
Citation: Rungsa, P.; San, H.T.;

Sritularak, B.; Böttcher, C.;

Prompetchara, E.; Chaotham, C.;

Likhitwitayawuid, K. Inhibitory

Effect of Isopanduratin A on

Adipogenesis: A Study of Possible

Mechanisms. Foods 2023, 12, 1014.

https://doi.org/10.3390/

foods12051014

Academic Editors: Paula C. Castilho

and Weiqun Wang

Received: 29 January 2023

Revised: 21 February 2023

Accepted: 25 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Inhibitory Effect of Isopanduratin A on Adipogenesis: A Study
of Possible Mechanisms
Prapenpuksiri Rungsa 1, Htoo Tint San 1 , Boonchoo Sritularak 1,2 , Chotima Böttcher 3,4,
Eakachai Prompetchara 5,6 , Chatchai Chaotham 7,8,* and Kittisak Likhitwitayawuid 1,*

1 Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences,
Chulalongkorn University, Bangkok 10330, Thailand

2 Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, Bangkok 10330, Thailand

3 Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular
Medicine in the Helmholtz Association and Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany

4 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
5 Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University,

Bangkok 10330, Thailand
6 Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center),

Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
7 Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences,

Chulalongkorn University, Bangkok 10330, Thailand
8 Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit,

Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
* Correspondence: chatchai.c@chula.ac.th (C.C.); kittisak.l@chula.ac.th (K.L.)

Abstract: The root of Boesenbergia rotunda, a culinary plant commonly known as fingerroot, has
previously been reported to possess anti-obesity activity, with four flavonoids identified as active
principles, including pinostrobin, panduratin A, cardamonin, and isopanduratin A. However, the
molecular mechanisms underlying the antiadipogenic potential of isopanduratin A remain unknown.
In this study, isopanduratin A at non-cytotoxic concentrations (1–10 µM) significantly suppressed
lipid accumulation in murine (3T3-L1) and human (PCS-210-010) adipocytes in a dose-dependent
manner. Downregulation of adipogenic effectors (FAS, PLIN1, LPL, and adiponectin) and adipogenic
transcription factors (SREBP-1c, PPARγ, and C/EBPα) occurred in differentiated 3T3-L1 cells treated
with varying concentrations of isopanduratin A. The compound deactivated the upstream regulatory
signals of AKT/GSK3β and MAPKs (ERK, JNK, and p38) but stimulated the AMPK-ACC pathway.
The inhibitory trend of isopanduratin A was also observed with the proliferation of 3T3-L1 cells. The
compound also paused the passage of 3T3-L1 cells by inducing cell cycle arrest at the G0/G1 phase,
supported by altered levels of cyclins D1 and D3 and CDK2. Impaired p-ERK/ERK signaling might
be responsible for the delay in mitotic clonal expansion. These findings revealed that isopanduratin
A is a strong adipogenic suppressor with multi-target mechanisms and contributes significantly to
anti-obesogenic activity. These results suggest the potential of fingerroot as a functional food for
weight control and obesity prevention.

Keywords: fingerroot; Boesenbergia rotunda; obesity; adipocyte; isopanduratin A; AKT/GSK3β;
AMPK-ACC; MAPKs; MCE

1. Introduction

With the steady increase in the number of overweight and obese populations in recent
years, obesity has been declared a pandemic disease by the World Health Organization
(WHO) [1]. Obesity is the result of an energy imbalance, characterized by excessive fat
accumulation in the body. This irregularity, though a non-communicable disorder, is closely
associated with several metabolic conditions, such as hyperglycemia, hyperlipidemia,
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hypertension, cancer, and cardiovascular diseases, all of which have a high mortality
rate and can cause a socioeconomic burden, particularly in countries where access to the
healthcare system is limited [2].

Modulation of the excess mass of adipose tissues due to hyperplasia (excessive adipo-
genesis) and the hypertrophy of adipocytes is one of the reasonable strategies to regulate
lipid homeostasis and obesity. Recently, inhibition of adipogenic differentiation and mat-
uration has become a novel therapeutic approach to treating obesity [3]. Adipogenesis,
a multistep process that converts undifferentiated preadipocytes into mature adipocytes,
is modulated by a series of biochemical cascades that include coordinated changes in
hormone sensitivity and gene expression, together with morphological alterations. Trig-
gered by adipogenic stimulants, preadipocytes undergo mitotic clonal expansion (MCE) to
re-enter the cell cycle. Concurrently, the upregulation of adipogenic regulating genes and
adipogenic effector proteins leads to adipocyte differentiation and maturation [4–7].

Adipocyte differentiation and development are directed by lipogenesis-related tran-
scription factors such as CCAAT/enhancer-binding protein alpha (C/EBPα), peroxisome
proliferator-activated receptor gamma (PPARγ), sterol response element-binding protein-1c
(SREBP-1c) [8,9], and the adenosine monophosphate-activated protein kinase (AMPK) and
acetyl-CoA carboxylase (ACC) enzymes [10]. AMPK, a serine/threonine kinase, forms
a heterotrimeric complex with one catalytic α subunit and two regulatory β and γ sub-
units [11]. Its roles in cellular lipid metabolism involve the synthesis and degradation of
fatty acids. Another upstream regulatory molecule in adipocyte differentiation is protein
kinase B (AKT), as its activation strongly links to the upregulation of SREBP-1c and cellular
lipogenesis [12]. Subsequent phosphorylation of glycogen synthase kinase 3β (GSK3β)
by AKT upregulates C/EBPα and promotes adipocyte maturation [13]. Additionally,
mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), ex-
tracellular signal-regulated kinase (ERK), and stress-activated protein kinase (p38), mediate
adipogenesis [14]. Suppression of these signaling molecules efficiently inhibits adipocyte
differentiation [15,16]. For example, inhibition of p38 function can hamper adipocyte differ-
entiation by suppressing PPARγ transcription. Modulation of these biomolecules during
adipocyte differentiation proved to be a promising strategy to limit cellular lipogenesis and
adipocyte differentiation and maturation [17].

Recently, a growing body of evidence has revealed medicinal and culinary plants
as a rich source of phytochemicals that exert their anti-obesity potential through multi-
target mechanisms [18–20]. Boesenbergia rotunda (L.) Mansf., also known as Boesenbergia
pandurata (Roxb.) Schltr., is commonly called fingerroot. The plant is found in the wild
and is widely cultivated in South Asia and Southeast Asia [21,22]. Traditionally, people
use its roots as food and flavoring agents. In Thailand, they are the main ingredient in
shrimp soup, which is popularly consumed by lactating women to help improve their
breast milk supply. Various medicinal values for fingerroot were reported, including anti-
inflammatory, antimicrobial, antiviral [21–24], anti-obesity [25], anti-osteoporosis [26], and
anticancer activities [27], as well as aphrodisiac and vasorelaxant effects [28]. The bioactive
constituents were characterized as several subclasses of flavonoids [29,30].

In a recent study, the anti-obesity activity of fingerroot was demonstrated in mice on a
high-fat diet [31]. Our previous phytochemical study of the roots of this plant revealed the
presence of several flavonoids, along with a monoterpene alcohol and a styrylpyrone [32].
In a preliminary Oil Red O assay, we found that the flavonoids pinostrobin, panduratin
A, isopanduratin A, and cardamonin were strong adipogenic inhibitors, which may be
responsible for the anti-obesity activity of fingerroot (see Section 3.1). In our previous study,
pinostrobin was shown to inhibit adipogenesis in murine 3T3-L1 preadipocytes by lowering
the levels of lipid-metabolism-mediating proteins, such as C/EBPα, PPARγ, and SREBP-
1c, and suppressing the signals of MAPKs (p38 and JNK) and AKT (AKT/GSK3β and
AKT/AMPKα-ACC) [33]. The other flavonoids, i.e., panduratin A and cardamonin, were
previously investigated for the molecular mechanisms underlying their anti-adipogenic ef-
fects in 3T3-L1 cells [25,34,35]. In this study, we report the inhibitory effects of isopanduratin
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A, another fingerroot flavonoid, on adipogenesis in mouse 3T3-L1 and human PCS-210-010
preadipocytes. The relevant molecular mechanisms are also elucidated and addressed.

2. Materials and Methods
2.1. Chemicals, Reagents, and Culture Media

Isopanduratin A and other phytochemicals were isolated and characterized from
B. rotunda roots with a protocol described previously [32]. The purity of these phyto-
chemicals was more than 98% (by NMR). Dimethyl sulfoxide (DMSO), Oil Red O, crys-
tal violet, isobutylmethylxanthine (IBMX), dexamethasone, isopropanol, RNase A, and
skim milk powder were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ethanol,
methanol, formaldehyde, and chloroform were ordered from Merck KgaA (Darmstadt,
Germany). Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS), peni-
cillin/streptomycin solution, L-glutamine, and trypsin were bought from Gibco (Gaithers-
burg, MA, USA). Fibroblast basal medium (FBM) was purchased from the American Type
Culture Collection (ATCC; Manassas, VA, USA). Insulin was ordered from Himedia (Mum-
bai, India). Bicinchoninic acid (BCA) protein assay kit, western chemiluminescent ECL
substrate, and radio-immunoprecipitation assay (RIPA) buffer were acquired from Thermo-
Fisher (Rockford, IL, USA). A protease inhibitor cocktail was obtained from Roche Applied
Science (Indianapolis, IN, USA). Primary antibodies against β-actin (Cat. No. 4970; dilution
1:1000), Cyclin D1 (Cat. No. 2978; dilution 1:1000), Cyclin D3 (Cat. No. 2936; dilution
1:2000), CDK2 (Cat. No. 2546; dilution 1:1000), AKT (Cat. No. 4691; dilution 1:1000), p-AKT
(Ser473) (Cat. No. 4060; dilution 1:2000), GSK3β (Cat. No. 12456; dilution 1:1000), p-GSK3β
(Ser9) (Cat. No. 9322; dilution 1:1000), AMPKα (Cat. No. 5831; dilution 1:1000), p-AMPKα

(Thr172) (Cat. No. 2535; dilution 1:1000), AMPKβ1/2 (Cat. No. 4150; dilution 1:1000),
p-AMPKβ1 (Ser182) (Cat. No. 4186; dilution 1:1000), ACC (Cat. No. 3676; dilution 1:1000),
p-ACC (Ser79) (Cat. No. 11818; dilution 1:1000), PPARγ (Cat. No. 2435; dilution 1:1000),
C/EBPα (Cat. No. 8178; dilution 1:1000), FAS (Cat. No. 3180; dilution 1:1000), PLIN1 (Cat.
No. 9349; dilution 1:1000), adiponectin (Cat. No. 2789; dilution 1:1000), ERK1/2 (Cat. No.
9102; dilution 1:1000), p-ERK1/2 (Thr202/Tyr204) (Cat. No. 4695; dilution 1:1000), JNK
(Cat. No. 9252; dilution 1:1000), p-JNK (Thr183/Tyr185) (Cat. No. 9251; dilution 1:1000),
p38 (Cat. No. 8690; dilution 1:1000), p-p38 (Thr180/Tyr182) (Cat. No. 4511; dilution 1:1000),
and horseradish peroxidase (HRP)-linked secondary antibodies (Cat. No. 7074; dilution
1:2000) were purchased from Cell Signaling Technology (Danvers, MA, USA). Specific
primary antibodies against SREBP-1c (Cat. No. PA1-337; dilution 1:1000) and LPL (Cat. No.
PA5-85126; dilution 1:1000) were acquired from Invitrogen (Waltham, MA, USA).

2.2. Cell Culture and Adipocyte Differentiation

Human PCS-210-010 preadipocyte and mouse embryonic preadipocyte 3T3-L1 cells
obtained from the American Type Culture Collection (ATCC; Manassas, VA, USA) were,
respectively, cultured in FBM and DMEM containing 10% FBS, 100 units/mL of peni-
cillin/streptomycin, and 2 mmol/L of L-glutamine under humidified conditions of 5%
CO2 at 37 ◦C. For a differentiation program to convert preadipocytes to adipocytes,
preadipocytes growing as monolayers up to 90% confluent for 2 days were exposed to a
differentiation medium made of FBM or DMEM containing 10% FBS, 0.5 mM IBMX, 1 µM
dexamethasone, and 5 µg/mL insulin for 2 days. At this stage, various concentrations of
isopanduratin A were added, while 0.5% (v/v) DMSO was used as vehicle control. The
differentiation medium was replaced with culture medium supplemented with 5 µg/mL
of insulin. After further incubation for 2 days, cells were maintained in complete medium,
which was changed every 2 days until lipid-droplet-containing adipocytes were observed
under the microscope. Undifferentiated and differentiated cells were defined as negative
control and positive control groups, respectively.
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2.3. Cytotoxicity Assay

Following the recommended course of action, the cytotoxicity of isopanduratin A was
evaluated using a crystal violet colorimetric assay [33]. Cells were seeded in a 96-well
plate at a density of 1 × 104 cells/well and incubated under humidified 5% CO2 at 37 ◦C
overnight and then exposed for 48 h to isopanduratin A in a range of final concentrations
(0–100 µM). A vehicle control (0.5% (v/v) DMSO) was also included. Dead detached
cells were removed after washing twice with phosphate buffer saline (PBS; pH 7.4). The
adherently viable cells were then stained with crystal violet solution (0.05% w/v) for 30 min
at room temperature after being fixed with 10% w/v formic aldehyde for 30 min. The
assayed plate was washed twice with deionized water to remove any excess crystal violet
solution and then left to dry overnight. The stained cells were treated with 100 µL of
methanol prior to absorbance measurement (570 nm) with a microplate reader (Anthros,
Durham, NC, USA). The percentage of cell viability was calculated using the absorbance
value of each treatment relative to that of the vehicle control.

2.4. Cell Proliferation Assay and Cell Cycle Analysis

The ability of 3T3-L1 cells to proliferate in the presence of isopanduratin A at its non-
cytotoxic doses for 24–72 h was investigated by crystal violet staining [33,36]. 3T3-L1 cells
(3.5 × 103 cells/well in a 96-well plate) growing as a monolayer for 2 days were exposed to
differentiation medium containing varying concentrations of isopanduratin A (0–10 µM)
and incubated for 24, 48, and 72 h. A vehicle (0.5% (v/v) DMSO) was also included. At
the end of each incubation period, the crystal violet staining assay was carried out as
described previously, and the ability of cells to proliferate was calculated and reported as
the percentage of cell proliferation in each treatment relative to that of the vehicle control
measured at 24 h.

The impact of isopanduratin A on the passage of 3T3-L1 cells through the cell cycle
was analyzed by flow cytometry. Cells seeded in a 6-well plate and at 90% confluent of their
growth were treated with non-cytotoxic doses of isopanduratin A for 18 h. Undifferentiated
or differentiated control cells were established by exposure to 0.5% (v/v) DMSO. Cells in
each treatment and control were harvested by centrifugation for 5 min at 2500× g and 4 ◦C
and then fixed overnight in 1 mL of ice-cold 70% (v/v) ethanol at −20 ◦C. The fixed cells
were washed with PBS (pH 7.4), stained with 50 µg/mL PI solution (400 µL) containing
5 µg/mL DNase-free RNase solution for 30 min at room temperature, and kept away from
light. DNA content was analyzed by flow cytometry (EMD Millipore, Austin, TX, USA).
The percentages of cells in the G0/G1, S, and G2/M phases were then calculated using the
FlowJo V10 software trial version (Williamson Way, Ashland, OR, USA).

2.5. Assessment of Cellular Lipid Content

The impact of isopanduratin A, at varying non-toxic doses, on the formation of lipid
droplets in 3T3-L1 and PCS-210-010 adipocytes was evaluated by the Oil Red O staining
assay. Both adipocytic cells undergoing the differentiation program, as described previously,
were fixed with 10% formaldehyde for 30 min at room temperature, and then the fixed cells
were stained with Oil Red O solution (at an Oil Red O:distilled water ratio of 6:4) for 1 h at
room temperature. The stained cells were washed twice with 60% (v/v) isopropanol and
randomly photographed under an inverted light microscope (Nikon Ts2, Tokyo, Japan).
Intracellular Oil Red O-stained lipid droplets were eluted using 100% isopropanol, and
their absorbance values at 500 nm wavelength were measured using a microplate reader
(Anthros, Durham, NC, USA).

The effects of isopanduratin A at varying non-cytotoxic doses on cellular triglyceride
and released glycerol levels were also determined, respectively, using triglyceride and
glycerol assay kits (Sigma Aldrich, St. Louis, MO, USA), in accordance with the instructions
of the manufacturer. Undifferentiated or differentiated cells treated with DMSO (0.5% v/v)
functioned as controls for each experiment.
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2.6. Western Blotting

The effects of isopanduratin A (0–10 µM) on the expression of proteins related to adipo-
genesis after 48 h of incubation were tracked by western blot analysis. Undifferentiated and
differentiated 3T3-L1 cells treated with DMSO (0.5% v/v) functioned as controls. Cells were
collected and lysed on ice in RIPA buffer supplemented with a protease inhibitor cocktail
for 45 min. Cell lysates were quantified for protein concentration using the BCA assay and
stored at −80 ◦C until further use. Equal protein samples (30 µg) were loaded to separate
on 10% SDS-PAGE and transferred onto a nitrocellulose membrane (BIO-RAD, Hercules,
CA, USA). The membranes were blocked in 5% skim milk for 1 h at room temperature and
incubated overnight with primary antibodies at 4 ◦C. The membranes were then washed
(7 min × 3 times) with Tris-buffered saline with 0.1% Tween® 20 (TBST) before incubation
with HRP-conjugated secondary antibody for 2 h at room temperature. The membranes
were washed 3 times with TBST to remove excess antibodies and detected using western
chemiluminescent ECL substrates. The protein expression level was calculated as the ratio
of the band intensity of the target protein to that of β-actin—a housekeeping protein.

2.7. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

The impact of isopanduratin A on the expression of some proteins involved in the
differentiation of 3T3-L1 adipocytes was confirmed at the transcriptional level using the
RT-qPCR technique. 3T3-L1 preadipocytes (5 × 104 cells/well in a 6-well plate) with up to
90% confluent were treated with varying non-cytotoxic doses of isopanduratin A for 2 days
in differentiation medium. Undifferentiated and differentiated 3T3-L1 cells treated with
DMSO (0.5% (v/v) functioned as controls for this study. The medium was removed, and
the cells were rinsed thrice with ice-cold PBS (pH 7.4) and extracted for their RNA using the
PureLink™ RNA Mini Kit (Invitrogen, Carisbad, CA, USA). An equal amount (1 µg) of total
RNA was reverse-transcribed to complementary DNA with a RevertAid first-strand cDNA
synthesis kit (Thermo Scientific Pierce, Rockford, IL, USA). The Bio-Rad Luna Universal
qPCR master mix (Hercules, CA, USA) was used in the assay reaction, while amplification
was performed with the Bio-Rad CFX96 Touch real-time PCR detection system (Hercules,
CA, USA), in accordance with the instructions of the manufacturer. The RT-qPCR primers
(Table 1) and conditions were previously described elsewhere [36]. The expression level
of each target gene was normalized with that of Gapdh—a housekeeping gene. Relative
mRNA expression levels were analyzed using the 2−(ave.∆∆C

T
) method, where CT is the

threshold cycle.

Table 1. RT-qPCR primers used in this study.

Targeted Gene Primer Nucleotide Sequence (5′-3′)

Pparg PpargF GATTCTCCTRTTGACCCAG
PpargR GAR TGSGAGTGGTCTTCCAT

C/ebpa CebpaF AGTCGGTGGACAAGAACAGC
CebpaR GTGTCCAGTTCRCGGCTCA

Srebp1c Srebp1cF YTGCMGACCCTGGTGAGTG
Srebp1cR GASCGGTAGCGCTTCTCAAT

Gadph GADPHF ACTCCACTCACGGCAAATTC
GADPHR TCTCCATGGTGGTGAAGACA

2.8. Statistical Analysis

All experiments were carried out in triplicate, and the results are expressed as
mean ± standard deviation (SD). Statistical comparison of means by one-way anal-
ysis of variance (ANOVA) with Tukey’s post hoc test was performed using Graph-
Pad Prism 8.0.2 software (San Diego, CA, USA). A p-value of <0.05 was considered
statistically significant.
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3. Results
3.1. Effect of Isopanduratin A on Adipogenesis in 3T3-L1 Preadipocytes

In this study, murine 3T3-L1 preadipocyte cells, which can differentiate into mature
adipocytes under appropriate conditions [4,37], were used. Initially, the toxicity of each test
compound was evaluated at 5 µM by a crystal violet assay, as previously described [33]. At
this concentration, pinostrobin (1), panduratin A (3), isopanduratin A (4), and cardamonin
(6) were all non-toxic and showed a significant reduction in intracellular lipid content in the
Oil Red O staining assay (Table 2), suggesting their anti-adipogenic potential. Isopanduratin
A showed a drop in the percentage of stained cells to approximately 60%, compared to
the vehicle control. The cytotoxic effect of isopanduratin A was then further assessed in
a wider range of concentrations (0–100 µM). The highest non-toxic dose was found to be
10 µM, and the half-maximum inhibitory concentration was 28.63 ± 0.70 µM.

Table 2. List of phytochemicals from Boesenbergia rotunda roots and their effects on lipid content in
3T3-L1 cells determined by Oil Red O staining.

Tested Chemical a Relative Percentage of Oil Red O Stained Cells (%) b

Vehicle control c 100.00 ± 0.00
(1) Pinostrobin [C16H14O4] 66.79 ± 2.34 *
(2) Geraniol [C10H18O] 106.46 ± 3.34
(3) Panduratin A [C26H30O4] 76.94 ± 1.14 *
(4) Isopanduratin A [C26H30O4] 64.04 ± 3.70 *
(5) Pinocembrin [C15H12O4] 117.31 ± 7.05
(6) Cardamonin [C16H14O4] 80.89 ± 5.58 *
(7) Hydroxypanduratin A [C25H28O4] 99.53 ± 0.59
(8) 5,6-Dehydrokawain [C14H13O3] 115.57 ± 2.89
(9) Rotundaflavanochalcone [C31H26O8] 115.05 ± 4.31
(10) 2′,4′,6′-Trihydroxydihydrochalcone [C15H15O4] 99.95 ± 3.92
(11) Alpinetin [C16H15O4] 108.18 ± 2.28
(12) Iso-rotundaflavanochalcone [C31H26O8] 86.31 ± 7.20

a All tested compounds (5 µM) with a purity of >98% were isolated from B. rotunda and identified by nuclear
magnetic resonance spectroscopy and mass spectrometry, as previously described [31]. b The Oil Red O staining
assay was conducted and reported as the percentage of Oil Red O-stained cells compared to that of the control.
c Dimethyl sulfoxide at 0.5% (v/v) was used as a vehicle control. Each experiment was carried out in at least
triplicate, and a one-way analysis of the variant-based comparison of means ± SD was carried out. An asterisk
refers to the significant difference in means compared to control cells at p < 0.05.

The dose-dependent effect of isopanduratin A on 3T3-L1 adipocyte differentiation was
then further examined by measuring the accumulation of cellular lipid droplets stained with
Oil Red O dye (Figure 1a). Figure 1b shows that isopanduratin A at 5 and 10 µM inhibited
cell differentiation in a dose-dependent manner, as indicated by the lower percentage of
stained lipid droplets. The intracellular triglyceride content in the cells exposed to 1–10 µM
isopanduratin A for 48 h decreased significantly, compared to untreated control cells
(Figure 1c), although a reduction in cellular lipid droplets by 1 µM isopanduratin A was
not clearly observed. Similarly, isopanduratin A at 1–10 µM significantly increased the
amount of extracellular glycerol released from differentiated cells (Figure 1d).
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Figure 1. Inhibitory effects of isopanduratin A on the accumulation of intracellular lipids in differen-
tiated adipocytes. Mouse preadipocyte 3T3-L1 cells were cultured in differentiation medium in the
presence or absence of isopanduratin A at non-toxic concentrations (1–10 µM). (a) The lower number
of cellular lipid droplets stained with Oil Red O and (b) the relative absorbance of the eluted Oil
Red O dye at 500 nm were noticed in differentiated 3T3-L1 cells treated with 5–10 µM isopanduratin
A for 48 h. The altered levels of (c) intracellular triglyceride content and (d) extracellular glycerol
were initially detected in differentiated 3T3-L1 cells treated with 1 µM isopanduratin A. Confluent
3T3-L1 cells were cultured in the presence (+) or absence (−) of differentiation medium (MDI) with
0–10 µM isopanduratin A (Iso-PA). Cells treated with dimethyl sulfoxide (0.5% v/v) functioned as
the untreated control (0). Bar graphs demonstrating mean ± SD (n = 3) were created using GraphPad
Prism. A one-way ANOVA with Tukey’s post hoc test was used to compare the means of treatment
and differentiated control groups (* p < 0.05).

The expression of proteins related to lipid metabolism as markers of mature adipocytes
was further investigated in differentiated cells. Elevated expression levels of FAS, LPL,
PLIN, and adiponectin, which play an important role in lipogenesis, were clearly ob-
served in cells cultured with differentiation medium for 8 days (Figure 2a). Intriguingly,
5–10 µM of isopanduratin A significantly suppressed the expression of PLIN (Figure 2c)
and adiponectin (Figure 2e) in differentiated cells, while lower levels of FAS (Figure 2b)
and LPL (Figure 2d) were observed at as low as 1 µM of isopanduratin A. These results
demonstrated that isopanduratin A at non-cytotoxic doses could efficiently limit lipogenesis
during cell differentiation.
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Preadipocytes undergo mitotic clonal expansion (MCE) during the early stage of ad-
ipogenesis. Before the beginning of cell differentiation, these growth-arrested preadipo-
cytes usually undergo a few rounds of mitosis. Concurrent reentry into the cell cycle 
caused by MCE leads to an increased number of adipocytes [7]. MCE is mediated by the 
activation of cyclin-dependent kinase (CDK) and cyclin family proteins. Following MCE, 
activated C/EBPβ stimulates C/EBPα, which in turn causes PPARγ to begin transcription 
[36,38]. 

As presented in Figure 3a (see Figure S1), isopanduratin A (1–10 μM) significantly 
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compared to differentiated control cells at each time point. The effect of isopanduratin A 

Figure 2. Inhibitory effects of isopanduratin A on the expression of adipogenic effectors in 3T3-L1
adipocytes. Cells were differentiated for 8 days in differentiation medium containing isopanduratin
A at non-toxic concentrations. (a) Protein expression was then examined by Western blotting. The
expression levels of (b) FAS, (c) PLIN1, (d) LPL, and (e) adiponectin relative to β-actin were measured
by the ImageJ program. Confluent 3T3-L1 cells were cultured in the presence (+) or absence (−)
of differentiation medium (MDI) with 0–10 µM isopanduratin A (Iso-PA). Cells treated with 0.5%
v/v DMSO functioned as untreated control (0). Bar graphs demonstrating mean ± SD (n = 3) were
created using GraphPad Prism. A one-way ANOVA with Tukey’s post hoc test was used to compare
the means of treatment and the differentiated control groups (* p < 0.05).

3.2. Isopanduratin A Inhibits Mitotic Clonal Expansion during Adipogenesis

Preadipocytes undergo mitotic clonal expansion (MCE) during the early stage of adi-
pogenesis. Before the beginning of cell differentiation, these growth-arrested preadipocytes
usually undergo a few rounds of mitosis. Concurrent reentry into the cell cycle caused by
MCE leads to an increased number of adipocytes [7]. MCE is mediated by the activation
of cyclin-dependent kinase (CDK) and cyclin family proteins. Following MCE, activated
C/EBPβ stimulates C/EBPα, which in turn causes PPARγ to begin transcription [36,38].

As presented in Figure 3a (see Figure S1), isopanduratin A (1–10 µM) significantly
inhibited the proliferation of 3T3-L1 preadipocytes after incubation for 24, 48, and 72 h,
compared to differentiated control cells at each time point. The effect of isopanduratin A on
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cell cycle progression during MCE was further determined. The number of cells at different
stages of the cell cycle was assessed after culture in differentiation medium for 18 h in the
presence or absence of 1–10 µM of isopanduratin A. The histograms obtained from flow
cytometry reveal the entry into the S phase of the cell cycle in differentiated 3T3-L1 cells
(Figure 3b). Surprisingly, isopanduratin A significantly hindered the progression of the
cell cycle, as indicated by the higher number of cells in the G0/G1 phase, compared to the
differentiated control group (Figure 3c).
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Figure 4 shows that isopanduratin A markedly altered the expression of MCE-medi-
ated proteins (cyclins D1 and D3 and CDK2) in differentiated 3T3-L1 cells after 18 h of 
incubation, as proven by western blot analysis. Cyclin D1 is known to be suppressed, 
while other cyclin proteins are upregulated, during the initial phase of adipogenesis [39]. 
Cyclin D1 inhibits adipogenesis by preventing the expression of C/EBPα [40]. In this 
study, a reduction in cyclin D1 levels was observed in differentiated 3T3-L1 cells, but this 

Figure 3. Effects of isopanduratin A on cell proliferation and cell cycle progression of differentiated
3T3-L1 cells. (a) A crystal violet assay was used to track the proliferation of cells cultured in
differentiation medium with or without 1–10 µM isopanduratin A for 24 to 72 h. The alteration of
the cell cycle in cells treated with isopanduratin A was evaluated by flow cytometry and presented
in (b) histograms and (c) cell frequency in each phase. Confluent 3T3-L1 cells were cultured in the
presence (+) or absence (−) of differentiation medium (MDI) with 0–10 µM isopanduratin A (Iso-PA).
Cells treated with dimethyl sulfoxide (0.5% v/v) functioned as the untreated control (0). Bar graphs
demonstrating mean ± SD (n = 3) were created using GraphPad Prism. A one-way ANOVA with
Tukey’s post hoc test was used to compare the means of treatment and the differentiated control
groups (* p < 0.05).

Figure 4 shows that isopanduratin A markedly altered the expression of MCE-mediated
proteins (cyclins D1 and D3 and CDK2) in differentiated 3T3-L1 cells after 18 h of incubation,
as proven by western blot analysis. Cyclin D1 is known to be suppressed, while other cyclin
proteins are upregulated, during the initial phase of adipogenesis [39]. Cyclin D1 inhibits
adipogenesis by preventing the expression of C/EBPα [40]. In this study, a reduction in
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cyclin D1 levels was observed in differentiated 3T3-L1 cells, but this downregulation was
effectively reversed by isopanduratin A (Figure 4a,b) (See Figure S2). Lower levels of CDK2
(Figure 4c) and cyclin D3 (Figure 4d) were found in cells treated with isopanduratin A
(10 µM) in comparison with the differentiated control group. These observations indicate
that isopanduratin A delayed cell passage in the cell cycle by modulating MCE-mediated
protein expression.
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Figure 4. Isopanduratin A alters cell-cycle-regulating proteins during differentiation of 3T3-L1
adipocytes. The band intensity of the target protein obtained from (a) Western blot analysis was
estimated by comparison with that of β-actin (internal reference) including (b) cyclin D1, (c) CDK
2, and (d) cyclin D3. Confluent 3T3-L1 cells were cultured in the presence (+) or absence (−) of
differentiation medium (MDI) with 0–10 µM isopanduratin A (Iso-PA). Cells treated with 0.5% v/v
DMSO functioned as untreated control (0). Bar graphs demonstrating mean± SD (n = 3) were created
using GraphPad Prism. A one-way ANOVA with Tukey’s post hoc test was used to compare the
means of treatment and differentiated control groups (* p < 0.05).

3.3. Isopanduratin A Downregulates Adipogenic Transcription Factors

To further elucidate the molecular mechanisms underlying the suppressive effect of
isopanduratin A on adipogenesis, the expression of various adipogenic transcription factors
was determined at both the mRNA and protein expression levels. Preadipocyte 3T3-L1 cells
were collected during the early differentiation stage after 48 h of incubation with or without
differentiation medium with isopanduratin A at non-toxic concentrations. Upregulated
levels of transcription factor mRNA, including PPARγ, SREBP-1C, and C/EBPα, were
observed in cells cultured in differentiation medium for 48 h (Figure 5a) (see Figure S3).
Nevertheless, isopanduratin A at 5 and 10 µM significantly decreased the levels of SREBP-
1C and PPARγ mRNA, compared to those of the differentiated control cells. It should
be noted that the decreased level of C/EBPα mRNA was observed only in the 3T3-L1
cells incubated with isopanduratin A at a high concentration (10 µM). Consistent with the
mRNA levels detected by qRT-PCR, western blotting revealed lower expression levels of
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the SREBP-1C, PPARγ, and C/EBPα proteins in the differentiated 3T3-L1 cells cultured
with 5–10 µM of isopanduratin A, compared to differentiated control groups (Figure 5b–d).
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Figure 5. Isopanduratin A downregulates adipogenic transcription factors in differentiated 3T3-L1
cells. (a) Relative mRNA levels analyzed via RT-qPCR demonstrated the gene expression of C/ebpa,
Pparg, and Srebp-1c. (b) Western blotting was used to evaluate the protein expression level. Treatment
with isopanduratin A significantly decreased the levels of (c) SREBP-1c, (d) PPARγ, and (e) C/EBPα
proteins in differentiated 3T3-L1 cells. Confluent 3T3-L1 cells were cultured in the presence (+) or
absence (−) of differentiation medium (MDI) with 0–10 µM isopanduratin A (Iso-PA). Cells treated
with 0.5% v/v DMSO functioned as untreated control (0). Bar graphs demonstrating mean ± SD
(n = 3) were created using GraphPad Prism. A one-way ANOVA with Tukey’s post hoc test was used
to compare the means of treatment and differentiated control groups (* p < 0.05).
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3.4. Upstream Signals from MAPKs Are Modulated by Isopanduratin A

Mitogen-activated protein kinases (MAPKs), including ERK, p38, and JNK, play an
important role during adipogenesis, in which their regulating roles, such as cell prolif-
eration and differentiation, are exerted [37]. Suppression of MAPK signaling molecules
efficiently inhibits adipocyte development, and it has been demonstrated that altering these
biomolecules during adipocyte differentiation is one of the promising strategies to slow
adipogenesis and cellular lipid metabolism [16].

In the present investigation, a western blot analysis was performed to determine
whether isopanduratin A modulates the signaling molecules in the MAPK pathway
(Figure 6a). The decreased levels of p-JNK/JNK (Figure 6b) (see Figure S4) and p-ERK/ERK
(Figure 6c) were clearly indicated in the 3T3-L1 cells cultured with differentiation medium
containing 5–10 µM of isopanduratin A, compared to differentiated control cells. It is
worth noting that isopanduratin A at a high concentration (10 µM) dramatically suppressed
p-p38/p38 signaling (Figure 6d). Thus, these results indicated that isopanduratin A might
attenuate adipogenesis by inhibiting the MAPK pathway.
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Figure 6. Isopanduratin A deactivates MAPK signaling molecules in differentiated 3T3-L1 cells.
(a) After 48 h of incubation in differentiation medium containing 1–10 µM isopanduratin A, cells were
subjected to Western blot analysis. The phosphorylation ratios of (b) p-JNK/JNK, (c) p-ERK/ERK,
and (d) p-p38/p38 were significantly lower in cells treated with isopanduratin A, compared to the
differentiated control groups. Confluent 3T3-L1 cells were cultured in the presence (+) or absence (−)
of differentiation medium (MDI) with 0–10 µM isopanduratin A (Iso-PA). Cells treated with 0.5% v/v
DMSO functioned as the untreated control (0). Bar graphs demonstrating mean ± SD (n = 3) were
created using GraphPad Prism. A one-way ANOVA with Tukey’s post hoc test was used to compare
the means of treatment and differentiated control groups (* p < 0.05).

3.5. Isopanduratin A Modulates the Crosstalk between AMPK-ACC and AKT/GSK3β Signals

Several reports suggest that AMP-activated protein kinase (AMPK) regulates the
cellular energy balance by inhibiting lipogenesis and promoting lipolysis [41,42]. In this
study, isopanduratin A affected AMPK signaling molecules, as illustrated by Western blot
analysis (Figure 7a) (see Figures S5 and S6). The activation of the AMPK pathway by
this compound was indicated by the highly elevated levels of p-ACC/ACC (Figure 7b),
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p-AMPKα/AMPKα (Figure 7c), and p-AMPKβ/AMPKβ (Figure 7f) in the differentiated
3T3-L1 cells cultured with 10 µM of isopanduratin A for 48 h.
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Figure 7. Regulatory effects of isopanduratin A on AKT-related signaling pathways. Isopanduratin
A activates the AMPK-ACC pathway but deactivates the AKT/GSK3β signaling pathway in differ-
entiating 3T3-L1 cells. The band intensity of each protein obtained from (a) Western blotting was
used to analyze the ratio of the phosphorylated to the unphosphorylated form of (b) p-ACC/ACC
(c) p-AMPKα/AMPKα, (d) pAKT/AKT, (e) p-GSK3β/GSK3β, and (f) p-AMPK β/AMPK β. Conflu-
ent 3T3-L1 cells were cultured in the presence (+) or absence (−) of differentiation medium (MDI)
with 0–10 µM isopanduratin A (Iso-PA). Cells treated with 0.5% v/v dimethyl sulfoxide served as the
untreated control (0). Bar graphs demonstrating mean ± SD (n = 3) were created using GraphPad
Prism. A one-way ANOVA with Tukey’s post hoc test was used to compare the means of treatment
and differentiated control groups (* p < 0.05).
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Protein kinase B (AKT) is another upstream molecule that plays an important role in
adipogenesis. Phosphorylated AKT (p-AKT) suppresses AMPK-ACC signals, resulting in
the upregulation of adipogenic transcription factors and promotion of lipogenesis [43]. Ad-
ditionally, p-GSK3β, which mediates the transcription of adipogenic transcription factors,
is also modulated by p-AKT. The AKT/GSK3β cascade is required for the expression of
C/EBPβ, C/EBPα, and PPARγ during cell differentiation [44]. Consistent with the elevated
expression of AMPK-ACC signals and decreased levels of adipogenic transcription factors,
the ratios of p-AKT/AKT (Figure 7d) and p-GSK3β/GSK3β (Figure 7e) were suppressed
by isopanduratin A. These results suggest that isopanduratin A modulates the signaling
pathways of AKT/GSK3β and AKT/AMPK-ACC to inhibit adipogenesis.

3.6. Isopanduratin A Suppresses Adipocyte Maturation in Human Preadipocytes

The antiadipogenic potential of isopanduratin A was further studied in primary
human PCS-210-010 preadipocytes. The lipid contents were analyzed by Oil Red O staining
(Figure 8a). Treatment with isopanduratin A at 1, 5, and 10 µM decreased the number
of cellular lipid droplets by 93.51%, 71.75%, and 49.79%, respectively (Figure 8b). These
results suggested that isopanduratin A suppresses adipogenesis in human preadipocytes
in a dose-dependent manner.
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Figure 8. The suppressive effect of isopanduratin A on lipid accumulation in differentiated human
PCS-210-010 preadipocytes cultured with isopanduratin A was assessed by Oil Red O staining and
represented as percentage of Oil Red O staining. (a) Confluent 3T3-L1 cells were cultured in the
presence (+) or absence (−) of differentiation medium (MDI) with 0–10 µM isopanduratin A (Iso-PA).
Cells treated with 0.5% v/v DMSO functioned as untreated control (0). (b) Bar graphs demonstrating
mean ± SD (n = 3) were created using GraphPad Prism. A one-way ANOVA with Tukey’s post hoc
test was used to compare the means of treatment and differentiated control groups (* p < 0.05).

4. Discussion

Obesity is associated with the onset of metabolic syndrome and various degenerative
diseases that can cause various chronic health problems and often lead to premature death.
During the recent COVID-19 pandemic, obesity increased the risk of hospitalization and
admission to intensive care units [45]. The unusual expansion of adipose tissue, a character-
istic feature of obesity, depends on adipocyte hypertrophy (an increase in cell size) and/or
hyperplasia (an increase in cell number) [46]. It is commonly acknowledged that a long-
term regulated lifestyle that involves reducing food intake and increasing physical activity
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can effectively lower body weight. However, these diet and lifestyle modifications are
challenging for many overweight patients. Currently, nutrition intervention is highlighted
as an alternative strategy to treat obesity [47].

In this study, in the Oil Red O staining assay, isopanduratin A at non-toxic concentra-
tions reduced the number of mature, lipid-containing adipocytes in both mouse 3T3-L1
(Figure 1a,b) and human PCS-210-010 (Figure 8) preadipocyte models. These results indicate
its anti-adipogenic activity. It should be noted that isopanduratin A at 1 µM could reduce
cellular fat accumulation in human preadipocytes more than in murine preadipocytes.
Lipid metabolism plays a crucial role in adipocyte differentiation, and its dysregulation is a
critical factor in the development of obesity [48]. The decrease in intracellular triglyceride
content and the elevated levels of released glycerol (Figure 1c,d) demonstrated the lipolytic
effect of isopaduratin A.

The suppressive effect of isopanduratin A on 3T3-L1 adipogenesis is further evidenced
by decreased expression levels of adipogenic effectors, including FAS, PLIN1, LPL, and
adiponectin (Figure 2). These lipid-metabolism-modulating proteins are essential for
maintaining cellular lipid homeostasis and are associated with various metabolic conditions
such as hyperlipidemia, insulin resistance, atherosclerosis, and obesity [9,37,48–52]. Due to
its ability to modulate cellular lipid accumulation and interact with these lipid metabolism
proteins, isopanduratin A might be a potential nutraceutical candidate for the treatment of
several metabolic diseases.

Mitotic clonal expansion (MCE) is the process in which the number of premature
adipocytes increases as a result of cell cycle re-entry and the repeated cycles (two–three
cycles) of cell proliferation at the early stage of adipogenesis [7]. Several natural com-
pounds that possess an anti-adipogenic potential exhibit cell cycle arrest in differentiated
preadipocytes [37–39]. As mentioned above, growth-arrested preadipocytes undergo MCE,
which is mediated by the activation of cyclin/CDK complexes [7]. Interestingly, treatment
with 1–10 µM of isopanduratin A showed a significant decrease in the percentage of cell
proliferation, compared to the differentiation control cells (Figure 3a). Increased cyclin
D1 expression in preadipocytes treated with isopanduratin A, with concomitant lowered
levels of cyclin D3 and CDK2 (Figure 4), indicated cell cycle arrest in the G0/G1 phase.
Similar effects on cyclin D1 levels were reported earlier for other natural polyphenols such
as delphinidin and curcumin, both of which are strong anti-adipogenic compounds [53,54].
The increase in cyclin D1 levels may suggest that isopanduratin A also inhibits adipogenesis
by activating the Wnt/β-catenin signaling pathway. Consistent with the change in the
DNA content analyzed by flow cytometry, the accumulation of G0/G1 cells and the de-
crease in S phase cells occurred in differentiated preadipocytes cultured with isopanduratin
A at 1–10 µM (Figure 3b,c). These results suggested that isopanduratin A inhibited the
generation of mature adipocytes from preadipocytes by triggering cell cycle arrest.

After the MCE period, activation of C/EBPα triggers PPARγ transcription in asso-
ciation with the expression of adipogenesis-regulating proteins [36]. During adipocyte
differentiation, transcription factors C/EBPα, PPARγ, and SREBP-1c cross-activate one
another to exert their adipogenic functions [38,55]. Previous studies showed that C/EBPα
controls the expression of SREBP-1c and that low C/EBPα levels lead to reduced PPARγ
activity. In addition, gene expressions related to cellular lipid storage and insulin response
are affected by C/EBPα [56,57]. Intriguingly, isopanduratin A suppressed adipogenesis
in 3T3-L1 cells by downregulating these transcription factors at both the translation and
transcription levels (Figure 5).

The expression of adipogenic transcription factors is also governed by the opposite cor-
relation between the AKT/GSK3β and the AMPK-ACC pathways. As these two pathways
critically mediate the upstream machinery of adipocyte differentiation [58], the regulation
of proteins involved in these processes could be another mechanism for suppressing adipo-
genesis. It is plausible that AMPK and AKT are competitively phosphorylated by an energy
balance sensor that controls several metabolic pathways [59]. The AKT/GSK3β cascade is
vital for the expressions of C/EBPβ, C/EBPα, and PPARγ during cell differentiation [60].
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Moreover, the AMPK pathway influences the expression of FAS and FABP4, which
participate in lipogenesis at the late stage of adipogenesis [57]. In mouse and human
mesenchymal cells, upregulated levels of C/EBPα, PPARγ, and SREBP-1c are caused by
the downregulation of AMPK, which also affects the activation of ACC [55]. Activation
of AMPK (p-AMPK), in association with ACC initiation, hampers triglyceride and fatty
acid production by suppressing SREBP-1c and FAS during adipogenesis [47,59]. Therefore,
the good correlation between the suppressive effects of isopanduratin A on adipogenic
proteins (Figures 4 and 5) and the downregulated levels of p-AKT and p-GSK3β as well
as the upregulated levels of p-AMPK and p-ACC (Figure 7) suggests that the compound
inhibits adipogenesis and lipogenesis in mature adipocytes through the AKT/AMPK-
ACC pathway.

In general, extracellular stimuli can induce MAPK signaling, which, in turn, acti-
vates several intracellular responses through the phosphorylation of specific sites and
components, including ERK, JNK, and p38. Studies showed that adipogenic transcription
regulators are influenced by proteins in the MAPK family [61]. In this study, isopanduratin
A decreased the phosphorylated forms of JNK, ERK, and p38 (Figure 6). Interestingly,
isopanduratin A suppressed MAPK signaling concomitantly with a reduction in intracellu-
lar lipid accumulation (Figure 1). ERK phosphorylation is known to be essential for cell
proliferation and cell cycle progression during the MCE process [62–64]. Isopanduratin
A prevented MCE, in parallel with the downregulated levels of p-ERK/ERK (Figure 6c).
On the other hand, in our previous report, pinostrobin did not suppress MCE, in agree-
ment with its lack of activity on p-ERK/ERK [33]. Panduratin A and cardamonin, the
other adipogenic suppressors obtained from fingerroot, have never been reported for
MCE interference.

It is worth noting that the non-theoretical alteration of the upstream regulating
molecules (p-AKT, p-GSK3β, p-AMPK, p-ACC, and p-ERK) observed in this study
could be the result of late-stage detection. However, isopanduratin A indeed restricts
these signaling pathways during adipogenesis. Although more in-depth investigations
are needed, the overall results suggest that isopanduratin A suppresses adipogenesis
through multi-target mechanisms.

5. Conclusions

Fingerroot (Bosenbergia rotunda) possesses pinostrobin, panduratin A, cardamonin,
and idopanduratin A as adipogenic inhibitors. Isopanduratin A suppresses adipogene-
sis by modulating AKT/AMPK-ACC (AKT/GSK3β and AKT/AMPK-ACC) and MAPK
(JNK/ERK/p38) signals that correspond to the downregulation of key adipogenic regu-
lators (SREBP-1c, PPARγ, and C/EBPα) and adipogenic effectors (FAS, PLIN1, LPL, and
adiponectin) (Figure 9). It is worth noting that isopanduratin A also inhibits MCE by
preventing ERK phosphorylation at the early stage of adipogenesis. This property is absent
in pinostrobin and has not yet been described for panduratin A or cardamonin. Taken to-
gether, our results shed light on the molecular mechanisms underlying the anti-adipogenic
activity of isopanduratin A and provide further evidence for the potential use of fingerroot
as a functional food against weight gain and obesity. Rigorous preclinical and clinical trials
should be performed to establish this hypothesis. As a culinary plant, fingerroot might be
consumed directly as a functional food or used as an ingredient in nutraceutical products
for body weight control. However, the safety for long-term daily consumption, as well as
the stability and bioavailability of the active principles, must be thoroughly investigated
before any application can be realized.
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