cells. After 

cluster marker definition we looked for contaminant cell lines and we found again monocytes 



(cluster 11), so we removed them along with two other cluster (clusters 9 and 11) containing cells 

with no TCR information. Using canonical gene-sets (NAIVE_VS_EFF_CD8_TCELL_DN, 

REACTOME_CELL_CYCLE, REACTOME_TCR_SIGNALING, TRM_CELLS_UP) we defined three effector 

and two central memory signature clusters, along with a Trm, an IFN stimulated and  an interestingly 

cluster resembling some already described gene signature of NKT cells [15, 16] and of a particular 

subset of innate-like CD8+ T cells [17] that we called NKT-KLRB1. We also observed that at this 

cluster resolution we identified two clusters that showed a very similar transcriptome except for 

the tissue of origin. For this reason, we decided to merge these population in a unique cluster (CD8-

TIGIT+). 

Also in this case we defined the distribution density of PDCD1-TIGIT populations, and next 

proceeded with TCR and trajectory analysis, respectively, regressing-out cell-cycle effect also in this 

case. Finally, we generated a clone type heatmap as for CD4+ cells, in order to evaluate clone sharing 

among clusters.  
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Supplementary Table 1: Clinical features of JIA patients. 

 RF: rheumatoid factor; MTX: methotrexate 

 

Supplementary Table 2. List of all fluorochrome mAbs used for flow cytometric 

immunophenotyping of circulating and SF T cells. 

Antigen Fluorochrome Clone Company 

CD103 FITC Ber ACT8 BDBioscience 

CD69 PE L78 BDBioscience 

CD3 PerCP SK7 BDBioscience 

PD-1 PE-Cy7 EH12.2H7 BioLegend 

CD8 Super Bright 600 SK1 eBioscience™ 

TIGIT APC MBSA43 eBioscience™ 

CD4 eFlour506 RPA-T4 eBioscience™ 

 

Supplementary Table 3. List of all fluorochrome mAbs used for flow cytometric evaluation of T 

cells cytokine production. 

Antigen Fluorochrome Clone Company 

IFNg FITC 25723.11 BDBioscience 

IL2 PE 5344.111 BDBioscience 

TNFa FITC 6401.1111 BDBioscience 

GM-CSF PE BVD2-21C11 BDBioscience 

IL17 FITC eBio64DEC17 eBioscience™ 

IL10 PE JES3-9D7 Milteniy Biotec 

CD3 Super Bright 702 UCTH1 eBioscience™ 

CD8 Super Bright 600 SK1 eBioscience™ 

TIGIT APC MBSA43 eBioscience™ 

JIA 
Patients 

Gender 
(M/F) 

Median 
age in 
Year 

JIA subtype 
(Oligoarticular/Polyarticular 

RF-neg) 

Therapies 

 
22 

 
6/16 

 
10,5 

SD: 5,9 

 
12/10 

n=14: at the onset of disease 
n=2: anti-TNF monoclonal 

antibody 
n=6: MTX 



CD4 eFlour506 RPA-T4 eBioscience™ 

PD-1 Pacific Blue EH12.2H7 BioLegend 

L/D Fixable Viability Stain 780  BDBioscience 

  



 
 



Supplementary Figure S1. scRNA-seq analysis of CD4+ T lymphocytes.  

(A) UMAP representation of CD4+CD45RO+ T cells from PB and inflamed joints (SF) of 6 JIA patients 

colored by tissue origin. (B) UMAP projection of CD4+ cells grouped into 7 distinct Louvain clusters. 

(C) Barplot showing the PB or SF tissue composition of each cluster. (D) Heatmap showing the mean 

expression of functionally defined gene sets in each cluster. For each gene the color code illustrates 

the average level of expression of all cells in the cluster. (E) UMAP visualization of ribosomal genes 

mean expression. (F) UMAP representation of Th1 and Th17 localization expressed in terms of 

density. (G) Modules score of gene sets associated to previously described T cell functions projected 

on UMAP maps and (H) comparison between clusters illustrated as heatmap. 

 

 

 



Supplementary Figure S2. CD4+ T cells TCRs diversity and clonal distribution among analyzed 

patients. 

(A) Network clustering of CD4+ T cells clones based on TCR sequence similarities. For each clones, 

the size of the dot is proportional to the percentage of cells with the same TCR, and the color code 

illustrates from which patient the clone belongs. (B) Bar plot showing the Alpha diversity of clones 

in each cluster, bars correspond to the normalized Shannon Entropy index. 

 



Supplementary Figure S3. scRNA-seq analysis of CD4+ T lymphocytes. 

(A) CD8+CD45RO+ T cells from PB and inflamed joints (SF) of 7 JIA patients were sequenced, 

clustered and projected onto a UMAP representation of the cluster distributions among tissue 

samples. (B) Clustering separated them into 8 different subsets. (C) Bar plot showing the PB or SF 

tissue composition of each cluster. (D) Heatmap showing the mean expression of functionally 

defined gene sets in each cluster. For each gene the color code illustrates the average level of 

expression of all cells in the cluster. (E) UMAP visualization of ribosomal genes mean expression. (F) 

Clusters expression of modules score of gene set associated to previously described T cell functions 

illustrated as heatmap and (G) projected on UMAP maps. 

  

 
 
Supplementary Figure S4. Characteristic markers of CD8+ T cells of cluster 1. 

UMAP visualization of gene expression characterizing cluster 1 cells of CD8+CD45RO+ cells.  In 

particular, expression levels of KLRB1, IL7R, RORC, IL23R, IL17RE, GZMK, CD160 and CD8B are 

shown. 



 

Supplementary Figure S5. CD8+ T cells TCRs diversity and clonal distribution among analyzed 

patients. 

(A) Network clustering of CD8+ T cells clones based on TCR sequence similarities. For each clones, 

the size of the dot is proportional to the percentage of cells with the same TCR, and the color code 

illustrates from which patient the clone belongs. (B) Bar plot showing the Alpha diversity of clones 

in each cluster, bars correspond to the normalized Shannon Entropy index. 

 



 

Supplementary Figure S6. Expression of TOX along CD45RO+CD8+ T cells pseudotime trajectory. 

(A) UMAP visualization of TOX expression and slingshot trajectory in CD8+ T cells. (B-E) TOX gene 

expression reported for each cluster as Violin plot. Clusters are divided based on the trajectory 

lineage: Branch 1 (B), Branch 2 (C), Branch 3 (D), Branch 4 (E). 

 

 

 
Supplementary Figure S7. Gating strategy for the flow cytometric identification of PD-1 and TIGIT 

expressing T cells and their differential cytokines production in PB and SF.  



Lymphocytes were gated based on physical parameters (FSC-SSC), then doublets were removed 

using FSC-A and FSC-H parameters. Dead cells were excluded using viability stain and T cells were 

identified as CD3+. We then identified CD8+ and CD4+ T cells and on both these populations we 

evaluated TIGIT and PD-1 expression. On the four subpopulations identified based on TIGIT and PD-

1 expression (TIGIT-PD-1-, TIGIT-PD-1+, TIGIT+PD-1+, TIGIT+PD-1-) we evaluated the production of 

IFN-g, IL-2, TNF-a, GM-CSF, IL-17, IL-10. Cytokines are conjugated with the same fluorochrome FITC 

and PE, indeed three different staining were performed in order to evaluate all the listed cytokines. 

 


