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Proteomic Profiling of Colorectal Adenomas Identifies a
Predictive Risk Signature for Development of Metachronous
Advanced Colorectal Neoplasia
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BACKGROUND & AIMS: Colonic adenomatous polyps, or ade-
nomas, are frequent precancerous lesions and the origin of
most cases of colorectal adenocarcinoma. However, we know
from epidemiologic studies that although most colorectal can-
cers (CRCs) originate from adenomas, only a small fraction of
adenomas (3%–5%) ever progress to cancer. At present, there
are no molecular markers to guide follow-up surveillance
programs. METHODS: We profiled, by mass spectrometry–
based proteomics combined with machine learning analysis, a
selected cohort of formalin-fixed, paraffin-embedded high-
grade (HG) adenomas with long clinical follow-up, collected
as part of the Danish national screening program. We grouped
subjects in the cohort according to their subsequent history of
findings: a nonmetachronous advanced neoplasia group (G0),
with no new HG adenomas or CRCs up to 10 years after poly-
pectomy, and a metachronous advanced neoplasia group (G1)
where individuals developed a new HG adenoma or CRC within
5 years of diagnosis. RESULTS: We generated a proteome
dataset from 98 selected HG adenoma samples, including 20
technical replicates, of which 45 samples belonged to the non-
metachronous advanced neoplasia group and 53 to the meta-
chronous advanced neoplasia group. The clear distinction of
these 2 groups seen in a uniform manifold approximation and
projection plot indicated that the information contained within
the abundance of the w5000 proteins was sufficient to predict
the future occurrence of HG adenomas or development of CRC.
CONCLUSIONS: We performed an in-depth analysis of quanti-
tative proteomic data from 98 resected adenoma samples using
various novel algorithms and statistical packages and found that
their proteome can predict development of metachronous
advanced lesions and progression several years in advance.

Keywords: Colorectal Cancer; Colonic Adenomatous Polyps;
Biomarkers; Progression.

olorectal cancer (CRC) is the third most prevalent
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Ctype of cancer worldwide and the second most
common cause of cancer death.1 Most CRCs evolve from
precursor lesions called colonic adenomatous polyps or
adenomas, through accumulation of genetic alterations, in a
gradual process termed the adenoma-to-carcinoma
sequence (ACS) that typically spans over several years.2

Adenomas are frequent in the adult population, occurring
in about 20%–40% of individuals older than 50 years of
age.3 However, only a few of these lesions (3%–5%) ever
eventually become a cancer.4–6 Progression from adenomas
to colon cancer is a protracted, multistep process, involving
the accumulation of driver mutations. This gradual process
provides an opportunity for intervention through the early
detection of lesions; the 3 most accepted tests are the fecal
occult blood test and endoscopic examination of the bowel
by sigmoidoscopy or colonoscopy. National screening pro-
grams are well established in many countries in the Western
world.7 Early lesions identified during endoscopic exami-
nation are resected, and patients are placed on long-term
repeated surveillance programs. The frequency and type
of clinical follow-up depends on different parameters,
including the number of adenomas removed as well as their
size and histopathologic presentation.8 Irrespective of the
number and size of the adenomas, high-grade (HG)
dysplasia qualifies for the earliest possible surveillance co-
lonoscopy. Highly dysplastic adenomas are acknowledged as
the last benign stage of CRC precursors in the ACS. This
classification is important because health care providers use
it to risk-stratify individuals and adjust surveillance plans
accordingly. Although evidence based, this very crude
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Although most colorectal cancers originate from
adenomas, only about 3%–5% of adenomas will ever
progress to cancer. Unfortunately, reliable biomarkers
that can predict adenoma progression are still lacking,
and as a result, surveillance colonoscopy at yearly
intervals is the current practice.

NEW FINDINGS

We developed a proteomics signature that could predict
the development of metachronous advanced colorectal
neoplasia based on mass spectrometry data from the
analysis of formalin-fixed, paraffin-embedded tissue
samples directly from histopathology glass slides. The
predictive ability of this signature was dependent on
multiple proteins.

LIMITATIONS

Further studies with larger cohorts are required to validate
our predictive proteomic classification.

CLINICAL RESEARCH RELEVANCE

Development of new therapies that target the subset of
proteins identified in the progression classifier may
provide an effective preventative strategy for colorectal
cancer.

BASIC RESEARCH RELEVANCE

Characterization of proteins identified in the progression
classifier may further our molecular understanding of
colorectal carcinogenesis.
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stratification also represents a gap in our understanding of
adenomas on a molecular level. At present, there are no
clinically useful molecular markers to guide follow-up sur-
veillance programs. The result is a substantial degree of
overtreatment and, with the implementation of national
screening programs, a significant burden on health care
systems.

Accumulated data from screening and surveillance pro-
grams has shown that detection and removal of colonic
polyps is effective in overall risk reduction for colon can-
cer.9,10 However, this reduction in cancer-specific incidence
and mortality comes with a significant risk cost of redun-
dant diagnosis. Although the benefits of screening outweigh
the potential harms, screening leads to the detection of
many lesions with little or no risk of progression to invasive
cancers. An increased understanding of these common
precursor lesions would enable health systems to move
resources from individuals at low risk to those at high risk,
ultimately ameliorating the problem of redundant diagnosis
associated with screening while reducing the incidence and
mortality of the disease. We sought to develop a molecular
risk classification system based on quantitative proteomics
data obtained from HG lesions. We recently reported a
streamlined and reproducible workflow for deep prote-
omics profiling of larger tissue cohorts.11 This workflow
addressed multiple common issues associated with
quantitative proteomic profiling of patient-derived formalin-
fixed, paraffin-embedded (FFPE) tissue samples, and we
showed it to be applicable to the study of adenoma tissues.

We report here the in-depth analysis of quantitative data
from 98 resected adenoma samples to identify risk markers
for disease progression. Samples were from a non-
metachronous advanced neoplasia group (G0), with no new
HG adenomas or CRC at least up to 10 years later, and a
metachronous advanced neoplasia group (G1) where in-
dividuals developed a new HG adenoma or CRC within 5
years. We found a proteomic signature that classified risk of
metachronous disease. Implementation of such a classifica-
tion could result in a reduction of the surveillance burden
on those patients with adenomas with low risk of progres-
sion while enabling targeted surveillance programs and
preventive interventions for those patients at high risk of
metachronous advanced neoplasia.
Methods
Experimental Design

The study had a retrospective design and included unlinked
anonymized samples retrieved from Patobank, the Danish pa-
thology data bank. We carried out a search for patients who had
had endoscopic removal of an HG adenoma and either had a
diagnosis within 5 years after the initial diagnosis or no find-
ings for at least 10 years. Patients were grouped into 2 groups:
a nonmetachronous advanced neoplasia group (group 0, n ¼
45) and a metachronous advanced neoplasia group (group 1,
n ¼ 53). Patients were excluded if they had intestinal polyposis
syndromes or a prior history of colon cancer. Individuals from
the nonmetachronous advanced neoplasia group presented
with neither CRC nor new HG adenomas for �10 years from the
time of adenoma resection. Adenomas characterized in this
study were primarily examined at the pathology departments
in the period 2002–2012 at 2 Danish hospitals (Vejle Hospital
and Odense University Hospital). All adenomas included in this
study were reevaluated by a trained pathologist, and the clas-
sification as HG dysplasia was confirmed.

To rule out the possibility that samples in G1 had acquired
molecular alterations associated with early carcinogenesis in the
colon, whereas G0 had not, we sequenced a subset of adenoma
samples at a depth of 15–30�. This subset included 7 samples
from the G0 group and 25 samples from the G1 group. Because
the aim of this analysis was to gauge the genetic makeup of ad-
enomas across the 2 groups at the chromosomal level rather than
to characterize the somatic mutation landscape of premalignant
lesions, we did not sequence matching normal tissue or blood
samples. A detailed sample collection and preparation protocol
for FFPE tissues, as well as data analysis, is provided in
Supplementary Methods. The study protocol was approved by
the National Committee on Health Research Ethics (j.nr.
2112779) and granted exemption from obtaining informed
consent (as per section 10, subsection 1, of the Committee Act).

Sample preparation and liquid chromatography–
mass spectrometry analysis. A detailed sample collec-
tion and preparation protocol for FFPE tissues is provided in
the Supplementary Methods. The mass spectrometry (MS)
proteomics data were deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org/

http://proteomecentral.proteomexchange.org/cgi/GetDataset
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cgi/GetDataset) via the PRIDE (PRoteomics IDEntifications
database) partner repository with the dataset identifier
PXD017269 without restriction.

Bioinformatic analysis of proteomics data from
colon adenomas. A detailed description of bioinformatics
tools and settings used in the analytical pipeline applied to the
analysis of our proteomics data from colon adenomas can be
found in Supplementary Methods. Briefly, the proteomics set
encompassed 6256 protein groups. We employed the R pack-
age DEP12 to explore the nature of missing values in the
dataset. Because of the type of missing values in our dataset, we
used the sample minimum method (sampMin) of substitution
shown to perform better than other, more complex, methods of
imputation and to work well for datasets where values are
missing not at random.13 We performed dimensionality
reduction and plotting with uniform manifold approximation
and projection (UMAP)14 to visualize clustering of adenoma
samples based on protein abundance patterns. Differential
abundance analysis was performed using the limma package.15

Elastic-net regression (ENR) was performed with the R pack-
ages glmnet16 and caret.17 To evaluate the co-abundance of
proteins from adenomas, we used the R package WGCNA.18 The
input for analysis was the set of w5000 proteins remaining
after filtering, normalization, and missing value imputation. The
pipeline of analysis followed the example provided by package
developers Langfelder and Horvath at https://horvath.genetics.
ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tut
orials/. Protein-protein interaction networks were done using
the STRING database19 of protein-protein interactions. Gene
Ontology (GO) term and pathway enrichment analysis were
performed using the R package clusterProfiler.20

Sensitivity and specificity of the top protein candidates was
evaluated using the receiver operating characteristic (ROC).21

The external data used for the analysis was a set of tandem
mass tag (TMT)-labeled nanoscale liquid chromatography–MS/
MS proteomics from 18 normal mucosa biopsies, 30 adenomas,
and 30 cancers of the colon.22 Out of the 28 top protein can-
didates, 23 were contained within the validation dataset, and as
such, 5 candidates could not be evaluated using ROC (RAB33B,
C1orf226, TTC39A, TSPAN6, GLS2). Pairwise and multiclass
ROC analyses were performed with packages nnet and pROC,23

dividing the dataset into a training set and a test set: two thirds
of samples and one third of samples, respectively.
Results
Structural Variations and Copy Number
Variations Do Not Distinguish Samples in the
Metachronous Advanced Neoplasia Group From
Those Without Metachronous Disease

Progression to CRC from adenomatous precursors is
generally accepted as a sequential process, with driver
mutations underlying tumor progression. Although all
samples included in this study had HG dysplasia and,
therefore, were histologically at the same stage of pro-
gression, it was possible that the adenomatous precursors
included in the 2 respective groups, a nonmetachronous
advanced neoplasia group (G0) and a metachronous
advanced neoplasia group (G1), possessed a different
mutation profile and complement of the driver alterations
that accompany the switch from benign adenoma to ma-
lignant carcinoma. We sequenced a subset of adenoma
samples, comprising 7 samples from the G0 group and 25
samples from the G1 group. Overall, we found no signifi-
cant differences between the 2 groups with respect to
structural variations or copy number variations (Figure 1).
The mutational burden of samples was not significantly
different between the 2 groups (Figure 1A), with G0
showing a slightly higher median mutational burden than
G1 (Figure 1A). The 10 most frequently mutated genes in
each group were identical (ZNF717, MUC3A, MUC6, MUC16,
MUC4, ANKRD36C, CDC27, CTBP2, OR4C5, and HLA-DRB1)
(Figure 1B), and although there were genes with signifi-
cantly different mutational status between the 2 groups
(Figure 1C), these were unlikely to reflect a general dif-
ference in malignant potential between the 2 sample
groups.

Mass Spectrometry–Based Proteomics
We sought to identify a molecular risk classification sys-

tem for CRC based on quantitative proteomics data obtained
from adenomatous precursors. To be clinically useful,
analytical workflows should be based on archival FFPE tis-
sues and be robust and reproducible. We recently developed
and reported a proteomics workflow suited for large-cohort
proteomic analysis with small sample inputs from multiple
tissues.11 This workflow enabled us to isolate specific small
(w30 mm2) areas of adenomatous tissue from our samples
from a single H&E-stained 5-mm section. Additionally, this
protocol enabled sample preparation of our entire cohort of
adenomas in 1 day, potentially reducing sample handling
variability. We generated a proteome dataset from 98
selected HG adenoma samples (with 20 added technical
replicates), of which 45 samples belonged to the non-
metachronous advanced neoplasia (G0) and 53 to the meta-
chronous advanced neoplasia group (G1). We showed that
this workflow was highly reproducible, with extraordinary
proteome consistencywithin and across tissue sections of the
same adenomas.11 Furthermore, we demonstrated that the
archival time of samples did not perturb global protein
quantification because we observed high global proteome
correlations between storage groups. We used a data-
independent acquisition MS workflow to consistently quan-
tify a large part of the proteome of the 98 HG adenoma
samples included in the present study in 100-min single-run
analyses. The MS proteomics data for our cohort were
deposited to the PRIDE repository with the dataset identifier
PXD017269. Technical sample replicates were filtered out
along with 3 samples (identifiers: 132, 201, 202), which
appeared to be outliers based on an initial hierarchical clus-
tering (not shown), leaving 95 samples (44 in G0, 51 in G1)
available for subsequent bioinformatics analyses.

Dimensionality Reduction Leads to Clear
Clustering of the 2 Sample Groups

The following covariates were evaluated using a
dimensionality reduction plot: sample group (G0 vs G1),
patient age (30–89 years) binned, sex (male, female), year of

http://proteomecentral.proteomexchange.org/cgi/GetDataset
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Figure 1.Mutational profiling of adenomas in the G0 and G1 groups by whole-genome sequencing analysis. (A) G0 and G1
mutational burden statistical scatter plots for mutational burden of each sample, defined as the number of somatic mutations
per megabase of interrogated genomic sequence. (B) The top 10 mutated genes. (Left) G0 top 10 mutated genes in each
sample. (Right) G1 top 10 mutated genes in each sample. (C) Waterfall map of mutated genes showing significant differences
between G0 and G1 samples.
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sample collection (2002–2012), localization of adenoma
(colon, rectum, distal, proximal), and metachronous
advanced neoplasia type (adenocarcinoma, HG adenoma)
(Supplementary Table 1). Only sample group (G0, G1) dis-
played a clear pattern of clustering with UMAP (Figure 2A).

Identification of Differentially Abundant Proteins
In total, 460 proteins were identified as differentially

abundant between the 2 groups in the limma analysis. Of
these, 210 were significant only on the unadjusted P value,
not after correcting for multiple testing (false discovery
rate). This is most likely related to the unbalanced batch
design which, when modeled in the design matrix, results in
a significant loss of power. All 460 proteins were kept for
further analysis. Accuracy of the elastic-net model was 0.9,
with a confidence interval of 0.69–0.97, and it encompassed
101 proteins. Overlap of the 460 differentially abundant
(DA) proteins with the 101 proteins from ENR resulted in
53 shared proteins. Hierarchical clustering of adenoma
samples showed that the small set of 53 consensus proteins
was sufficient to partition samples from the non-
metachronous neoplasia vs metachronous neoplasia group
(Figure 2B).
Modules From Weighted Coexpression Network
Analysis Correlate With Patient Group

Adenoma sample group (metachronous neoplasia, non-
metachronous neoplasia) was significantly correlated with
multiple co-abundance modules (9 out of 17 modules). In
contrast, none of the other patient covariates displayed
noteworthy correlation with protein modules, supporting
the initial observations from dimensionality reduction
visualization with UMAP (Figure 2C). The 9 modules that
correlate significantly with the adenoma sample group are
the largest modules, and combined they encompass 60% of
all proteins identified in our set (w3000 proteins). We
visualized the fraction of proteins that were either differ-
entially abundant, retained in the elastic-net model, or
returned by both analyses in a stacked bar plot (Figure 2D).
This figure highlights that the forestGreen module, which
has the most significant inverse correlation with sample
group, also had the largest fraction of proteins with known
cancer relevance. However, and importantly, this module
was also one of the smallest modules out of the 9. Taking
module size into consideration, as well as consensus be-
tween DA and EN proteins, the most interesting modules
appears to be the dustyRed, lavenderPurple, and oliveGreen



Figure 2. Dimensionality reduction and clustering. (A) Dimensionality reduction by UMAP. UMAP of batch-corrected samples,
colored for the G0 and G1 groups, respectively. The dimensionality reduction plot shows the segregation of samples from the
2 groups, based on adenoma proteomes. (B) Heatmap of 53 differentially abundant proteins. Hierarchical clustering was
performed using the Ward algorithm with the set of 53 consensus proteins, present in both the limma and ENR sets. (C, D)
Correlation of clinical variables with eigen proteins from weighted gene coexpression network analysis (WCGNA) coexpression
modules. (C) The 17 co-abundance modules (left-most multicolored column) and their correlations with 7 different clinical
variables. Absolute correlation scores of �0.4 and an adjusted P value of <.05 (not shown) were considered to be significant
correlations. Nine modules correlate (stars) with the metachronous advanced neoplasia group, whereas none of the other
investigated variables correlated significantly with any of the modules. (D) Fraction of proteins identified in the different types of
analysis for each significant module from C. Each bar encompasses all proteins identified in that module, with modules listed
below each bar. Module: proteins only present in the co-abundance module but none of the other types of analysis. DA:
proteins in the module that are also identified by limma. EN: proteins in the module that are also identified by elastic net
regression. DA and EN: proteins in the module identified by both types of analysis.
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modules (all positively correlated with metachronous
neoplasia group).
Network Analysis of Coexpressed Modules
Shows Complex Multinodal Systems That Are
Not Defined by Any Single Protein

Each module displayed an intricate network reflected by
the protein-protein interactions extracted from the STRING
database (Figure 3). A protein-protein interaction was only
included in a module network if the interaction met the
minimum cutoff criteria (defined in the Methods section).
The 4 largest modules are the dustyRed, oliveGreen, lav-
enderPurple, and goldenBrown. Three of these are also the
only ones to contain proteins that are present in all 3 types
of analyses (consensus proteins): 5 in oliveGreen and 8 in
each of both lavenderPurple and dustyRed. The dustyRed
module (Figure 3A, enlarged left panel) consists of 2 sub-
clusters. The lower left cluster contains 2 consensus pro-
teins, SEC16A and COPZ1; the latter is central to this cluster,



Figure 3. Network representation of coexpressed modules and differentially abundant proteins with Cytoscape. (A) Protein-
protein interactions of the 9 coexpressed modules identified by weighted gene coexpression network analysis (WGCNA).
Only interactions validated in human cells or tissue are shown, displayed by the edges. The smallest nodes represent proteins
that are coexpressed, medium-sized nodes represent proteins that are also identified in either DA or ENR, and the large nodes
are proteins that are present in all 3. (B) GO analysis and pathway enrichment using the Kyoto Encyclopedia of Genes and
Genomes. Networks of different GO terms that are significantly enriched in either one of the DA, ENR, or coexpression sets.
Titles of the different networks are based on the most common and significant terms. Each node represents a GO term, and
edges display overlap of proteins for different GO terms.
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as highlighted by the density of interactions, for example, a
hub protein. The upper cluster contains the consensus
proteins catenin-delta (CTNND1) and casein kinase 1 alpha
1 (CSNK1A1), as well as cell division control protein 42
(CDC42, medium-sized node). In the center of 4 consensus
proteins and CDC42 is b-catenin (CTNNB1; small node, not
highlighted). The lavenderPurple module displays a similar
pattern of 2 large subclusters, with another consensus
protein integrin-alpha 1 (ITGA1) as the most central protein
in the module. Conversely, the oliveGreen module is more
homogenous, with no subclusters. Common for all modules
is that many of the consensus proteins are at the edges of
their respective networks. Here, it is worth noting the
inherent (and unavoidable) biases in databases such as
STRING—that is, highly studied proteins, such as tran-
scription factors or oncogenes, will have significantly more
annotated interactions and stronger experimental support,
often placing them at the center of a network.
G

Enrichment Analyses Show an
Overrepresentation of Proteins Related to Vesicle
Transport of the Golgi and Endoplasmic
Reticulum as Well as to the Immune System and
Inflammation

The 2 most significant GO terms (P-adjust ¼ 10–19 and
10–17) in the module dustyRed are related to vesicle
transport of the Golgi or between the endoplasmic reticulum
and Golgi (Figure 3C; red module). In the skyBlue module,
we observed enrichment for proteins involved in humoral
immune response, acute inflammatory response, comple-
ment activation, and regulation of blood coagulation
(Figure 3C; blue module).
Candidate Proteins and Their Receiver Operating
Characteristic Curves

We intersected our list of candidates with other prote-
omics sets on adenomas and excluded potentially con-
founding samples such as those where an adenoma was
adjacent to cancer or where the adenoma had genetic
characteristics assumed to influence the proteome (ie, ad-
enomas from familial adenomatous polyposis patients with
constitutional variants in APC).24–27 Out of the 54 proteins
tested, 28 were supported by at least 1 external study
(Table 1). We continued with proteins that we also identi-
fied in at least 1 of the other proteomics sets and performed
ROC analysis on the list that remained in an external data-
set22 (Figure 4). Twelve proteins fulfilled the cutoff criteria
(�0.75) set for the area under the curve (AUC) analysis
(Table 1). One of these, ITGA1, displays a difference in
abundance between the 2 groups in our study. Furthermore,
its abundance in the nonmetachronous neoplasia group
samples appears to be subdivided in 2. In the validation set,
3 proteins display an adenoma-specific abundance that is
different from the abundance in both normal and cancer
samples (Figure 4B). Two of these (C1QBP and POF1B) are
more abundant in adenomas than in normal and cancer
samples, whereas the last one (ITGA1) is less abundant in
adenomas than in normal and cancer samples. We filtered
for an AUC of �0.8 in the single-protein candidates, which
left us with 8 proteins for multiclass ROC. We set the con-
fidence interval for a good model to 0.7–0.95, resulting in 37
models (Supplementary Table 2). The highest-scoring model
consisted of the proteins C1QBP, ERGIC1, and ORMDL1.
Discussion
The ACS is a recognized and well-studied phenomenon

that gives rise to the vast majority of CRC cases. In the
present study, we characterized a cohort of colorectal ade-
nomas with HG dysplasia. Based on long clinical follow-up of
6–16 years, we divided the cohort into a metachronous
neoplasia group (new HG dysplasia adenoma or CRC within
5 years) and a nonmetachronous neoplasia group (no HG
dysplasia adenoma or CRC for at least 10 years). We
sequenced a subset of samples (7 from the G0 group and 25
from the G1 group) and found no structural variations or
copy number variations associated with metachronous le-
sions. It should be noted that this analysis was designed to
assess imbalance in the genetic makeup of the adenomas
across the 2 groups at the chromosomal level. Given the
limited number of samples included and the impossibility of
comparing the mutational profile of initial lesions and
following lesions, as well as adjacent unaffected tissue, we
cannot support or rule out the possibility of an association
between a specific mutational spectrum and the occurrence
of subsequent adenoma or CRC. We analyzed the proteome
of these adenomas with a focus on differences between the
2 groups. Finally, we aimed to characterize these high-
dysplasia adenomas in general terms because they are the
last benign stage of the ACS. The clear distinction of our 2
groups seen in the UMAP plot indicated that the information
contained within the abundance of the w5000 proteins was
sufficient to predict the future development of HG adenomas
or CRC. One inference from our findings is that because the
proteome of initial lesions could accurately predict the
likelihood of developing metachronous advanced lesions,
there may be a context dependence to the proteomes of
polyps, which reflect the integrative outcome of multiple
factors that affect polyp formation and progression. We
leveraged our proteome-level analysis to predict outcome
because no singular protein could predict the occurrence of
subsequent adenoma or CRC. This ability may also be
attributed to the newly developed type of dimensionality
reduction in the form of UMAP, which appears superior to
previous dimensionality reduction methods.14

We observed that only the group variable correlated
with coexpression modules, which is in line with findings in
related studies that showed little or no correlation of the
same covariates. Furthermore, we speculated whether our
highly specific experimental design, with one of the inclu-
sion criteria for our samples being HG dysplasia, plays a part
in this observation. In addition to this, guidelines for logging
sample information were not yet fully implemented at the
time of sample acquisition, resulting in a discrepancy of
level of detail for each sample. An example of this is that for
one part of our cohort we have detailed anatomic location of



Table 1.Candidate Proteins

Genes Log FC
Adjusted
P value Weight Support Available for AUC

AUC

Adenoma vs
normal

Cancer vs
adenoma

Cancer vs
normal

ITGA1 1.88 .77 0.07 3 Yes 0.99 0.83

STAT2 1.65 .02 0.03 3 Yes 0.78

POF1B 0.84 .2 0.09 3 Yes 0.88 0.81

DHX16 0.58 .02 0.26 3 Yes 0.76

CSNK1A1 0.55 .6 0.55 3 Yes 0.76

C1QBP 0.55 .01 0.25 3 Yes 0.88 0.82

COA4 2.07 .83 0.01 2 Yes

MTM1 1.53 .01 0.04 2 Yes

ABAT 1.25 .05 0.01 2 Yes

TSPAN6 1.25 .03 0.01 2 No

CAPN5 1.2 .14 0.11 2 Yes 0.83 0.84

TINAGL1 0.82 .04 0.02 2 Yes 0.97 0.97

ERGIC1 0.72 0 0.36 2 Yes 0.79 0.78

COPZ1 0.68 .29 0.23 2 Yes

RSRC2 0.65 .02 0.1 2 Yes

SEC16A 0.65 .36 0.04 2 Yes

SEC16A 0.65 .36 0.04 2 Yes

FUS 0.58 .01 0.3 2 Yes 0.91 0.94

SUMF2 0.57 .01 0.69 2 Yes

VASP 0.57 .32 0.11 2 Yes

GNAI3 0.53 .3 0.44 2 Yes 0.76 0.82

MCTP2 2.98 .53 0.05 1 Yes 0.78

RAB33B 2.48 .83 0 1 No

C1orf226 2.32 .77 0.06 1 No

TTC39A 2.27 .61 0.05 1 No

ORMDL2 1.51 .03 0.04 1 No

GLS2 0.95 .02 0.16 0 No

CD46 0.65 0 0.03 0 Yes

NOTE. From external sets that support the listed candidates. Log FC and adjusted P value refer to results of the DA analysis,
while weight pertains to the ENR model.
FC, fold change.
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the adenoma, whereas for another part, the information is
cruder and divided into colon or rectum. Interestingly, by
generalizing the more detailed anatomic location to align
with the less detailed one, we saw a marked increase in
correlation level across several modules (Localization vs
Localization 2, Figure 2C). This emphasizes one of the ca-
veats of working with old FFPE samples where available
clinical information is inadequate and highlights the
importance of acquiring precise, aligned clinical information
if anything is to be inferred based on this.
The observation that the type of metachronous neoplasia
(AC orHG) did not display subclusteringwithin the G1 cluster
(not shown)with UMAPwas intriguing. This suggests that the
protein abundance differences in the metachronous
neoplasia samples were similar irrespective of whether an
individual later developed CRC or a new HG adenoma. At the
same time, it could also mean that the HG adenoma in-
dividuals would eventually develop CRC but that the time to
develop cancer is different for these individuals. Another
plausible explanation is that these individuals adhered to



Figure 4. Boxplots of candidate proteins and their ROCs. Boxplots of 10 proteins and their abundance across metachronous
advanced neoplasia and nonmetachronous advanced neoplasia groups in (A) our proteomics set and across (B) normal,
adenoma, and cancer samples in a validation set. Adenomas in the validation set are divided into high risk (red dots), with
presence of at least 2 CRC-linked chromosomal abnormalities, and low risk, with fewer than 2 of these as defined in Komor
et al.22 (C) Receiver operating characteristic curves for 10 proteins with their AUCs displayed in the bottom right corner.

July 2023 Adenoma Proteomics Predicts Metachronous Neoplasia 129

GI
CA

NC
ER
checkups that would discover adenomas before turning ma-
lignant or that symptoms earlier in the ACS led to discovery of
the adenomas before they could progress to CRC.

Cancer studies are abundant, and network-based anal-
ysis favors well-characterized interactions. In our case, we
expected that some proteins would be linked to cancer
development, representing the transitional stage of ade-
nomas to CRC and those individuals who developed an
adenocarcinoma within 5 years. Our samples are, however,
not cancers, and we were just as interested in the in-
dividuals who developed a new HG adenoma. This issue
might have affected our interpretation of the network
analysis. Overlaying information of the consensus proteins
enabled us to identify candidates who were likely important
for the different modules. We observed that the consensus
protein CSNK1A1 (a casein kinase) was coexpressed with,
and linked to, b-catenin in the dustyRed module. The Wnt/
b-catenin pathway is central in CRC development,28 and
CSNK1A1 functions as a negative regulator of Wnt
signaling.29 We wondered whether this kinase and its
deregulation in our samples was another potential path to
destabilizing b-catenin homeostasis already at early stages
of the ACS, leading to adenoma formation and CRC. Its role
at the cancer stage has been described, where it seems to
correlate with poor survival and affect p53-associated
prognosis.30,31 At the outskirts of this module, we saw
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mucin proteins as coexpressed, albeit with very few in-
teractions. This highlights the aforementioned potential
challenge of this type of analysis, where the uniqueness of
these proteins to mucin-producing organs such as the large
intestine might affect their level of annotation.

We were not able to identify studies on colorectal ade-
nomas that were directly comparable to ours. Existing
studies on colorectal adenomas where proteomics data are
available compared either to cancer, to normal tissue, or
between adenoma subtypes. Furthermore, none of the study
designs included samples with long follow-up or looked at
metachronous advanced neoplasia, which was the basis of
the present study. We observed significant discordance of
abundance directionality for proteins identified in our
analysis compared to external sets, as well as between these
sets, emphasizing the issue of comparing studies with
different subsets/subtypes of adenomas. A study on single-
cell genetic analysis of adenomas based on recurrence could
be a reason for optimism.32 That study also analyzed the
recurrence samples, highlighting one of the shortcomings in
the present study, because we did not have access to the
recurring adenomas or cancers. With these limitations in
mind, we analyzed the most interesting candidates by ROC
analysis. In the validation set that compares normal, ade-
noma, and cancer, we saw an abundance of some proteins
defy the expected linear progression of the ACS: 2 proteins
were more abundant in adenoma than normal, but their
abundance in cancer was similar to that in normal. A third
protein, ITGA1, displayed the inverse relationship (down-
regulation in adenoma compared to normal but abundance
back to normal levels in cancer). It is plausible that some
events, such as changes in protein abundance, play a role in
the transitional stages of the ACS but are later lost.

The protein integrin alpha 1 (ITGA1/CD49a) also
appeared differentially abundant between the 2 groups in our
cohort, although not clearly. Furthermore, ITGA1 seemed
down-regulated in a subgroup of our nonmetachronous
advanced neoplasia group, and it would be interesting to
follow up on this finding. Its possible involvement in colo-
rectal carcinogenesis has been linked to the Ras/extracellular
signal–regulated kinase pathway in CRC, and it is controlled
by Myc.33–35 Again, however, there was an issue of discor-
dance in directionality between available studies. The
referred studies found that it was increased in cancer,
whereas in the validation set we investigated, we observed
that the abundance is lower in cancer than in normal, or
similar at best (Figure 4B). Finally, ITGA1has also been linked
to progression of pancreatic adenocarcinomas and their
premalignant lesions, where it was even suggested as a pre-
malignant biomarker.36 The lack of similarity between
studieswas problematic, highlighted by the large discordance
in protein abundance of the different studies we compared
with. This made it hard to do meaningful comparisons and
validate findings. We encourage continued sharing of data
and code as a means to combat this issue.

In conclusion, we characterized the proteome of HG
dysplasia adenomas divided into 2 groups based on history
of metachronous lesions to new HG adenomas or CRC.
Dimensionality reduction led to a clear separation of the 2
groups, showing that proteomics was a powerful approach
to distinguish samples that were otherwise identical by
pathology evaluation. We showed that the proteome of HG
adenomas could potentially contain the information needed
to predict development of HG adenomas or development of
CRC in individuals several years in advance. It was also
apparent that no single protein clearly defined metachro-
nous advanced neoplasia from no metachronous advanced
neoplasia, supporting the notion that multiple proteins,
types of analysis, or even entire proteomes might be needed
to predict the behavior of this complex disease. Our results
raise the possibility that proteomic profiling of polyps could
be used to refine our current population screening strate-
gies for CRC. Proteome-guided risk allocation would enable
better deployment of colonoscopic resources and the
development of personalized screening programs, a major
change from current workflows. Further studies in larger
prospective cohorts will be required to validate our findings.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2023.03.208.
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Supplementary Methods

Sample Preparation and Liquid
Chromatography–Mass Spectrometry Analysis

A detailed sample collection and preparation protocol for
FFPE tissues is provided inCoscia et al.1 Briefly, nanoflow liquid
chromatography–MS/MS analysis of tryptic peptides was con-
ducted on a quadrupole Orbitrap mass spectrometer (Q Exac-
tive HF-X, Thermo Fisher Scientific) as described.1 The mass
spectrometer was operated in data-independent mode (DIA).
The DIA method consisted of 1 MS1 scan (350 or 300 to 1650
m/z; resolution, 60,000 or 120,000; maximum injection time,
60 ms; automatic gain control target, 3E6) and 32 segments at
varying isolation windows from 14.4 m/z to 562.8 m/z (reso-
lution, 30,000; maximum injection time, 54 ms; automatic gain
control target, 3E6). Stepped normalized collision energy was
25, 27.5, and 30. The default charge state for MS2 was set to 2.

Mass Spectrometry Data Analysis
DIA raw files were analyzed with Spectronaut Pulsar X

software (Biognosys, version 12.0.20491.17) under default
settings for targeted DIA analysis with “mutated” as the
decoy method. We used an adenoma tissue–specific data
dependent acquisition spectral library, encompassing 7725
protein groups (77,275 precursors). Data export was
filtered by “No Decoy” and “Quantification Data Filtering”
for peptide and protein quantifications. The human Uni-
ProtKB database (October 2017, UP000005640_9606) was
used as the forward database and the automatically gener-
ated reverse database was used for the decoy search.

Isolation of Genomic DNA From Formalin-Fixed,
Paraffin-Embedded Adenomas

We cut 5-mm-thick sections from FFPE samples and
mounted them on SuperFrost Ultra Plus glass slides (catalog
no 15.101.280, Hounisen). Before cutting the samples used
for nucleic acid purification, the 3 initial sections of 3 mm
each were cut, mounted on SuperFrost Ultra Plus slides, and
then stored long term at 4�C for additional analyses. This
removed the outermost part of the tissue block, which was
the most affected by oxidation because of direct exposure.
Slides were deparaffinized according to a standard protocol
(twice in xylene for a total 15 minutes and then 2 � 99%
ethanol, 2 � 96% ethanol, and 1 � 70% ethanol for 2 mi-
nutes in each) followed by air drying (minimum of 30 mi-
nutes). The protocol for determining and isolating tissue of
interest is described in detail in Coscia et al.1 Areas isolated
for DNA analysis were at the same location as those used for
proteomics, differing only by 3 or 4 sections (15–20-mm
depth). Briefly, high-resolution images of H&E-stained
samples were evaluated to identify regions containing
adenomatous tissue, taking care to avoid vascular tissue or
normal stratified colon epithelium. For each sample, we
scraped 3 sections of 5 mm with a scalpel and collected in
DNA LoBind Tubes (catalog no. 0030108051, Eppendorf)
with 10–30 mL of ATL buffer (QIAamp DNA FFPE Tissue
Kit). Nucleic acids were isolated with the QIAamp DNA FFPE

Tissue Kit (catalog no. 56404, Qiagen). The integrity and
purity of isolated DNA was assessed by agarose gel elec-
trophoresis. To quantify the isolated DNA, we used a
NanoDrop spectrophotometer (Thermo Fisher Scientific).

Bioinformatic Analysis of Whole-Genome
Sequencing Data

DNA samples were sequenced at Novogene UK. A strin-
gent quality control step was used, such that only the sam-
ples with the highest-quality DNA were chosen for whole-
genome sequencing. We further divided samples into 2
groups depending on their age because initial analysis
showed that older samples (collected before 2008) were of
inferior quality, thereby affecting output. For the older sam-
ples, we sequenced up to 150 Gb of data, and for new ones,
100 Gb of data. The aim was to achieve a similar sequencing
depth across samples. We sequenced samples at a depth of
15–30� to permit evaluation of structural variations at the
chromosome level as well as any resulting copy number al-
terations. We used FastQC on the raw sequence data to
assess yield and raw base qualities. Raw reads were con-
verted to FASTQ using bwa, quality trimmed, and then
mapped to the GRCh37 (hg19). We ran Picard CollectMulti-
pleMetrics and CollectWGSMetrics on the aligned binary
alignment map to collect alignment and insert size metrics.
Picard CollectGcBiasMetrics was run to compute normalized
coverage across multiple GC bins. Reads duplication metrics
were quantified by running Picard MarkDuplicates on the
binary alignment map. Single nucleotide and insertion/dele-
tion (indel) variants were mapped using the Sentieon variant
caller using 1000 Genomes as the normal indel reference.
Copy number calls were pooled across individuals with
bedtools and overlapped with bedIntersect to identify the
regions that were recurrently gained/lost. Structural variants
were pooled using bedtools and overlapped with inter-
sectBed to identify common regions of structural variation.
We identified structural variants with the Manta Structural
variant caller2 and copy number alterations using the
CNVnator.3 Annotation of the variants was performed using
ANNOVAR.4 Results were visualized with the R/Bioconductor
package Maftools.5 All variants were stored in variant call
format files. We combined copy number calls with BEDTools6

and overlaid these with bedIntersect to identify repeatedly
lost and gained regions. BEDTools was used to pool struc-
tural variants and overlaid with intersectBed to find regions
with frequent structural variations.

Bioinformatic Analysis of Proteomics Data From
Colon Adenomas

Missing value imputation, normalization, and fil-
tering. The proteomics set was acquired as described in
Coscia et al1 and encompassed 6256 protein groups. We
used the R package DEP7 to explore the nature of missing
values in the dataset. Preliminary plots from DEP indicated
that proteins with lower average abundances had more
missing values, that is, not available values were not random
(MNAR). Before imputation, proteins with more than 50%
missing abundance counts across samples in each of the 2
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groups (G0, G1) were removed from the dataset, and protein
groups assigned to the sample gene symbol were averaged.
Filtering reduced the proteomics set to 4958 unique pro-
teins. Because of the type of missing values in our dataset,
we used the sample minimum method (sampMin) of sub-
stitution shown to perform better than other, more complex,
methods of imputation and to work well for datasets where
values are missing not at random.8

Dimensionality reduction with uniform manifold
approximation and projection. We performed dimen-
sionality reduction and plotting with UMAP9 to visualize
clustering of adenoma samples based on protein abundance
patterns. UMAP analysis was performed using the R package
umap.10 Because sample collection had been divided be-
tween 2 Danish hospitals, we checked and corrected for this
technical/batch effect before plotting. Batch correction for
plotting purposes only was performed using the R frame-
work Combat/sva.11 The following covariates were evalu-
ated using a dimensionality reduction plot: sample group
(nonrecurrence G0 vs recurrence G1), patient age (30–89
years), sex (male, female), year of sample collection (2002–
2012), localization of adenoma (colon, rectum, distal, prox-
imal), and recurrence type (adenocarcinoma, HG adenoma).

Variable Selection
Differential abundance analysis. Differential abun-

dance analysis (DAA) was performed using the limma pack-
age.12 Although this R package was originally developed for
analysis of microarray and RNA-sequencing data, the un-
derlying statistical framework of limma has proven itself
useful for the analysis of proteomics data13–16 and allows for
inclusion of covariates and technical artifacts in the statistical
design. We included hospital of origin as a batch effect.

Elastic-net regression. ENR was performed with the
R packages glmnet17 and caret,18 for example, a ¼ 0.5. The
dataset was split into a training set (two thirds of samples)
and test set (one third of samples) to evaluate the accuracy
of the model. A range of lambda values were tested using
leave-one-out cross-validation to estimate the optimal value
of this parameter (l ¼ 0.001).

Consensus set of variables. Results of DAA and ENR
were combined, and proteins were scored according to
whether both types of analyses identified them, regardless
of which batch adjustment method was used.

Weighted gene coexpression network analysis. To
evaluate the coabundance of proteins from adenomas, we
used the R package WGCNA.19 The input for analysis was
the set of w5000 proteins remaining after filtering,
normalization, and missing value imputation. The pipeline
of analysis followed the example provided by package de-
velopers Langfelder and Horvath at https://horvath.
genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/
WGCNA/Tutorials/.

In brief,we checked the data for sample outliers (3 samples
were removed: S132, S201, and S202), and a soft-thresholding
power was chosen from a range of tested values (softPower¼
12). Correlation of protein abundances were calculated using
the biweight midcorrelation (signed network), and the inter-
connectivity of proteins was estimated (topological overlap).

Next, we performed hierarchical clustering using the Ward
clustering algorithm.20 Coabundance modules were defined
based on protein dissimilarities, with a minimummodule size
of 30 proteins (default). Protein modules with high module
eigenprotein correlations (r>0.8) were merged. Finally, we
correlated clinical variables with eigenproteins (recalculated
from the merged modules) and tested for significance of cor-
relation, definedas anadjustedP value of�.01 and anabsolute
correlation score of �0.4.

Protein-protein interaction networks. The STRING
database21 of protein-protein (P-P) interactions was
downloaded (https://stringdb-static.org/download/protein.
links.full.v11.0/9606.protein.links.full.v11.0.txt.gz) on
March 30, 2022 (11,759,454 P-P pairs). For our analysis, we
extracted experimentally validated P-P pairs (minimum of 1
experiment in human or animal tissue/cells) with a STRING
score of �0.6 and removed directed edges, reducing the
number of interaction pairs to 522,722.

Next, we extracted P-P pairs from strings in which both
proteins were either DA, retained in the ENR model, or
coabundant in the 9 modules correlated with the adenoma
group variable. To get a more condensed network, we
removed proteins with �5 interactions. A final set of 1565
proteins and 4095 P-P interactions (edges) were exported
for visualization with Cytoscape version 3.9.1.22

Gene Ontology and pathway enrichment ana-
lysis. Sets of proteins from modules significantly correlated
with group variable, differentially abundant proteins, and
proteins retained in the elastic-net model were used for GO
term and pathway enrichment analysis. The full set of 4958
proteins served as the background for enrichment testing.

Enrichment analyses was performed with the R package
clusterProfiler,23 here specifically using the Kyoto Encyclo-
pedia of Genes and Genomes database for pathway enrich-
ment analysis. The cutoff for a significant pathway or GO
term was a Q value of <0.05 and a minimum group size of
�5. Out of 10 sets of proteins used for enrichment analysis,
6 sets were enriched within either GO terms and/or Kyoto
Encyclopedia of Genes and Genomes pathways (dustyRed,
greenBlue, nudePink, oliveGreen, sandYellow, skyBlue). GO
term similarity analysis was performed by comparing pro-
teins annotated in all pairwise combinations of ontology
terms across all sets of proteins. Pairs with a similarity score
greater than 0.2 were included in the GO similarity plot.

Support of protein candidates and receiver oper-
ating characteristic curves. In total, 54 proteins meet
the criteria for a well-supported candidate across analyses,
that is, the protein was DAA or selected by elastic net and
was retained in the coexpression/interaction analyses. The
protein candidates were overlapped with lists of differen-
tially abundant proteins from external studies on colorectal
adenomas/cancers.24–27 Out of these 54 proteins, 28 were
supported by at least 1 external study.

Sensitivity and specificity of the top protein candidates was
evaluated using ROC.28 The external data used for the analysis
was a set of TMT-labeled nanoscale liquid chromatography–
MS/MS proteomics from 18 normalmucosa biopsy samples, 30
adenomas, and 30 cancers of the colon.29 Before analysis, this
dataset was filtered and normalized and missing values were
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imputed with the R package DEP7 using the standard pipeline
for protein group TMT-labeled proteomics data (https://www.
bioconductor.org/packages/release/bioc/vignettes/DEP/
inst/doc/MissingValues.html). Out of the 28 top protein
candidates, 23 were contained within the validation dataset
and, as such, 5 candidates could not be evaluated using ROC
(RAB33B, C1orf226, TTC39A, TSPAN6, GLS2). Pairwise and
multiclass ROC analyses were performed with the packages
nnet and pROC,30 dividing the dataset into a training set and a
test set: two thirds of samples and one third of samples,
respectively.

Supplementary References
1. Coscia F, Doll S, Bech JM, et al. A streamlined mass

spectrometry-based proteomics workflow for large-scale
FFPE tissue analysis. J Pathol 2020;251:100–112.

2. Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid
detection of structural variants and indels for germline
and cancer sequencing applications. Bioinformatics
2016;32:1220–1222.

3. Abyzov A, Urban AE, Snyder M, et al. CNVnator: an
approach to discover, genotype, and characterize typical
and atypical CNVs from family and population genome
sequencing. Genome Res 2011;21:974–984.

4. Wang K, Li M, Hakonarson H. ANNOVAR: functional
annotation of genetic variants from high-throughput
sequencing data. Nucleic Acids Res 2010;38:e164.

5. Mayakonda A, Lin D-C, Assenov Y, et al. Maftools: effi-
cient and comprehensive analysis of somatic variants in
cancer. Genome Res 2018;28:1747–1756.

6. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 2010;
26:841–842.

7. Zhang X, Smits AH, van Tilburg GB, et al. Proteome-wide
identification of ubiquitin interactions using UbIA-MS.
Nat Protoc 2018;13:530–550.

8. Liu M, Dongre A. Proper imputation of missing values in
proteomics datasets for differential expression analysis.
Brief Bioinform 2021;22:bbaa112.

9. McInnes L, Healy J, Melville J. UMAP: uniform manifold
approximation and projection for dimension reduction.
arXiv. Preprint posted online September 18, 2020.
https://doi.org/10.48550/arXiv.1802.03426.

10. Konopka T. UMAP: uniform manifold approximation and
projection. R package v.0.2.4.1 (2020). Available at: https://
cran.r-project.org/web/packages/umap/index.html.

11. Leek JT, Johnson WE, Parker HS, et al. The sva package
for removing batch effects and other unwanted variation
in high-throughput experiments. Bioinformatics 2012;
28:882–883.

12. Ritchie ME, Phipson B, Wu D, et al. limma powers dif-
ferential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res 2015;43:e47.

13. D’Angelo G, Chaerkady R, Yu W, et al. Statistical models
for the analysis of isobaric tags multiplexed quantitative
proteomics. J Proteome Res 2017;16:3124–3136.

14. Berg P, McConnell EW, Hicks LM, et al. Evaluation of
linear models and missing value imputation for the

analysis of peptide-centric proteomics. BMC Bioinfor-
matics 2019;20(Suppl 2):102.

15. Dowell JA, Wright LJ, Armstrong EA, et al. Benchmarking
quantitative performance in label-free proteomics. ACS
Omega 2021;6:2494–2504.

16. Theodorakis E, Antonakis AN, Baltsavia I, et al. Proteo-
Sign v2: a faster and evolved user-friendly online tool for
statistical analyses of differential proteomics. Nucleic
Acids Res 2021;49:W573–W577.

17. Friedman J, Hastie T, Tibshirani R. Regularization paths
for generalized linear models via coordinate descent.
J Stat Softw 2010;33:1–22.

18. Kuhn M. Building predictive models in R using the caret
package. J Stat Softw 2008;28:1–26.

19. Langfelder P, Horvath S. WGCNA: an R package for
weighted correlation network analysis. BMC Bioinfor-
matics 2008;9:559.

20. Murtagh F, Legendre P. Ward’s hierarchical agglomera-
tive clustering method: which algorithms implement
ward’s criterion? J Classif 2014;31:274–295.

21. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING
database in 2021: customizable protein-protein net-
works, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Res 2021;
49:D605–D612.

22. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a soft-
ware environment for integrated models of biomolecular
interaction networks. Genome Res 2003;13:2498–2504.

23. Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation
(Camb.) 2021;2:100141.

24. Uzozie A, Nanni P, Staiano T, et al. Sorbitol dehydro-
genase overexpression and other aspects of dysregu-
lated protein expression in human precancerous
colorectal neoplasms: a quantitative proteomics study.
Mol Cell Proteomics 2014;13:1198–1218.

25. Wisniewski JR, Dus-Szachniewicz K, Ostasiewicz P,
et al. Absolute proteome analysis of colorectal mucosa,
adenoma, and cancer reveals drastic changes in fatty
acid metabolism and plasma membrane transporters.
J Proteome Res 2015;14:4005–4018.

26. Sohier P, Sanson R, Leduc M, et al. Proteome analysis of
formalin-fixed paraffin-embedded colorectal adenomas
reveals the heterogeneous nature of traditional serrated
adenomas compared to other colorectal adenomas.
J Pathol 2020;250:251–261.

27. Tang M, Zeng L, Zeng Z, et al. Proteomics study of
colorectal cancer and adenomatous polyps identifies
TFR1, SAHH, and HV307 as potential biomarkers for
screening. J Proteomics 2021;243:104246.

28. Pepe MS. The statistical evaluation of medical tests for
classification and prediction. New York: Oxford Univer-
sity Press, 2003.

29. Komor MA, de Wit M, van den Berg J, et al. Molecular
characterization of colorectal adenomas reveals POFUT1
as a candidate driver of tumor progression. Int J Cancer
2020;146:1979–1992.

30. Robin X, Turck N, Hainard A, et al. pROC: an open-
source package for R and Sþ to analyze and compare
ROC curves. BMC Bioinformatics 2011;12:77.

July 2023 Adenoma Proteomics Predicts Metachronous Neoplasia 132.e3

https://www.bioconductor.org/packages/release/bioc/vignettes/DEP/inst/doc/MissingValues.html
https://www.bioconductor.org/packages/release/bioc/vignettes/DEP/inst/doc/MissingValues.html
https://www.bioconductor.org/packages/release/bioc/vignettes/DEP/inst/doc/MissingValues.html
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref37
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref37
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref37
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref37
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref38
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref38
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref38
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref38
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref38
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref39
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref39
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref39
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref39
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref39
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref40
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref40
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref40
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref41
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref41
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref41
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref41
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref42
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref42
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref42
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref42
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref43
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref43
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref43
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref43
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref44
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref44
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref44
https://doi.org/10.48550/arXiv.1802.03426
https://cran.r-project.org/web/packages/umap/index.html
https://cran.r-project.org/web/packages/umap/index.html
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref47
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref47
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref47
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref47
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref47
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref48
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref48
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref48
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref49
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref49
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref49
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref49
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref50
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref50
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref50
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref50
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref51
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref51
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref51
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref51
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref52
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref52
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref52
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref52
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref52
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref53
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref53
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref53
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref53
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref54
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref54
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref54
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref55
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref55
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref55
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref56
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref56
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref56
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref56
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref57
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref57
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref57
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref57
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref57
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref57
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref58
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref58
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref58
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref58
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref58
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref59
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref59
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref59
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref60
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref60
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref60
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref60
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref60
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref60
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref61
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref61
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref61
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref61
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref61
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref61
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref62
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref62
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref62
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref62
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref62
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref62
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref63
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref63
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref63
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref63
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref64
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref64
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref64
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref65
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref65
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref65
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref65
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref65
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref66
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref66
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref66
http://refhub.elsevier.com/S0016-5085(23)00507-3/sref66


Supplementary Table 1.Sample Summary

Clinical variables n (%)

Overall 95 (100)

Group
G0 44 (46.3)
G1 51 (53.7)

Age, y
30–50 6 (6.3)
50–60 22 (23.2)
60–70 27 (28.4)
70–80 25 (26.3)
80–90 15 (15.8)

Localization 1
Colon 52 (54.7)
Rectum 43 (45.3)

Localization 2
Colon 37 (38.9)
Distal 54 (56.8)
Proximal 4 (4.2)

Ki67 percentage
High 24 (25.3)
Low 20 (21.1)
Mid 47 (49.5)

Recurrence type
Adenocarcinoma 18 (18.9)
HG 29 (30.5)
Missing 48 (50.5)

Recurrence time, y
1 15 (15.8)
2–5 24 (25.3)
6–10 8 (8.4)
Missing 48 (50.5)
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Supplementary Table 2.Receiver Operating Characteristic Models

AUC Lower CI Upper CI Model

0.97 0.92 1 C1QBP þ ERGIC1 þ ORMDL1

0.97 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ORMDL1

0.98 0.93 1 C1QBP þ ERGIC1 þ ITGA1 þ ORMDL1

0.97 0.92 1 C1QBP þ ERGIC1 þ POF1B þ ORMDL1

0.97 0.92 1 C1QBP þ ERGIC1 þ FUS þ ORMDL1

0.97 0.92 1 C1QBP þ ERGIC1 þ ORMDL1 þ TINAGL1

0.98 0.95 1 C1QBP þ CAPN5 þ ERGIC1 þ ITGA1 þ ORMDL1

0.98 0.93 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ITGA1 þ ORMDL1

0.97 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ POF1B þ ORMDL1

0.97 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ FUS þ ORMDL1

0.97 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ORMDL1 þ TINAGL1

0.98 0.93 1 C1QBP þ ERGIC1 þ ITGA1 þ POF1B þ ORMDL1

0.98 0.93 1 C1QBP þ ERGIC1 þ ITGA1 þ FUS þ ORMDL1

0.98 0.92 1 C1QBP þ ERGIC1 þ ITGA1 þ ORMDL1 þ TINAGL1

0.97 0.92 1 C1QBP þ ERGIC1 þ POF1B þ FUS þ ORMDL1

0.97 0.92 1 C1QBP þ ERGIC1 þ POF1B þ ORMDL1 þ TINAGL1

0.97 0.92 1 C1QBP þ ERGIC1 þ FUS þ ORMDL1 þ TINAGL1

0.98 0.95 1 C1QBP þ CAPN5 þ CSNK1A1 þ ERGIC1 þ ITGA1 þ ORMDL1

0.98 0.95 1 C1QBP þ CAPN5 þ ERGIC1 þ ITGA1 þ FUS þ ORMDL1

0.98 0.93 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ITGA1 þ POF1B þ ORMDL1

0.98 0.93 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ITGA1 þ FUS þ ORMDL1

0.98 0.93 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ITGA1 þ ORMDL1 þ TINAGL1

0.97 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ POF1B þ FUS þ ORMDL1

0.97 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ POF1B þ ORMDL1 þ TINAGL1

0.97 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ FUS þ ORMDL1 þ TINAGL1

0.98 0.93 1 C1QBP þ ERGIC1 þ ITGA1 þ POF1B þ FUS þ ORMDL1

0.98 0.92 1 C1QBP þ ERGIC1 þ ITGA1 þ POF1B þ ORMDL1 þ TINAGL1

0.98 0.92 1 C1QBP þ ERGIC1 þ ITGA1 þ FUS þ ORMDL1 þ TINAGL1

0.97 0.92 1 C1QBP þ ERGIC1 þ POF1B þ FUS þ ORMDL1 þ TINAGL1

0.98 0.95 1 C1QBP þ CAPN5 þ CSNK1A1 þ ERGIC1 þ ITGA1 þ FUS þ ORMDL1

0.98 0.93 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ITGA1 þ POF1B þ FUS þ ORMDL1

0.98 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ITGA1 þ POF1B þ ORMDL1 þ TINAGL1

0.98 0.93 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ITGA1 þ FUS þ ORMDL1 þ TINAGL1

0.97 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ POF1B þ FUS þ ORMDL1 þ TINAGL1

0.98 0.92 1 C1QBP þ ERGIC1 þ ITGA1 þ POF1B þ FUS þ ORMDL1 þ TINAGL1

0.97 0.92 1 CAPN5 þ CSNK1A1 þ ERGIC1 þ ITGA1 þ POF1B þ FUS þ ORMDL1

0.98 0.92 1 C1QBP þ CSNK1A1 þ ERGIC1 þ ITGA1 þ POF1B þ FUS þ ORMDL1 þ TINAGL1

0.97 0.92 1 CAPN5 þ CSNK1A1 þ ERGIC1 þ ITGA1 þ POF1B þ FUS þ ORMDL1 þ TINAGL1

CI, confidence interval.
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