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and Małgorzata Brzóska

Received: 14 January 2023

Revised: 27 February 2023

Accepted: 2 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Impact of High Salt-Intake on a Natural Gut Ecosystem in
Wildling Mice
Alessio Cardilli 1,2,†, Ibrahim Hamad 1,2,†, Aleksandra Dyczko 1,2, Sofie Thijs 3 , Jaco Vangronsveld 3,4 ,
Dominik N. Müller 5,6,7, Stephan P. Rosshart 8,9 and Markus Kleinewietfeld 1,2,10,*

1 VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC),
Hasselt University, 3590 Diepenbeek, Belgium

2 Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University,
3590 Diepenbeek, Belgium

3 Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D,
3590 Diepenbeek, Belgium

4 Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska
University, 20-033 Lublin, Poland

5 Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück-Center for Molecular
Medicine and Charité-Universitätsmedizin, 13125 Berlin, Germany

6 Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
7 Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität

zu Berlin, 13125 Berlin, Germany
8 Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg,

91054 Erlangen, Germany
9 Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg,

79106 Freiburg, Germany
10 University Multiple Sclerosis Center (UMSC), Hasselt University/Campus Diepenbeek, 3590 Diepenbeek, Belgium
* Correspondence: markus.kleinewietfeld@uhasselt.vib.be; Tel.: +32-(0)11-26-9275
† These authors contributed equally to this work.

Abstract: The mammalian holobiont harbors a complex and interdependent mutualistic gut bacterial
community. Shifts in the composition of this bacterial consortium are known to be a key element in host
health, immunity and disease. Among many others, dietary habits are impactful drivers for a potential
disruption of the bacteria–host mutualistic interaction. In this context, we previously demonstrated that a
high-salt diet (HSD) leads to a dysbiotic condition of murine gut microbiota, characterized by a decrease
or depletion of well-known health-promoting gut bacteria. However, due to a controlled and sanitized
environment, conventional laboratory mice (CLM) possess a less diverse gut microbiota compared to wild
mice, leading to poor translational outcome for gut microbiome studies, since a reduced gut microbiota
diversity could fail to depict the complex interdependent networks of the microbiome. Here, we evaluated
the HSD effect on gut microbiota in CLM in comparison to wildling mice, which harbor a natural gut
ecosystem more closely mimicking the situation in humans. Mice were treated with either control food or
HSD and gut microbiota were profiled using amplicon-based methods targeting the 16S ribosomal gene.
In line with previous findings, our results revealed that HSD induced significant loss of alpha diversity and
extensive modulation of gut microbiota composition in CLM, characterized by the decrease in potentially
beneficial bacteria from Firmicutes phylum such as the genera Lactobacillus, Roseburia, Tuzzerella, Anaerovorax
and increase in Akkermansia and Parasutterella. However, HSD-treated wildling mice did not show the same
changes in terms of alpha diversity and loss of Firmicutes bacteria as CLM, and more generally, wildlings
exhibited only minor shifts in the gut microbiota composition upon HSD. In line with this, 16S-based
functional analysis suggested only major shifts of gut microbiota ecological functions in CLM compared
to wildling mice upon HSD. Our findings indicate that richer and wild-derived gut microbiota is more
resistant to dietary interventions such as HSD, compared to gut microbiota of CLM, which may have
important implications for future translational microbiome research.
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1. Introduction

The gut of mammals is colonized by a complex and diverse bacterial community,
which together with the host creates a delicate symbiotic relationship [1,2]. This bacterial
community exerts many functions useful to the host, including metabolic, immunomodulat-
ing and trophic functions [3–7] and the gut microbiota composition could change during life,
in line with the specific needs and physiology of the host [1,8,9]. Many beneficial functions
of gut health-promoting bacteria are mediated by anaerobic fermentation derived metabo-
lites [10–13] and dysbiotic conditions could significantly affect host health [2,11,14,15].

The growing concern for lifestyle impact on health has led to an increased scientific
interest in gut microbiota involvement and its translational implications [16,17]. Indeed,
the gut microbiota is shaped by both extrinsic (e.g., lifestyle, diet and medical treatments)
and intrinsic (e.g., host genetics, immune and metabolic regulations) factors [8,18–20]. It
is generally recognized that extrinsic elements could elicit impactful effects, with diet
as one of the main contributing factors in affecting the gut microbiota composition and
function [1,2,21]. Western dietary components, such as high-salt intake, are known to have
a negative impact on host homeostasis by affecting the immune system and altering the
gut microbiota and disease [18,22–37]. In murine gut microbiota, high-salt diet (HSD) is
associated with reduction of health-promoting bacteria notoriously known as producer
of short-chain fatty acids (SCFA) such as Lactobacillus spp., Bifidobacterium, Blautia and
Faecalibaculum [28,29,38–41], alongside an increase in the abundance of Akkermansia, another
opportunistic SCFA-producer that has been shown to affect host immunity and disease in
different model systems [42,43].

Murine animal models are frequently used to study how dietary factors could shape
the gut microbiota, immune system and disease [29,44–46]. Although the use of conven-
tional laboratory mice (CLM) is still a valid option for many studies, it sometimes fails to
properly translate gut microbiota-focused applications [47–49]. For instance, immunolog-
ical and metabolomics research in murine models of inflammatory bowel disease (IBD)
and obesity were shown to poorly predict translational outcome of gut microbiota stud-
ies [50]. This could be due to many inherent differences in these model systems, such as
different gut anatomy, genetics and physiology [16,50]. However, another problem of using
CLM for studying microbiota-immune interactions is the domestication of gut bacterial
composition in CLM, which is mirrored in reduction of the complexity and resilience of the
CLM gut microbiota compared to wild mice [51]. The need for sanitized and controlled
environments faces a reduced presence of potential pathogens and parasites, which is
believed to consequently lead to a less “educated” immune system in CLM compared to
wild mice [51–53]. To address this problem, the wildling murine model was developed
by C57BL/6 mice-derived embryo transfer into wild mice to obtain a wild-derived gut
microbiota, in order to overcome the translational issue of immunological-gut microbiota
studies [54]. Recent studies involving this mouse model showed superior outcome in
predicting translational value of experimental immunotherapies compared to CLM [54,55].
Moreover, wildling gut microbiota was more resistant and resilient to antibiotics treatment
and high-fat diet compared to CLM, comparable to the more complex situation in hu-
mans [54,55]. However, despite the established effects of HSD on gut microbiota, immune
system and various disease models in CLM, the effects of high-salt intake on a natural,
wild-derived gut microbiota are unknown. In this study, we thus evaluated the effect of
HSD on different gut bacterial ecosystem compositions and predictive functions of CLM in
comparison to wildling mice.

2. Materials and Methods
2.1. Animals and Diet

Wild-type C57BL/6 mice (7–8 weeks old females, n = 20) were purchased from Charles
River and housed in the animal facility of the University of Hasselt under standardized con-
ditions. Wildling mice (C57BL/6 genetic background, males n = 12 and females n = 11) [54]
were housed in the animal facility of UHasselt under standardized conditions. Animal
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studies were approved by the Ethical Committee on Animal Experiments (ECAE) Hasselt
University (ID201618A4V1, ID202235). Mice were housed (4 mice/cage) in a temperature-
controlled room (21–23 ◦C) with a 12:12 h light/dark light cycle. The following purified
diets were purchased from Ssniff (Soest, Germany): 0.5% NaCl/control diet (E15430-04),
4% NaCl/HSD (E15431-34). For HSD, animals were fed with 1% NaCl in the drinking
water in addition to E15431-34, as described in [28]. CLM mice were equally distributed
between control group (n = 10) and HSD (n = 10). For the wildling mice, male and female
individuals were also equally distributed in control and HSD dietary groups (6 males for
control, 6 males for HSD, 5 females for control and 6 females for HSD).

2.2. DNA Extraction

Microbial DNA extraction was performed as described in [28], by using a modified
protocol of the QIAmp Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany). In brief,
fecal pellets were added to a 2-mL Eppendorf containing 0.5 mm glass beads and 1.5 mL
of lysis buffer (ASL) (Qiagen, Hilden, Germany). Bead-beating was used to perform
mechanical homogenization of the pellets. Full extraction was performed according to
the manufacturer’s protocol with minor modifications (prolongation of the proteinase K
incubation time to 2 h at 70 ◦C). DNA concentrations were evaluated using a NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and stored
at −20 ◦C before 16S rRNA gene amplification.

2.3. 16S rRNA Gene Amplification and Sequencing

16S rRNA gene sequence was amplified by using a primer specific for the V4 region
(F515/R806), as previously described [56]. Briefly, 25 ng of DNA was used per PCR reaction
(30 µL) (KAPA HiFi HotStart ReadyMix, Roche, Basel, CH, USA) of initial denaturation
for 30 s at 98 ◦C, followed by 25 cycles (10 s at 98 ◦C, 20 s at 55 ◦C, and 20 s at 72 ◦C).
Reactions were performed in triplicate, pooled per sample and purified by a magnetic bead-
based clean-up system (Agencourt AMPure XP, Beckman Coulter, Brea, CA, USA). Library
preparation was performed by a limited-cycle PCR to obtain the indexed library using
Nextera technology (Nextera XT Index Kit, Illumina, San Diego, CA, USA), followed by a
second AMPure XP magnetic beads clean-up step. Indexed samples were then normalized
to the same concentration of 4nM, pooled and sequenced on an Illumina MiSeq platform
PE300 with a 2 × 300 bp paired-end protocol according to company protocol (Illumina,
Inc., San Diego, CA, USA).

2.4. Processing and Statistical Analysis of 16S rRNA Gene Sequencing Data

Raw sequences were processed using a QIIME 2 [57] pipeline. After length and quality
filtering (default parameters), reads were filtered and assigned into operational taxonomic
units (OTUs) using DADA2 [58]. Taxonomic assignment was performed by the VSEARCH
algorithm (https://github.com/torognes/vsearch; accessed on 9 November 2022) and the
Silva database v128 (https://www.arb-silva.de/; accessed on 9 November 2022). The ASV
table was then normalized by rarefaction at 6.147 depth so that every sample reached the
plateau at the end of the rarefaction curve. Alpha-diversity was assessed using two different
metrics: OTUs richness (Observed), Chao1, Shannon, Simpson, Inverse Simpson (InvSimp-
son) ecological indexes. For beta-diversity, Bray−Curtis dissimilarity, Jaccard similarity,
Weighted and Unweighted UniFrac metrics [59] were calculated and plotted by Principle
Coordinates Analysis (PCoA) to visualize the real distance between samples. In order to
normalize the OTU count table, rarefaction was performed at depth of 6305 sequences per
sample 100 times. The output obtained from the OTU taxonomy assignment, as a taxonomy
table, was used to collapse the normalized OTU table into tables for the taxonomy levels
L2 (Phylum), L5 (Family) and L6 (Genus). Statistical analyses were performed by using
R (https://www.R-project.org/; accessed on 25 November 2022; Version 4.2.0). The R
package “vegan” (Version 2.6-4) [60] was used to generate beta-diversity metrics in order to
compare compositional differences of groups by PCoA or by principal component analysis

https://github.com/torognes/vsearch
https://www.arb-silva.de/
https://www.R-project.org/
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(PCA). Packages and data separation were tested by permutation test with pseudo-F ratios
(function “Adonis” in “vegan”). Separation in terms of beta diversity between groups was
tested by Permutational Multivariate Analysis of Variance Using Distance Matrices (PER-
MANOVA, function “Adonis” in “vegan”), while differences for intra-groups dispersion
were tested by Multivariate homogeneity of groups dispersions test (PERMDISP, function
“betadisper” in “vegan”). Taxa that were not present in at least 4 samples were excluded
from the analysis.

Differences in term of taxa relative abundances were first evaluated with preliminary
Kruskal-Wallis test between 4 groups and then further evaluated with Wilcoxon-test be-
tween following comparison pairs: CLM Control vs. CLM HSD, wildling Control vs. wildling
HSD, CLM Control vs. wildling Control, CLM HSD vs. wildling HSD. For evaluation of
taxonomic differences between wildling and CLM, Linear Discriminant Analysis Effect Size
(LEfSe: https://huttenhower.sph.harvard.edu/galaxy/; accessed on 25 November 2022)
was used to distinguish the main features at genus level [61]. LEfSe results were then
shown as a bar graph, with Linear Discriminant Analysis (LDA) score threshold higher
than 1.0. Whenever necessary, p-values of multiple comparisons were adjusted by the
Benjamini–Hochberg method. A false discovery rate (FDR) ≤ 0.05 was considered as
statistically significant: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

Functional differences between microbiomes of different NaCl content in the food
(0.5% and 4% NaCl food content) were analyzed by PICRUSt2, a bioinformatics soft-
ware package to predict metagenome functional content from 16s rDNA gene sequencing
data (https://huttenhower.sph.harvard.edu/picrust/; accessed on 29 November 2022;
PICRUSt2 2.4.1) [62]. PICRUSt2 pipeline was applied to representative sequences and
their abundance table from DADA2 by using standard parameters (https://github.com/
picrust/picrust2/wiki/Full-pipeline-script; accessed on 29 November 2022). From the full
pipeline output, metagenomic prediction for KEGG Orthology and MetaCyc pathways
were built as tables, with predictive functions as rows and samples as columns, and used
to compare gut microbiota functions in wildling and CLM upon HSD regime. Microbial
community predictive functions that contributed the most to the variation between wildling
and CLM by first (PC1), second (PC2) and third principal component (PC3) were selected
for further analysis upon HSD consumption in the two models. The matrix with the pre-
dictive function abundances was then normalized, transformed in Centered Log Ratio
(CLR) values and log2mean ratio calculated (HSD/Control) for both wildling and CLM.
Finally, the log2mean ratios were compared between groups by Wilcoxon-test and plotted
as cuneiform plot. Differences between groups were statistically compared in R software
using Wilcoxon-test and Kruskal-Wallis test functions and p values adjusted by the Holm
or Benjamini–Hochberg method.

3. Results
3.1. HSD Affects Diversity and Composition of CLM and Wildling Gut Microbiota

To investigate the impact of HSD on a wild-derived gut microbial ecosystem in mice,
we fed HSD or control diets to wildling mice and CLM. Mice were kept on dietary regimes
for two weeks and the fecal gut microbiota composition was subsequently investigated by
16S RNA gene sequencing from fecal pellets collected at day 14 (Figure 1A). In line with
a previous report, no strong differences were detected in terms of body weights between
control and HSD groups of CLM and wildling mice [29].

To assess the different gut microbiota between the two models CLM and wildling
mice at baseline, we estimated alpha diversity (Observed or Richness, Chao1, Shannon,
Simpson and Inverse Simpson indexes), beta diversity (Bray−Curtis dissimilarity) and
the main taxonomic differences. In line with previous studies [54], wildling gut microbiota
was characterized by greater microbial richness (Figure 1B, all alpha diversity indexes), as
well as a distinct and more heterogeneous microbial composition than CLM (Figure 1C,
PERMANOVA p =0.001 & PERMDISP p = 0.0009, wildling vs. CLM; and Figure S1). In
terms of microbial signatures, CLM and wildling mice gut microbiota were characterized

https://huttenhower.sph.harvard.edu/galaxy/
https://huttenhower.sph.harvard.edu/picrust/
https://github.com/picrust/picrust2/wiki/Full-pipeline-script
https://github.com/picrust/picrust2/wiki/Full-pipeline-script
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by different bacterial taxa (Figure S1). In line with Rosshart et al. [54], bacterial taxa from
wildling mice belong to Intestinomonas, Desulfovibrio, Tuzzerella, Oscillobacter, Orodibacter and
the pathogenic genus Helicobacter, which characterized the wild-derived non-domesticated
profile of this model (Figure S1).
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Figure 1. HSD impact on bacterial composition of CLM (n = 10/group) and wildling mice (n = 11 for
wildling Ctrl and n = 12 for wildling HSD). (A) Experimental design. C57BL/6 CLM or wildling mice
were fed on 0.5% NaCl (control, Ctrl) or high salt 4% NaCl (HSD) and gut bacterial community gut
characterized by 16S rRNA gene amplicon sequencing. (B) Indexes for alpha diversity of fecal gut
microbiota of CLM and wildling; from left to right, the following indexes are shown: Observed (OUT
richness), Chao1, Shannon, Simpson, InvSimpson (Inverse Simpson). Differences between groups
are evaluated statistically by Wilcoxon-test. (C) Principal coordinate analysis plot of beta diversity
ordination from Bray−Curtis dissimilarity metric between CLM vs. wildling (top), CLM control
vs. CLM HSD (bottom left) and wildling control vs. wildling HSD (bottom right); separation and
homogeneity between groups was calculated by PERMANOVA and PERMDISP tests respectively.
* p ≤ 0.05; ** p ≤ 0.01; **** p ≤ 0.0001.

HSD induced significant reduction in bacterial diversity (Figure 1B, all alpha diver-
sity indexes) as well as significant microbial shift in composition of CLM (Figure 1C,
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PERMANOVA p = 0.001, PERMDISP p = 0.1, CLM Ctrl vs. CLM HSD). In contrast, gut
microbiota of wildling mice was characterized by higher diversity upon HSD (Figure 1B,
Observed & Chao1 indexes), divergently from CLM, and they were also characterized by
less pronounced microbial composition shift upon HSD compared to CLM (Figure 1C,
PERMANOVA p = 0.001, PERMDISP p = 0.5, wildling Ctrl vs. wildling HSD).

3.2. Gut Microbial Composition of Wildling Mice Is More Resistant to HSD than CLM

Bacterial compositional differences between wildling and CLM were further taxonom-
ically characterized. At the phylum level, the most abundant phyla in terms of relative
abundance were: Firmicutes (CLM: 52 ± 12%, wildling: 32 ± 34%), Bacteroidota (CLM:
24 ± 23%, wildling: 57 ± 19%), Actinobacteriota (CLM: 10 ± 7%, wildling: 0.7 ± 1.3%) and
Verrucomicrobiota (CLM: 24 ± 23%, wildling: 0%/not detected) (Figure 2). The gut micro-
bial profile showed further different abundances for all phyla detected in fecal samples
between wildling mice and CLM (Figure 2). Particularly, core microbiota phyla Firmicutes,
Bacteroidota and Verrucomicrobiota were significantly different between the two models
(Figure 2). More specifically, at the family level a different contribution was observed
in wildling vs. CLM gut microbiota for most of the bacteria previously reported as HSD
sensitive [28], including Lactobacillaceae, Clostridiaceae, Peptostreptococcaceae and Akker-
mansiaceae (Figure 3). In line with this, similar trends were confirmed at genus level
between wildling and CLM samples for the main members of the forementioned families;
among these, the most representative were Lactobacillus, Roseburia, Tuzzerella, Faecalibaculum
and Akkermansia (Figures S1 and 4).

To characterize further the impact of HSD on CLM and wildling gut microbiota compo-
sitions, we also analyzed the impact of the dietary regimen at different classification levels.
At the phylum level, HSD-treated CLM gut microbiota were characterized by significant
depletion of Firmicutes and enrichment of Verrucomicrobiota (Figure 2), but none of the
major phyla were affected by HSD in wildling samples (Figure 2). At the family level,
CLM gut microbiota were characterized by significant depletion of lactic acid-producing
bacteria such as Lactobacillaceae, as well as SCFA-producers such as Peptostreptococcaceae
and Clostridiaceae (Figure 3). Additionally, in HSD-fed CLM, we observed increases in
Akkermansiaceae, Sutterellaceae, Defluvitaleaceae and Eggerthellaceae (Figure 3). In con-
trast, HSD affected different bacterial families in wildling gut microbiota, among them the
two highly-abundant Muribaculaceae and Prevotellaceae, both of which were increased
upon HSD (Figure 3).

Bacterial modulation that most contributed to HSD-effect in CLM included the increase
of genera Akkermansia, Parasutterella and Enterorhabdus, as well as the decrease of Lactobacil-
lus, Roseburia, Tuzzerella, (Eubacterium) oxidoreducens group, Muribaculum and Anaerovorax
(Figure 4). Except for Roseburia, none of the aforementioned genera were affected by HSD
in wildling gut microbiota, while the genus Anaerovorax showed an opposite tendency from
that of CLM (Figure 4).
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abundance is shown by bar plot per each individual (top) and boxplot for specific phyla (bottom);
statistical comparisons were performed between groups by Wilcoxon-test. * p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001; **** p ≤ 0.0001.
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is represented by bar plot per each individual (on top) and boxplot for specific families (bottom);
statistical comparisons were performed between groups by Wilcoxon-test. * p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001; **** p ≤ 0.0001.
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Figure 4. Changes in bacterial genera in CLM (n = 10/group) and wildling mice (n = 11 for wildling
Ctrl and n = 12 for wildling HSD). Overall relative abundance contribution at genus level is plotted
as circular bar plot per each individual (on top) and boxplot for specific genera (bottom); statistical
comparisons were performed between groups by Wilcoxon-test. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001;
**** p ≤ 0.0001.
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3.3. HSD Affects Predictive Microbial Functions in CLM but Not in Wildling Mice

PICRUSt 2 output did not detect any significant difference between microbial commu-
nity functions of wildling HSD vs. untreated wildling mice for both KEGG Orthology and
MetaCyc pathway annotations, with the only exception of HSD-induced increased function
on recG gene for an ATP-dependent helicase from the KEGG Orthology (Figure 5A). HSD
impact on CLM was characterized by significant decrease of predictive functions for KEGG
Orthology, among them the gene spp (sucrose-6-phosphatase) and pfkA (phosphofructok-
inase 1), both involved in starch and sucrose metabolism, which is in line with previous
findings [28] (Figure 5A). In addition, gut microbiota of HSD-fed CLM was characterized
by decreased predictive functions of genes involved in membrane transport (feoB for iron
transport, AB 2P AB 2 permease protein, AB 2A AB 2 ATP binding protein), glutamine
biosynthesis (glnA), LacI family transcriptional regulator (lacI, galR) and transketolase (tktA,
tktB) (Figure 5A). For MetaCyc pathways, HSD significantly enriched the CLM gut microbiota
of predictive functions associated with nitrate reduction (denitrification pathway), galactose
degradation (D-galactarate degradation, super pathway of D-glucarate and D-galactarate
degradation), phenyl-propanoate degradation, fatty acid salvage, succinate degradation to
butanoic acid and amino acid degradation (aromatic amine degradation, L-leucine degra-
dation) (Figure 5B). Furthermore, in line with previous findings [28], HSD gut microbiota
in CLM lost predictive functions for ammino acid biosynthesis (super pathway of L-alanine
biosynthesis, L-lysine biosynthesis), mixed acid fermentation, with additional novel signature
lost like N-acetylglucosamine/N-acetyl-mannosamine/N-acetylneuraminate degradation and
deoxyribonucleosides degradation (pyrimidine and purine degradation, inosine5phosphate
biosynthesis III) (Figure 5B).
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4. Discussion

Complex and diverse wildling gut microbiota is known to be more resilient to certain
disease models [51] and dietary regimes, such as high-fat intake [54,55]. However, no
previous study has evaluated the effects of high sodium-intake on murine wild-derived
gut microbiota. Here, we investigated for the first time how HSD affects wildling gut
microbiota compared to CLM. Interestingly, our results demonstrated that, compared to
CLM, the wildling microbiome is more resistant to HSD disturbance at both compositional
and predictive functional levels.

It is well established that high-salt intake could exacerbate risk of various diseases,
such as cardiovascular or autoimmune diseases, by altering gut microbiome composition
and immune homeostasis [25,29,31,34,63–65]. In line with previous reports, HSD-induced
shifts in gut microbiota in CLM were characterized by significant alterations of microbial
diversity, composition and predictive functions [28]. Health-promoting bacteria such as the
Peptostreptococcaceae family and genera Lactobacillus, Roseburia and Tuzzerella decreased
in terms of relative abundance in CLM, while Akkermansia significantly increased in HSD-
fed groups. We also detected higher relative abundances upon HSD in Defluvitaleaceae,
Enterorhabdus and Parasutterella. Interestingly, the genus Parasutterella is a core component
of the gut microbiota of both CLM and humans, where it behaves as an asaccharolytic
and producer of succinate [66]. Both Enterorhabdus from the Eggerthellaceae family and
Parasutterella from the Sutterellaceae family are known to be enriched in patients with
IBD [67,68], further indicating how HSD may affect disease development. However, and
interestingly, wildling mice did not show a similar entity of HSD-induced microbial shifts,
such as CLM. Despite this, wildling diversity significantly increased on HSD for observed
OTUs and Chao1 metrics, and only a few taxa were involved in the HSD disturbance of
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wildling gut microbiota, among them an increase of Anaerovorax, coupled with a decrease
of Erysipelatoclostridium, Roseburia and Lachnospiraceae UCG-004 genus. Roseburia was the
only bacterial signature commonly shared between HSD groups compared with the corre-
sponding controls, despite HSD-fed CLM still being characterized by a higher abundance
of this bacteria compared to HSD-fed wildling mice. Of note, butyrate-producing bacteria
such as Roseburia were shown to have lower relative abundance in patients with ulcerative
colitis [69] and this reduction was also observed to be correlated with IBD genetic risk of
human subjects [70]. This is in line with previous findings, where shifts in bacterial genera
such as Roseburia or Lactobacillus were found to be associated with risk of hypertension,
possibly promoted by a western diet [71]. The bacterial composition of the gut is also
associated to gut motility and physiology [72]. The genus Anaerovorax has previously been
observed in mice with abnormal gut physiology and reduced motility [73]; however, the
enrichment of Anaerovorax in HSD for wildling mice may lead to a different role of this taxa
in the context of gut homeostasis and proper function. In line with previous findings, we
observed an increase in the genus Akkermansia in the HSD group of CLM [28], while the
gut microbiota of wildling mice was depleted of this genus, which is also consistent with
earlier studies on this model [51,53–55]. Although the genus Akkermansia has been shown
to be a potential probiotic due to its positive effect on improving host immunological and
metabolic profiles (e.g., in obesity and type 2 diabetes) [42,74–77], the role of this genus is
still unclear due to its negative correlation with clinical outcomes in colorectal cancer [78],
Parkinson’s disease [79,80] and multiple sclerosis patients [81].

Consistent with our previous results obtained with MetaCyc pathways [28], CLM upon
HSD showed decreased predictive microbial functions associated with starch and sucrose
metabolism for KEGG orthology. However, the minor shifts in gut bacterial composition
of HSD-fed wildling mice failed to induce any significant variations in predictive bacterial
functions, indicating that wildling-derived gut microbiota and metabolic/ecological net-
works are much more stable and might adapt much more easily to HSD-induced dietary
variations compared to CLM gut ecosystems, which warrants further investigation. Worth
mentioning also is the possible influence of the gut fungal community on the gut bacterial
network upon differential dietary regimes. Earlier studies have already suggested how
potential interactions between bacteria and fungi are implicated in host immune system
homeostasis and disease development [82–85]. In this context, CLM are further limited
by their lower bacterial complexity compared to wildling mice, which may hinder the
establishment of a diverse gut mycobiota [54]. Future studies will be able to determine the
contribution of gut fungal communities in settings of gut microbiota and host immunity by
using the wildling model.

In summary, our study provides data on how high sodium-intake affects a natural,
wild-derived gut microbial ecosystem in comparison to a domesticated gut bacterial com-
munity of CLM. Our study demonstrated that HSD does not affect bacterial taxa and gut
microbiota in wildling mice in the same way as it does for a domesticated gut microbiota
from CLM. This divergence, as previously stated for other dietary regimens or conditions
such as high-fat diets [54,55], indicates that future research is needed in natural murine
model systems to recapitulate and to estimate the impact of dietary interventions on more
complex gut ecosystems, as in humans.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nu15071565/s1, Figure S1: Major contributing bacteria to compositional
differences between CLM (n = 10/group) and wildling (n = 11 for wildling Ctrl and n = 12 for wildling HSD)
gut microbiota. Linear Discriminant Analysis (LDA) effect size (LEfSe) analysis revealed significant
bacterial differences in fecal microbiota between CLM and wildling mice.
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