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Elite athletes are regularly exposed to high and repetitive mechanical stresses and
impacts, resulting in high injury rates. The consequences of injury can range from
time lost from training and competition to chronic physical and psychological
burden, with no guarantee that the athlete will return to preinjury levels of sport
activity and performance. Prominent predictors include load management and
previous injury, highlighting the importance of the postinjury period for effective
return to sport (RTS). Currently, there is conflicting information on how to choose
and assess the best reentry strategy. Treating RTS as a continuum, with controlled
progression of training load and complexity, seems to provide benefits in this
process. Furthermore, objectivity has been identified as a critical factor in
improving the effectiveness of RTS. We propose that assessments derived from
biomechanical measurements in functional settings can provide the objectivity
needed for regular biofeedback cycles. These cycles should aim to identify
weaknesses, customize the load, and inform on the status of RTS progress.
This approach emphasizes individualization as the primary determinant of RTS
and provides a solid foundation for achieving it.
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1 Introduction

Elite athletes are exposed to repeated mechanical stress and high levels of impact on their
bodies, both during training and competition. One of the highest injury rates in professional
sport is encountered in elite athletics in particular. A recent survey of retired Olympians
ranks athletics as one of the five sports with the highest lifetime prevalence of injury (Palmer
et al., 2021). Similarly, a 1-year prospective study on an elite cohort in athletics that included
all injuries revealed a staggering annual injury incidence of 68%, half of which (51%) were
classified as severe (i.e., causing a period of absence from normal training for more than
3 weeks) (Jacobsson et al., 2013). Another study reported a similar incident rate (65%)
(Edouard et al., 2022). Injuries in athletics often occur during competition. Between
2007 and 2012, one in every twelve registered athletes suffered an injury (categorized as
resulting to time-loss) at international athletics championships (Alonso et al., 2012;
Feddermann-Demont et al., 2014). Further, these injuries take a significant amount of
time to heal, often sidelining athletes for weeks or even months and adversely affect the
careers of elite athletes (Palmer et al., 2021).

Poor load management is often cited as the culprit of high injury rates, yet previous
injury is also an important predictor (Jacobsson et al., 2013; Soligard et al., 2016). While the
first received a lot of scientific attention in recent years (Kuipers and Keizer, 1988;

OPEN ACCESS

EDITED BY

Karsten Hollander,
Medical School Hamburg, Germany

REVIEWED BY

Michael Cassel,
University of Potsdam, Germany
Ramona Ritzmann,
Clinic Rennbahn AG, Switzerland

*CORRESPONDENCE

Antonis Ekizos,
antonis.ekizos@osp-berlin.de

Alessandro Santuz,
alessandro.santuz@mdc-berlin.de

RECEIVED 13 March 2023
ACCEPTED 30 May 2023
PUBLISHED 12 June 2023

CITATION

Ekizos A and Santuz A (2023),
“Biofeedback-based return to sport”:
individualization through
objective assessments.
Front. Physiol. 14:1185556.
doi: 10.3389/fphys.2023.1185556

COPYRIGHT

© 2023 Ekizos and Santuz. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Perspective
PUBLISHED 12 June 2023
DOI 10.3389/fphys.2023.1185556

https://www.frontiersin.org/articles/10.3389/fphys.2023.1185556/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1185556/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1185556/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1185556&domain=pdf&date_stamp=2023-06-12
mailto:antonis.ekizos@osp-berlin.de
mailto:antonis.ekizos@osp-berlin.de
mailto:alessandro.santuz@mdc-berlin.de
mailto:alessandro.santuz@mdc-berlin.de
https://doi.org/10.3389/fphys.2023.1185556
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1185556


Meeuwisse, 1994; Drew and Finch, 2016; Schwellnus et al., 2016;
Soligard et al., 2016; Jones et al., 2017; Eckard et al., 2018), the latter
is inherently more complicated to objectively assess and quantify, for
instance due to different locations of injuries, variegated causality
mechanisms and rehabilitation practices, and so on. After an injury,
the athlete is eventually called to reenter the sporting activity and the
decision-making process at this stage is extremely strenuous. In fact,
in the 24 months after anterior cruciate ligament reconstruction,
athletes had a greater risk to suffer a subsequent injury compared
with young athletes without a history of anterior cruciate ligament
injuries (Paterno et al., 2014). Consensus regarding the period after
the typical medical treatment is scarce and generalized advice is
typically convoluted (Ardern et al., 2016a). To make matters more
complex, there is strong evidence for heterogeneity in the
responsiveness to physical activity (Bouchard and Rankinen,
2001), which can be attributed to innate and acquired
characteristics simultaneously (Ross et al., 2019). This
interindividual variability in response to a prescribed post-injury
training program necessitates a way to track these responses and
raises questions about existing methods.

In addition to the difficulties in choosing and assessing the best
reentry strategy, there is no guarantee that the athlete will return to
preinjury levels of sport activity and performance. For instance,
following anterior cruciate ligament reconstruction surgery, 81% of
people returned to any sport, 65% returned to their preinjury level of
sport and only 55% returned to competitive level sport after surgery
(Ardern et al., 2014). Return to the preinjury level of sport following
the same procedure is 83% among elite athletes (Lai et al., 2018). The
consequences can also be chronic and/or affect mental health. One-
third of a high sample survey on retired elite athletes reported pain
and functional limitations that were present up to the time of survey
due to those injuries, while depression was more prevalent in those
who have sustained a significant injury (Palmer et al., 2021). Thus, it
is essential that these decisions are based on the best available
evidence and are made in the athlete’s best interests. Not only do
these decisions affect an athlete’s ability to compete at the highest
levels, but they also have significant implications for an athlete’s
long-term health and wellbeing.

The purpose of this article is to 1) give an overview of the injury
landscape in elite sports, 2) present the current state of the return to
sport (RTS) complexity, 3) examine different frameworks of RTS, 4)
offer perspectives on the increasingly important role of objective
assessments in the field and v) consider future directions. The article
skews towards athletics, but the considerations presented thereafter
might be relevant to most elite sports.

2 Location and mechanisms of injury

In a survey sample of 3,357 retired Olympians of all sports,
two-thirds of them reported significant injuries in their careers,
with the knee, lumbar spine, and shoulder/clavicle being the
most commonly injured areas (Palmer et al., 2021). The
anatomical site of injury (e.g., bone stress injuries) can
influence rehabilitation timelines and the risk of
complication (Hoenig et al., 2023). A study that examined
injuries during the 2016 summer Olympics found that the
most commonly injured anatomical locations were, in order

of more to less prevalent, the knee, thigh, ankle, face and lower
leg (Soligard et al., 2017). In elite athletics, most of the time-loss
injuries in competition (2007–2012) affected the lower
extremity (87.1%), followed by the upper extremity (6.1%)
and the trunk (5.9%). The thigh was the most commonly
injured body part (34.5%), followed by the lower leg (14.6%),
foot (9.8%), and knee (9.6%) (Feddermann-Demont et al.,
2014).

In general, the causes behind injuries in elite athletes are
multifactorial and often include a combination of intrinsic (e.g.,
muscle weakness or previous injuries) and extrinsic (e.g., equipment,
field conditions, training volume, etc.) factors (Meeuwisse, 1994;
Meeuwisse et al., 2007). However, adaptations occurring within the
context of a specific sport alter the injury risk and affect the aetiology
in a dynamic, recursive fashion (Meeuwisse et al., 2007).
Overtraining and overuse have long been identified as a major
drive for injury in elite athletes (Kuipers and Keizer, 1988;
Meeuwisse, 1994; Schwellnus et al., 2016; Jones et al., 2017;
Eckard et al., 2018), especially in disciplines of the summer
Olympics (Palmer et al., 2021). In a prospective report from
British elite athletics, the proportion of overuse injuries was
approximately 70% of all injuries, while in a study of Swedish
elite athletics, the percentage was around 96% (Jacobsson et al.,
2013; Kelly et al., 2022). The discrepancy may be explained by
differences in overuse and acute injury definitions in the two studies.
Inconsistencies within the literature regarding the use of various
terminologies such as training load, fatigue, injury and illness are
limiting our ability to develop a complete model of association
(Jones et al., 2017). Here, we use the term “load” as “the sport and
non-sport burden as a stimulus that is applied to a human biological
system” (Soligard et al., 2016). There is strong evidence for a load-
injury relationship in tactical and elite athlete populations, with
higher emphasis on the overall amount of load and less on its
frequency of application (Eckard et al., 2018). Acute changes in the
training program have also been shown to be a commonmechanism
of injury (Jones et al., 2017). Predicting injury events would be of
immense value in elite sports, and several indicators have been
examined. The most prominent include the self-reported perceived
exertion questionnaire and the “acute to chronic load ratio”. With
both methods it is possible to obtain good association and, thus,
prediction of injury risk (Gabbett et al., 2016; Eckard et al., 2018).

Previous injuries are also an important predictor of follow-up
injuries, highlighting the importance of the rehabilitation and RTS
periods, since it has been shown that the variability of RTS duration
and responsiveness to therapy can affect possible reinjury risk
(Meeuwisse, 1994; Meeuwisse et al., 2007). During the first
9 months after anterior cruciate ligament reconstruction surgery,
a later RTS has shown to be associated with a lower reinjury rate
(Grindem et al., 2016). Remarkably, for every 1-month delay in
return to sport, the reinjury rate was reduced by 51% (Grindem et al.,
2016). However, after the 9-month mark, time was no longer a
predictor of injury (Grindem et al., 2016) making it unusable for
determining readiness to RTS. Further, we know that the
individual’s psychology and the sociocultural substrate affect
injury risk, response, and recovery and both should also be
accounted for (Galambos et al., 2005; Wiese-Bjornstal, 2010).
These aspects add to the overall complexity and make it difficult
to build appropriate predictive models.
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3 Return to sport: definitions and
consensus

Concepts such as return to preinjury levels in terms of training
and competition participation after injury are naturally difficult to
consistently define. The terms RTS, return to play, return to
performance and others have been often used interchangeably to
describe several stages of reconditioning following injury (Doege
et al., 2021). Most studies use the term RTS when the athlete
competes again in a game, while other variants refer to it as
returning to training and/or explicitly defined competition levels
and objectives (Doege et al., 2021). Unfortunately, this lack of
consensus can lead to inaccurate comparisons, making it difficult
to manage patient expectations and recovery (Kyritsis et al., 2016;
Wiggins et al., 2016; Doege et al., 2021).

Returning to preinjury levels of performance is the primary
measure of success from the athlete’s standpoint (Palmer et al.,
2021). Historically, RTS has often been considered a single end
point, reached when the athlete returns to competition or game.
However, it is recently recognized as a more complex and
gradual process starting when the athlete return to training
and up to the point of return to previous levels of performance
(Ardern et al., 2016a; Snyders et al., 2023). This can be seen as a
continuum that is paralleled with recovery and rehabilitation
(Ardern et al., 2016a), and in which the effects of injury and
their alleviation should be actively incorporated to the ongoing
training.

A recent consensus statement described the RTS continuum and
identified three elements or stages: 1) return to participation, such as
modified training, including ongoing rehabilitation, but not been
able to return to competitive sport; 2) RTS, characterized by
returning back to the same sport, but not returning back to
previous levels of performance; 3) return to performance,
describing the resumption of sport performing at or above his or
her preinjury level (Ardern et al., 2016a). A similar, slightly different
model suggested four distinct phases of RTS progression including:
1) on-field rehabilitation; 2) return to training; 3) return to
competitive match play; 4) return to performance (Buckthorpe
et al., 2019). Recognizing RTS as a continuum provides several
advantages, primarily by allowing the RTS stakeholders to better
understand and frame this process correctly. Identifying and
achieving the milestones described above can then be used as is
or adapted to suit individual cases and needs. Using the term RTS in
the context of a continuum, or “RTS continuum” as an umbrella
term, could provide much needed consistency in the literature. Here,
we have chosen the first option, “RTS”, in line with recent literature
(Ardern et al., 2016a; Doege et al., 2021).

4 Return to sport frameworks

RTS is influenced by a multitude of physical and non-physical
factors. Conceptualisation of the connectivity between different
factors are one important way to empower and inform the team
around the athlete of what influences RTS (Ardern et al., 2016a). The
development of such frameworks helps to understand and guide the
RTS process by promoting consistency in decision making and
minimizing risk.

The three-step decision-based model was introduced in 2010
(Creighton et al., 2010) and improved upon later, with the Strategic
Assessment of Risk and Risk Tolerance (StARRT) (Shrier, 2015). This
framework helps to estimate the risks of different short-term and
long-term outcomes associated with RTS. It introduces generic
standardizations and factors that should be considered by the
RTS decision maker for risk assessment. The biopsychosocial
model includes biological, psychological, and social factors and
has been repurposed for the context of sport injury (Wiese-
Bjornstal et al., 1998; Ardern et al., 2016b). For instance, after
sustaining an injury, 75.5% of retired elite athletes indicated that
they put pressure on themselves to return to sport as quickly as
possible, followed by pressure from coaches (33.6%), sport
governing body (15.5%) and teammates (13.6%) (Palmer et al.,
2021). This can influence treatment decisions and outcomes after
injury and therefore affect the RTS process. The Goldilocks approach
uses the “acute to chronic load ratio” to permit a quantification of an
athlete’s risk of subsequent injury (Blanch and Gabbett, 2016;
Gabbett et al., 2016). The quintessence is that gradual increases
in overall fitness (chronic load) should be sufficient to overcome
sudden fatigue demands (acute load). This ratio can be a useful tool
in planning load progressions in order to optimally prepare athletes
for competition, minimize the risk of injury, as well as, during the
RTS continuum. Another consideration is possible neuroplastic
disruptions (e.g., after anterior cruciate ligament rupture) after
injury, which might affect motor coordination and result in
altered motor strategies becoming the norm (Lepley et al., 2015;
Grooms and Myer, 2017). The “control-chaos continuum” proposes
that the recovery sessions move from high control to high chaos,
prescribing running loads under increasingly riskier conditions
(Taberner et al., 2019). This is achieved by progressively
incorporating greater perceptual and reactive neurocognitive
challenges (Grooms and Myer, 2017; Taberner et al., 2019).

Lastly, it is important to frame RTS as a risk management
endeavor with the risk being the inability to perform at equivalent or
higher preinjury levels of performance. Injury risk management
models in sports have been mostly established with a preventive
mindset towards injury (van Mechelen et al., 1992; Roe et al., 2017),
and already identified the need for an individualized approach (Roe
et al., 2017). Therefore, a risk management perspective for RTS
would allow the RTS stakeholders to reach decisions based on set
criteria and lay the foundation to develop objective models of
assessment. Such models could drive individualization on risk
assessment and management.

5 Assessment of the return to sport
progress

Evaluating the progress of RTS has proved equally challenging
and the need for development and use of validated and reliable RTS
assessment tools has been clearly stated (Ardern et al., 2016a;
Losciale et al., 2019; Taberner, 2020; Marom et al., 2022). Marom
and others demonstrated a high variability in defining, evaluating
and reporting patterns of RTS after anterior cruciate ligament
reconstruction (Marom et al., 2022). Patient reported outcomes
provide a subjective way to assess the ongoing rehabilitation process
and help understanding the level of readiness in athletes following
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injury (Ruzbarsky et al., 2018; Nelson et al., 2019; Marom et al.,
2020). In comparison to validated patient reported outcomes
(Ruzbarsky et al., 2018; Marom et al., 2020; Nelson et al., 2020;
Hoenig et al., 2021) there is a lack of standardization and validation
of proven RTS assessment tools (Marom et al., 2022). This limits the
reliability, accuracy and overall comparability of RTS outcomes.
Taken together with the high probability of reinjury in recovering
athletes, it necessitates the development or usage of objective and
reliable tools to accompany RTS stakeholders throughout the RTS
spectrum.

Quantitative assessment of motor function has become
increasingly important in clinical practice over the years.
Functional assessments have been recently proposed (Hildebrandt
et al., 2015) and validated (Herbst et al., 2015) in RTS after anterior
cruciate ligament reconstruction, including stability tests,
countermovement jumps, plyometric jumps and others (Barber-
Westin and Noyes, 2011; Hildebrandt et al., 2015), however, without
the use of standardized biomechanical equipment. Trasolini et al.,
proposed objective measurements using cameras in order to
determine the range of motion in throwing athletes, during the
RTS process (Trasolini et al., 2022). While this is undoubtedly a step
in the right direction, such approaches have been rare and have
mostly been used to test the progress of the rehabilitation without
providing specific feedback on where possible limitations may arise.
Further, the lack of normative, population-wide values hinders the
interpretation of these outcomes.

6 Biofeedback-based return to sport:
Perspectives and opportunities

The RTS research field has been continuously developing and
expanding over the last years, but also faces several challenges ahead.
Here, we identified unsuccessful load management and
rehabilitation as major contributors to injury, a lack of consensus
in the RTS terminology, presented the main frameworks that aim to
guide RTS and the need for more objective and quantitative
assessments. Below we argue that wider adoption and systematic
use of biomechanical assessments-especially in functional settings
(e.g., during running or throwing), could expand or even enhance
existing RTS frameworks by enabling more rigorous quantitative
assessments, which in turn could be of benefit to the overall RTS
process.

Recent advances in sensor sciences have increased the
opportunities for accurate, wireless and long-lasting capturing of
data. Assessment methods originating from the field of
biomechanics can objectively increase our understanding of
healthy and pathological movement based on the analysis of
kinematic (the study of the motion of bodies in space with
respect to time) and kinetic (the study of the forces associated
with motion) parameters (Winter 1987; Bartlett, 2007).
Physiological signals pertaining the human neural circuit, such
as, the electric activity of muscles and brain have also been
captured to provide insights into movement (Bizzi et al., 2008;
Gwin et al., 2011; Kesić and Spasić, 2016; Taborri et al., 2020).
Equipment commonly used in biomechanical testing such as
cameras, force plates, electromyography, wearable inertial sensors
and others can be, hence, used during the RTS continuum for

quantitative assessment and for detecting changes between
measurement sessions in standardized settings (Pappas et al.,
2016; Hainline et al., 2017). However, in RTS the biological
recovery of the affected tissue must be accompanied with
adequate functionality, which constitutes a much greater challenge.

Running, jumping and throwing, which are predominant in
most athletic disciplines, are uniquely advantageous to be examined
with biomechanical equipment from a functional perspective.
Running analysis, due to movements being stereotyped and/or
cyclic, can be streamlined to produce quick assessments and
comparisons. Multiple force plates, cameras and wearable sensors
can be used to capture large amounts of data in an on-the-field
setting. Parameters, such as spatiotemporal variables, force profiles
(e.g., the way forces are shaped during the time that the foot is in
contact with the ground), a wide spectrum of kinematic variables
(e.g., range of motion, vertical displacement) and the contribution to
mechanical power from different joints have been often used to
assess performance changes (Taylor, 1985; Arampatzis et al., 2000;
Angelozzi et al., 2012; Santuz et al., 2016; Ekizos et al., 2021). It is
therefore possible that these metrics would provide unique insights
to the RTS process. However, their effectiveness and validity in the
context of RTS has yet to be systematically examined. One limitation
is the difficulty of direct quantitative comparisons with preinjury
levels of performance. However, extending the usage of such metrics
in routine preinjury baseline measurements, could enable
comparisons during the recovery protocol, or normative values
could be established and utilized, where applicable.

It has long been suggested that the ability to reliably quantify
lower-extremity biomechanical variables during dynamic tasks
could reveal mechanisms related to injury risk factors (Ford
et al., 2007). Indeed, it has been shown that certain
biomechanical profiles are associated with higher incidence of
anterior cruciate ligament injury in high school female athletes
(Pappas et al., 2016). A full-body approach to biomechanical
assessment has been also suggested for the examination of pain
in the elite athlete (Hainline et al., 2017). Interestingly, this has not
been systematically examined in RTS settings. We argue that
information of force and kinematic profiles (e.g., distinguishing
the contribution and distribution of power in the involved joints
during running) could be invaluable in identifying weaknesses in the
recovering athlete and introducing specific exercises to
alleviate them.

There is amounting evidence that load management, is a
prominent mechanism which could be important not only to
predict injury, but also to guide RTS (i.e., acute to chronic load
ratio) (Blanch and Gabbett, 2016; Soligard et al., 2016; Eckard et al.,
2018). However, a one-size-fits-all approach does not address the
variability existing between injuries, players, competitive demands
and response to loading. Rehabilitation and training practice as it
approaches and enters the RTS has to be targeted and, thus, highly
individualized. Timing is especially important, due to affecting load
perception. Fitness levels, body composition and playing level often
fluctuate with time (Jones et al., 2017). Together with age and history
of injuries these characteristics have a significant impact on the
perception and experienced stress by the body. All change
constantly, are highly individual and can drastically affect the
risk of injury (Ekstrand et al., 2011; Zwerver et al., 2011;
Rogalski et al., 2013; Jones et al., 2017). These characteristics are
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equally influencing the athlete before, during and after an injury
occurs and can, thus, affect the progress of the rehabilitation and the
risk of reinjury. Kinetic and kinematic analyses could deliver
information on how the applied force is distributed (e.g., using
force plates during walking and running), identifying compensatory
patterns (e.g., motion analysis in throwing tasks). Biomechanical
assessments during functional movements could, thus, enable a
highly customizable approach in terms of load management by
monitoring and accounting for fluctuations in individual
characteristics.

During RTS-besides increasing load, the human body has to
constantly incorporate new information about its state (ongoing
rehabilitation process) and navigate increasingly demanding tasks.
Biological systems have the property of robustness, defined as the
ability to maintain function despite internal and external
perturbations (Kitano, 2004). Training in the presence of external
perturbations improves muscle strength, stability, and balance
performance (Hamed et al., 2018; Bohm et al., 2020; McCrum
et al., 2022) and the progressive incorporation of highly variable,
spontaneous, and unanticipated movements has been proposed in
the context of RTS (Taberner et al., 2019). Human movement
reveals the hallmark characteristics of complex systems (Mayer-
Kress et al., 2006). The broad term “complexity” can be used to
define the emergence of different (i.e., more or less complex)
strategies (Dusing and Harbourne, 2010; Bisi and Stagni, 2018)
to accomplish a specific motor task and enrich the training process.
Maintaining functionality despite increased complexity is a
challenge for the system and could induce beneficial
neuromuscular adaptations. In this context, this approach could
be beneficial to the recovery process of the elite athlete. Fine-tuning
the range and amplitude of training complexity through objective
biomechanical measurements means that this process could be more
individualized, taking into account specific needs and performance
goals.

We propose that biomechanical assessments would enable
multiple biofeedback cycles, and, thus, a biofeedback-based
approach in RTS. This approach could work independently, but
also complimentary to existing RTS frameworks by providing

quantitative and objective assessments. Further, it could facilitate
interactions with the clinical stakeholders of the RTS process (e.g.,
identification of ankle instabilities through kinematic profiles or
lower activation of specific muscles through electromyography),
driving further clinical assessments. We argue that when
employed to the RTS continuum, these biofeedback cycles could
drive effective individualization. These assessments should aim to: a)
identify weaknesses in kinetic and kinematic parameters, b) monitor
load and complexity, c) compare current state of performance to
inter- and intrapersonal values. Consequently, adjustments to the
training program should be introduced. This approach accentuates
the need for regular objective assessments of the athlete during the
RTS continuum and the incorporation of this biofeedback to
customize the load and complexity of the trainings (Figure 1).

Future studies should also consider a more holistic approach to
RTS, by incorporating assessments of motor control. To maintain
functionality during the execution of complex movements, humans
rely on reflexes and sensory feedback to produce accurate,
coordinated actions (Bernstein, 1967; Biewener and Daley, 2007;
Grillner and El Manira, 2020). This is achieved through a modular
interplay between muscles, sensory organs, and the central nervous
system, which interact to produce meaningful, dynamically stable
movement (Nishikawa et al., 2007). Knowing how body kinematics
or muscle activation patterns behave during the production of
simple repetitive activities such as locomotion is sufficient to
understand the behavior of the system and quantify its ability to
withstand perturbations (Dingwell and Cusumano, 2000; Ekizos
et al., 2017; Santuz et al., 2018). Due to the nature of the information
sought (i.e., related to motor control), these measurements often
require a large number of repetitive movements. Athletic disciplines
are, therefore, especially suitable since they require repetitive
movement patterns or explosive movements executed with high
frequency. We have recently demonstrated that measures of stability
and analyses of muscle activation patterns are sufficiently accurate to
confirm changes between speeds and conditions (Ekizos et al.,
2018a; Santuz et al., 2018; Santuz and Akay, 2020), but also
between different running techniques and adaptations to running
training programs (Ekizos et al., 2017; 2018a). Such approaches are

FIGURE 1
The biofeedback-based return to sport (RTS) approach. This approach places objective assessments at the core of the RTS process and applies the
gathered information to inform it. The interaction with other RTS stakeholders should be emphasized. In the context of this paper objective assessments
are meant as evaluations through biomechanical equipment utilized during functional settings.
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increasingly accessible (Santuz, 2022) and reliable (Santuz et al.,
2017; Ekizos et al., 2018b; Fohrmann et al., 2022) and may prove
valuable tools in assessing neuromuscular aspects pertaining to
motor control after injury as well.

7 Conclusion

In the current manuscript we have seen that with high
prevalence rates, injuries are part of elite sports and is often part
of the athlete’s career in multiple ways. Further, that the
management of the period after the injury is crucial for an
effective RTS. There is a need for objective and reliable RTS
assessment tools in order to encourage more quantitative
assessments. In the ongoing discussion of how to improve the
RTS process, we argue that biofeedback cycles using objective
assessments could drive an effective and individualised RTS. The
incorporation of biomechanical parameters derived during
functional settings seems ideal for this purpose. The development
of regular standardized measurement procedures could enhance the
applicability of this approach by establishing baseline and normative
values.
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