Supplementary Materials and Methods

Single-cell RNA-seq data preprocessing

First, we performed quality control to remove poor-quality cells and badly detected genes on CD4+
cells. In detail, we loaded into the scanpy environment all count data for the 7 patients and their
relative TCR data, we matched them through the scirpy pp.merge_with_ir function, and then filtered
out cells with a mitochondrial read rate >0.6 and expressed <1250 genes detected in less than 10
cells, except for patient 3 for which PB sample was missing, so we excluded it from our dataset. We
preferred to preserve cells with such a high mitochondrial rate, since the sample contains
populations with a high respiratory activity or with an exhausted phenotype. To handle the risk of
doublets, we applied the scrublet algorithm [Wolock S.L. et al., 2019] which identified and marked
a small number of doublets. Cell-specific biases were normalized by dividing the measured counts
by the size factor obtained through the scran computeSumFactors method, which implements the
deconvolution strategy for scaling normalization [Lun A.T. et al., 2016]. Next, all counts were log-
transformed after addition of a pseudocount of 1. Later, we mitigated the batch effect through the
matching mutual nearest neighbors (MNN) algorithm. In detail, we took the union of highly variable
genes whose expression was common across all samples, thus resulting in 4000 genes that were
used forthe MNN batch correction [Haghverdi L. et al., 2018], performed through the python mnnpy

package [https://github.com/chriscainx/mnnpy access on 10/12/2022]. Then, we used these genes

to perform the dimension reduction on the MNN batch corrected data through principal component
analysis (PCA) and the first 50 principal components (PCs) were used to construct a neighborhood
graph of observations through the pp.neighbors function, which relies on the UMAP algorithm to
estimate connectivity of data points [Mclnnes et al., 2018]. Next, we clustered data by tl.louvain
function at multiple resolutions (0.5, 0.7, 1) and 0.7 revealed to better capture functional states,
producing seven clusters of CD4+ cells. To annotate them, we defined their markers by running the

tl.rank_gene_groups function and adopting the Wilcoxon rank-sum method. By looking at cluster



markers we observed presence of monocytes, defined by CD14 and ITGAM co-expression, so we
removed them from dataset and recalculated the neighborhood graph on the latent space in order
to cluster and annotate the resulting cleaned data. Next, we evaluated the composition of our
dataset by looking for the expression of canonical markers from key immune cell types, states and
pathways, already used by Julie et al. [11] and genesets adopted by Mashmeyer at al. [10], in detail
NAIVE_VS_EFF_MEMORY_CD4_TCELL DN (GSE11057) containing genes whose expression have
been found to be downregulated in naive CD4+ T cells as opposed to effector memory T cells, the
curated REACTOME_TCR_SIGNALING (M15381) and REACTOME_CELL_CYCLE (M543) gene sets,
from the Reactome database, containing genes that are associated with TCR signaling and with the
cell cycle, respectively, and TRM_CELLS_UP containing genes that were found to be upregulated in
TRM cells (CD69, ITGAE, RUNX3, ITGA1, CXCR6, KCNK5, RGS1, DUSP6, PD-1) [Siracusa F. et al., 2019
and Kumar B.V. et al.,2017]. To show the presence of Thl- and Th17- like cells, we defined them
looking for the expression of typical markers already used in previous works [Yost K.E. et al., 2019,
McCluskey D. et al.,, 2022, Andreatta M. et al., 2021], and calculated their distribution density
through the tl.embedding density scanpy function. To define the PDCD1-TIGIT subtypes, we
resambled the previous process but, first, we looked for cells expressing PDCD1 and TIGIT
exclusively or in combination and we annotated them as “both expressed” if the expression of both
genes was co-occurent over a defined treshold (0.5), “Neither expressed” if was under for both,
“TIGIT not PDCD1” and “PDCD1 not TIGIT” if only one gene passed the threshold.

Next, we proceded with the TCR analysis through the scirpy module. After categorizing cells on the
basis of the detection of productive antigen receptor chains (t/.chain_gc function), we selected cells
with a single pair of productive chains for further analysis. T cell clonotypes were defined at the

amino acid level (pp.ir_dist, tl.define_clonotypes and tl.clonotype_network functions), considering



both receptor chains. TCR diversity and TCR clonal size were estimated using tl.alpha_diversity and
tl.clonal_expansion functions, respectively.

Finally, we used the tool Slingshot to infer trajectories. In detail, to better define the development
trajectories, we first regressed-out the cell-cycle effect from our dataset [Vento-Tormo R. et al.,
2018, Blttner M. et al., 2018] through the scanpy pp.regress_out function, passing as input the
previously calculated S and G2M scores. Cell cycle analysis was performed by creating two lists of
genes associated to the S and G2/M phases based on cell cycle genes previously defined, passed to
the tl.score_cell_cycle_genes function to score S and G2/M phases.

Once the cell cycle was regressed-out, we recalculated the neighborhood graph on the latent space
in order to cluster and annotate the resulting data which was then prepared for slingshot analysis
(keeping only the 4000 highly variable genes) conducted through the slingshot function, using UMAP
as visualization method and choosing Tcm as starting cluster, based on two aspects. First, the
distribution of naive-like cells compared to the memory- and effector-like ones, second, the clonal
distribution. Tcm cluster revealed to be rich in naive-like cells and poor in highly expanded clones.
Finally, to evaluate the presence of shared clones along trajectories, we binned clones basing on
clone-size intervals, keeping only clones with size > 5, we evaluated their expansion in each cluster
and we plotted this information as a matrix showing the dataset clusters on an axis and the clone
size bins on the other, in order to know the clone id, its size based on the belonging bin and its
sharing level.

The same analysis was conducted on CD8+ cells. We collected and merged data for 6 patients (we
excluded patient 3 to be consistent with CD4+ analyses) we filtered out cells based on previous
thresholds, normalized, batch corrected through MNN and then visualized. Next we clustered,
through the tl./ouvain function, at multiple resolutions and we preferred 0.7 as for CD4+ cells. After

cluster marker definition we looked for contaminant cell lines and we found again monocytes



(cluster 11), so we removed them along with two other cluster (clusters 9 and 11) containing cells
with no TCR information. Using canonical gene-sets (NAIVE_VS EFF_CD8 TCELL DN,
REACTOME_CELL_CYCLE, REACTOME_TCR_SIGNALING, TRM_CELLS_UP) we defined three effector
and two central memory signature clusters, along with a Trm, an IFN stimulated and an interestingly
cluster resembling some already described gene signature of NKT cells [15, 16] and of a particular
subset of innate-like CD8+ T cells [17] that we called NKT-KLRB1. We also observed that at this
cluster resolution we identified two clusters that showed a very similar transcriptome except for
the tissue of origin. For this reason, we decided to merge these population in a unique cluster (CD8-
TIGIT+).

Also in this case we defined the distribution density of PDCD1-TIGIT populations, and next
proceeded with TCR and trajectory analysis, respectively, regressing-out cell-cycle effect also in this
case. Finally, we generated a clone type heatmap as for CD4+ cells, in order to evaluate clone sharing

among clusters.
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Supplementary Table 1: Clinical features of JIA patients.

JIA Gender | Median JIA subtype Therapies
Patients | (M/F) agein (Oligoarticular/Polyarticular
Year RF-neg)
n=14: at the onset of disease
22 6/16 10,5 12/10 n=2: anti-TNF monoclonal
SD:5,9 antibody
n=6: MTX

RF: rheumatoid factor; MTX: methotrexate

Supplementary Table 2. List of all fluorochrome mAbs used for flow cytometric

immunophenotyping of circulating and SF T cells.

Antigen Fluorochrome Clone Company

CD103 FITC Ber ACT8 BDBioscience
CD69 PE L78 BDBioscience
CD3 PerCP SK7 BDBioscience
PD-1 PE-Cy7 EH12.2H7 BioLegend

CD8 Super Bright 600 SK1 eBioscience™
TIGIT APC MBSA43 eBioscience™
CD4 eFlour506 RPA-T4 eBioscience™

Supplementary Table 3. List of all fluorochrome mAbs used for flow cytometric evaluation of T

cells cytokine production.

Antigen Fluorochrome Clone Company

IFNy FITC 25723.11 BDBioscience
IL2 PE 5344.111 BDBioscience
TNFa FITC 6401.1111 BDBioscience
GM-CSF PE BVD2-21C11 BDBioscience
IL17 FITC eBio64DEC17 | eBioscience™
IL10 PE JES3-9D7 Milteniy Biotec
CD3 Super Bright 702 UCTH1 eBioscience™
CD8 Super Bright 600 SK1 eBioscience™
TIGIT APC MBSA43 eBioscience™




Ch4 eFlour506 RPA-T4 eBioscience™
PD-1 Pacific Blue EH12.2H7 BiolLegend
L/D Fixable Viability Stain 780 BDBioscience
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Supplementary Figure S1. scRNA-seq analysis of CD4* T lymphocytes.

(A) UMAP representation of CD4+CD45R0+ T cells from PB and inflamed joints (SF) of 6 JIA patients
colored by tissue origin. (B) UMAP projection of CD4+ cells grouped into 7 distinct Louvain clusters.
(C) Barplot showing the PB or SF tissue composition of each cluster. (D) Heatmap showing the mean
expression of functionally defined gene sets in each cluster. For each gene the color code illustrates
the average level of expression of all cells in the cluster. (E) UMAP visualization of ribosomal genes
mean expression. (F) UMAP representation of Thl and Th17 localization expressed in terms of
density. (G) Modules score of gene sets associated to previously described T cell functions projected

on UMAP maps and (H) comparison between clusters illustrated as heatmap.
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Supplementary Figure S2. CD4+ T cells TCRs diversity and clonal distribution among analyzed

patients.

(A) Network clustering of CD4+ T cells clones based on TCR sequence similarities. For each clones,

the size of the dot is proportional to the percentage of cells with the same TCR, and the color code

illustrates from which patient the clone belongs. (B) Bar plot showing the Alpha diversity of clones

in each cluster, bars correspond to the normalized Shannon Entropy index.
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Supplementary Figure S3. scRNA-seq analysis of CD4* T lymphocytes.

(A) CD8+CD45R0O+ T cells from PB and inflamed joints (SF) of 7 JIA patients were sequenced,
clustered and projected onto a UMAP representation of the cluster distributions among tissue
samples. (B) Clustering separated them into 8 different subsets. (C) Bar plot showing the PB or SF
tissue composition of each cluster. (D) Heatmap showing the mean expression of functionally
defined gene sets in each cluster. For each gene the color code illustrates the average level of
expression of all cells in the cluster. (E) UMAP visualization of ribosomal genes mean expression. (F)
Clusters expression of modules score of gene set associated to previously described T cell functions

illustrated as heatmap and (G) projected on UMAP maps.
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Supplementary Figure S4. Characteristic markers of CD8+ T cells of cluster 1.
UMAP visualization of gene expression characterizing cluster 1 cells of CD8+CD45R0O+ cells. In
particular, expression levels of KLRB1, IL7R, RORC, IL23R, IL17RE, GZMK, CD160 and CD8B are

shown.
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Supplementary Figure S5. CD8+ T cells TCRs diversity and clonal distribution among analyzed
patients.

(A) Network clustering of CD8+ T cells clones based on TCR sequence similarities. For each clones,
the size of the dot is proportional to the percentage of cells with the same TCR, and the color code
illustrates from which patient the clone belongs. (B) Bar plot showing the Alpha diversity of clones

in each cluster, bars correspond to the normalized Shannon Entropy index.



UMAP2

2.0

0.5

2.00
1.75
1.50
125

)

2 1.00
0.75
0.50
0.25
0.00

Tem

Tem-CXCR3*

IFN stimulated
NKT-KLRB1

2.00 2.00
175 175
1.50 150
1.25 1.25

8 3

S 1.00 9 1.00
075 0.75
050 0.50
0.25 0.25
0.00 0.00

Tem-CXCR3*

Tem

IFN

CD8-TIGIT
Teff-GNLY*

Tem-CXCR3*

Tem

IFN stimulated

CD8-Teff

2.00
175
150
125
8 100
0.75
0.50
025
0.00

Tem

Tem-CXCR3*
IFN stimulated

CD8-TIGIT*

Supplementary Figure S6. Expression of TOX along CD45R0+CD8+ T cells pseudotime trajectory.

(A) UMAP visualization of TOX expression and slingshot trajectory in CD8+ T cells. (B-E) TOX gene

expression reported for each cluster as Violin plot. Clusters are divided based on the trajectory

lineage: Branch 1 (B), Branch 2 (C), Branch 3 (D), Branch 4 (E).
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Supplementary Figure S7. Gating strategy for the flow cytometric identification of PD-1 and TIGIT

expressing T cells and their differential cytokines production in PB and SF.



Lymphocytes were gated based on physical parameters (FSC-SSC), then doublets were removed
using FSC-A and FSC-H parameters. Dead cells were excluded using viability stain and T cells were
identified as CD3+. We then identified CD8+ and CD4+ T cells and on both these populations we
evaluated TIGIT and PD-1 expression. On the four subpopulations identified based on TIGIT and PD-
1 expression (TIGIT-PD-1-, TIGIT-PD-1+, TIGIT+PD-1+, TIGIT+PD-1-) we evaluated the production of
IFN-y, IL-2, TNF-o,, GM-CSF, IL-17, IL-10. Cytokines are conjugated with the same fluorochrome FITC

and PE, indeed three different staining were performed in order to evaluate all the listed cytokines.



