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Air quality in the Pacific Northwest (PNW) of the U.S has generally been good in

recent years, but unhealthy events were observed due to wildfires in summer or

wood burning in winter. The current air quality forecasting system, which uses

chemical transport models (CTMs), has had di�culty forecasting these unhealthy

air quality events in the PNW. We developed a machine learning (ML) based

forecasting system, which consists of two components, ML1 (random forecast

classifiers and multiple linear regression models) and ML2 (two-phase random

forest regression model). Our previous study showed that the ML system provides

reliable forecasts of O3 at a single monitoring site in Kennewick, WA. In this

paper, we expand the ML forecasting system to predict both O3 in the wildfire

season and PM2.5 in wildfire and cold seasons at all available monitoring sites in

the PNW during 2017–2020, and evaluate our ML forecasts against the existing

operational CTM-based forecasts. For O3, both ML1 and ML2 are used to achieve

the best forecasts, which was the case in our previous study: ML2 performs better

overall (R2 = 0.79), especially for low-O3 events, while ML1 correctly captures

more high-O3 events. Compared to the CTM-based forecast, our O3 ML forecasts

reduce the normalized mean bias (NMB) from 7.6 to 2.6% and normalized mean

error (NME) from 18 to 12% when evaluating against the observation. For PM2.5,

ML2 performs the best and thus is used for the final forecasts. Compared to the

CTM-based PM2.5, ML2 clearly improves PM2.5 forecasts for both wildfire season

(May to September) and cold season (November to February): ML2 reduces NMB

(−27 to 7.9% for wildfire season; 3.4 to 2.2% for cold season) and NME (59 to

41% for wildfires season; 67 to 28% for cold season) significantly and captures

more high-PM2.5 events correctly. Our ML air quality forecast system requires

fewer computing resources and fewer input datasets, yet it provides more reliable

forecasts than (if not, comparable to) the CTM-based forecast. It demonstrates

that our ML system is a low-cost, reliable air quality forecasting system that can

support regional/local air quality management.
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1. Introduction

The AIRPACT air quality forecast system for the Pacific

Northwest has been used for air quality forecasts in the Pacific

Northwest (PNW) since May 2001 (Chen et al., 2008). AIRPACT

uses Weather Research and Forecasting (WRF) meteorological

model forecasts produced daily by the University of Washington

as input to the Community Multiscale Air Quality (CMAQ) to

simulate the air quality over the PNW. It provides detailed air

quality forecasts, but requires considerable computational power,

and the forecast accuracy is not satisfactory for poor air quality

events. Our study on the decadal evaluation of AIRPACT forecast

reveals that major updates made to the AIRPACT system during

the past decade did not improve the forecast capability significantly

(Munson et al., 2021). For instance, AIRPACT’s skill has improved

slightly over time for ozone (O3) but not for fine particulate matter

(PM2.5). The PM2.5 predictions were largely under-predicted

during the wildfire season in the years 2015 and 2018.

Machine learning models have been employed successfully

to predict the air quality across regions in other studies (e.g.,

Yu et al., 2016; Kang et al., 2018; Rybarczyk and Zalakeviciute,

2018; Zhan et al., 2018; Pernak et al., 2019; Li et al., 2022). For

example, Yuchi et al. (2019) utilized random forest regression and

multiple linear regression models for indoor PM2.5 predictions.

Zamani Joharestani et al. (2019) applied three models (i.e., random

forest, extreme gradient boosting, and deep learning) to predict the

PM2.5 concentrations in Tehran’s urban area. Eslami et al. (2020)

used a deep convolutional neural network to predict the hourly O3

across 25 observation stations over Seoul, South Korea. Xiao et al.

(2020) and Liu and Li (2022) proposed two deep learning methods

based on the Long-Short Term Memory (LSTM) neural network

to predict the PM2.5 concentrations in the Beijing–Tianjin–Hebei

region of China. Yang et al. (2021) explored the traffic impacts on

air quality by a random forest model under the pandemic scenario

in Los Angeles. Chau et al. (2022) applied deep learning methods,

LSTM and Bidirectional Recurrent Neural Network, to study the

effects of COVID-19 lockdown on the air quality change.

We developed an O3 forecasting system based on machine

learning (ML) models to improve O3 predictions in Kennewick,

WA during wildfire seasons in the PNW region (Fan et al., 2022).

In Fan et al. (2022), we used a single monitoring site in Kennewick,

WA during the wildfire seasons in 2017 to 2020. This ML system

consists of two components, ML1 (random forecast classifiers and

multiple linear regression models) and ML2 (two-phase random

forest regression model); see Supplementary Figure 1 for the details

of ML1 and ML2 components. In Fan et al. (2022), we found

that our ML forecasts captured 50% of unhealthy O3 events

in Kennewick, WA, which was a big improvement given that

AIRPACT missed all of them.

In this paper, we expand the application of our ML modeling

framework to all O3 and PM2.5 monitoring sites available in US

EPA’s Air Quality System (AQS) database throughout the PNW

from 2017 to 2020. This study applies the ML system to predict

O3 as well as PM2.5 forecasts, compared to only O3 in Fan et al.

(2022). The goal of our study is to test our ML-based air quality

forecast framework more rigorously by increasing spatiotemporal

coverages of observations and to compare our ML-based forecasts

to the CTM-based AIRPACT system.

The paper is organized as follows: Section 2 presents the input

data, technical details of the ML forecast framework, and model

validation methods. The subsequent result section (i.e., O3 in 2017

to 2020 Wildfire Seasons and PM2.5 in 2017 to 2020 Wildfire and

Cold Seasons) present the evaluation of theMLmodel performance

on O3 and PM2.5 predictions in the PNW using 10-time, 10-

fold cross-validation. The last section provides a summary and

conclusions.

2. Data and methods

2.1. ML predictions of O3 and PM2.5 using
observation datasets

In the PNW, currently there are 47 AQS sites with O3

observations, 138 sites with PM2.5 observations. Similar to the ML

modeling framework for Kennewick, the training dataset for this

multi-site ML models included the previous day’s observed O3 or

PM2.5 concentrations, time information (hour, weekday, month

represented as factors), and hourly meteorological forecast data

from twice-daily ensemble WRF forecasts extracted at each AQS

site. The WRF meteorology data was provided by the twice-daily

ensemble forecasts with 4 km horizontal resolution, produced by

the University of Washington (UW, https://a.atmos.washington.

edu/mm5rt/ensembles/).

The UW ensemble system applies multiple physical

parameterizations and surface properties to the WRF model

simulations, and the ensemble forecasts could improve the forecast

skill for some cases (Grimit and Mass, 2002; Mass et al., 2003; Eckel

andMass, 2005). To utilize the varying settings for the meteorology

simulations, we input the multi-member WRF ensemble forecasts

for the air quality forecasts in the PNW.

The evaluation of O3 predictions in this paper covers May

to September from 2017 to 2020 and PM2.5 predictions cover

two seasons, wildfire season (May to September) and cold season

(November to February) from 2017 to 2020. While wildfires

can affect both O3 and PM2.5 concentrations significantly, wood

burning from stoves during cold season is a significant source of

PM2.5 in populated areas, so we look at only PM2.5 for cold season.

To identify the characteristics of each individual site, themodels are

trained for each monitoring site with archived 4 kmWRF forecasts

and observations. For the model evaluation, we used the archived

operational WRF data, which is a single ensemble WRF member

from UW forecasts. The observations and archived WRF data are

available at 30 sites for O3 and more than 100 sites for PM2.5, and

there are 12 sites where both O3 and PM2.5 are measured.

2.2. Machine learning modeling framework

We developed an ML-based air quality forecast modeling

framework that consists of two independent ML models, in

order to predict O3 at Kennewick, WA (Fan et al., 2022). The

first ML model (ML1; Supplementary Figure 1a) consists of a

random forest classifier and a multiple linear regression model: the

RandomForestClassifier and RFE functions in the Python library

scikit-learn are used (Pedregosa et al., 2011). The second MLmodel
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(ML2; Supplementary Figure 1b) is based on a two-phase random

forest regression model: the RandomForestRegressor function in the

Python library scikit-learn is used (Pedregosa et al., 2011). More

details of our ML modeling framework are available in Dataset and

Modeling Framework section in Fan et al. (2022).

In this study, we use the same ML models to predict the O3

and PM2.5 at various AQS sites in the PNW. To better fit the local

conditions, the model is trained at each individual site. Hourly

O3 and PM2.5 predictions are used to compute maximum daily

8-h running average (MDA8) O3 mixing ratio and 24-h averaged

PM2.5 concentrations, as these are the requirements of the National

Ambient Air Quality Standards (NAAQS). Due to the different

sources of PM2.5 during wildfire and cold seasons in the PNW, the

model is trained separately for two seasons at each site. The feature-

selection module from the functions listed above are used to select

the features at each site to train the models. For ML2, the weighting

factors vary at each site, which are computed based on the local

input data.

Given ML models can be subject to overfitting and can be

sensitive to issues in the training dataset, we account for these

issues in our modeling setup. To avoid overfitting, we limit five

features in the model training, and use 10-time 10-fold cross-

validation to evaluate our model. Our training datasets are air

quality observation, which are generally imbalanced: a highly

polluted event or an extremely clean event is a rare event.

Haixiang et al. (2017) shows that imbalanced training data may

lead a bias toward commonly observed events. To alleviate the

imbalance problem, we apply several methods such as turning

on the balanced_subsample option in the function of the random

forest model and using multiple linear regression and second phase

random forest regression in the modeling system.

2.3. Computational requirements

Our ML modeling framework requires much less

computational power than the AIRPACT CMAQ system.

Whereas AIRPACT requires approx. 360 h of CPU time (120

processors for ∼3 h) for a single daily forecast, it takes 1–2 h

of CPU time to run the ML model for the 25–30 member WRF

ensemble O3 predictions at 47 AQS sites and PM2.5 at 138 AQS

sites throughout the PNW using the same CPU resources (Intel

Xeon E5-2620 v4). The exact number of WRF members may vary.

The ML model is re-trained monthly using the averaged WRF

ensemble forecasts at these sites and requires about 40 min of CPU

time.

2.4. Validation method and evaluation
metrics

We use three forecast verification metrics. Heidke Skill Score

(HSS), a commonly used forecast verification metric, is used to

evaluate the model predictability on AQI categories. Note that HSS

represents the accuracy of the model prediction compared with a

“random guess”-based forecast that is statistically independent of

the observations, and the value less than 0 means no skill and the

value close to 1 means a skillful model (Wilks, 2011; Jolliffe and

Stephenson, 2012). Another forecast verification metric, Hanssen-

Kuiper Skill Score (KSS), measures the ability to separate different

categories: the value less than 0 means no skill and the value close

to 1 means a skillful model (Wilks, 2011; Jolliffe and Stephenson,

2012). The Critical Success Index (CSI) score is the ratio of correct

predictions to the total number of observed or forecast events at

each category, whose range is from 0 to 1, and the closer to 1, the

more skillful the model is at this category (Wilks, 2011; Jolliffe and

Stephenson, 2012).

We also use a Taylor diagram to compare the model

performance throughout the sites in the PNW (Taylor, 2001;

Lemon, 2006). Three statistical variables, namely the standard

deviation (SD), correlation coefficient (R), centered root-mean-

square (RMS) difference, are shown in a Taylor diagram. They are

computed based on Equations (1)–(4), where m and o refer to the

model predictions and observations.
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The refined index of agreement (IOA) is used to compare the

model accuracy, and its range is from −1 to 1 (Willmott et al.,

2012). The IOA of a good model is close to 1. An R function dr()

from the package ie2misc using Equations (5) and (6) is used to

compute the IOA (Embry et al., 2022).

dr = 1−

∑n
i=1 |mi − oi|

2
∑n

i=1 |oi − ō|
when

n
∑

i=1

|mi − oi| ≤ 2

n
∑

i=1

|oi − ō|

(5)

dr =

∑n
i=1 |mi − oi|

2
∑n

i=1 |oi − ō|
− 1 when

n
∑

i=1

|mi − oi| > 2

n
∑

i=1

|oi − ō|

(6)

3. O3 in 2017 to 2020 wildfire seasons

This study covers a typical wildfire season in the PNW region,

from May to September, in 2017 to 2020 and uses O3 observations

at 30 AQS sites in this region. Table 1 summarizes the observed

O3 average values and the number of monitor-days in each year

with each AQI category that is computed only with the maximum
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TABLE 1 Summary of the O3 observations from May to September in 2017 to 2020 at 30 AQS sites in the PNW region. Note that daily AQI is computed

using MDA8 O3 only.

Year Mean (ppb) Percentage and # of monitor-days for each AQI category

1 2 3 4 Total

2017 44 76.6% (2,971) 20.1% (778) 3.1% (120) 0.2% (9) 3,878

2018 43 78.3% (3,195) 19.8% (808) 1.8% (75) 0.1% (4) 4,082

2019 39 90.8% (3,728) 8.8% (361) 0.4% (15) 0 (0) 4,104

2020 40 88.8% (3,361) 10.3% (390) 0.9% (35) 0 (1) 3,787

daily 8-h running average (MDA8) O3 mixing ratio. The number

of monitor-days in each year is presented in the parenthesis. The

MDA8 O3 observations in this region are mostly within lower

levels: “Good” air with an AQI category of 1 (76.6 to 90.8% of

total days used in this study) and “Moderate” air with an AQI

category of 2 (8.8 to 20.1% of total days used in this study). There

is an annual variability in O3 during this period. For example, the

O3 means are higher in 2017 and 2018 (44 and 43 ppb) than in

2019 and 2020 (39 and 40 ppb). Also, the number of monitor-

days where air quality was “Unhealthy for Sensitive Groups” (AQI3)

and “Unhealthy” (AQI4) are noticeably more frequent in 2017 and

2018, which could be attributed to more wildfires during these

years. It is very important to predict these unhealthy events reliably

as an air quality forecasting system, but AIRPACT operational air

quality forecasting system failed to predict all 14 unhealthy O3

events (AQI4) during the wildfire seasons of 2017 to 2020.

3.1. Evaluating O3 predictions of AIRPACT
and ML models

The 10-time, 10-fold cross-validation is used to evaluate the

model performance throughout the AQS sites over the PNW

region. Our forecast values are initially hourly but compiled into

MDA8 O3, and then we compare our ML performance against the

CTM-based air quality forecasting system, AIRPACT.

To examine how the model performance varies by O3 levels,

we present the ratio plots of simulated to measured MDA8 O3

against the measured MDA8 O3 levels from the 30 AQS sites

in Figure 1. The densest parts of the data in bright pink are

near the ratio of 1, which indicates most of the predictions

are close to the observations. All models have a similar issue

that over-predictions seem to be worse at lower O3 levels. For

AIRPACT, the model-to-observation agreement is noticeably more

scattered across the O3 levels than the ML models, which leads to

extremely under-predicted or over-predicted MDA8 O3 forecasts

that result in more misses or false alarms during the operational

forecasting. For instance, AIRPACT predicts 1% of good air quality

events as unhealthy for sensitive groups (i.e., false alarms) and

7% of unhealthy air quality events as good (i.e., misses; see

Supplementary Figure 2). For the ML models, extremely incorrect

predictions are fewer than AIRPACT. Compared to ML1, ML2

agrees better with observation as it shows the least scattered MDA8

O3 distribution along with the O3 levels. We can also see that

the densest part of the data is over the AQI1 (green) and AQI2
(yellow) categories in Figure 1C, where more than 95% of the O3

observations used in this study fall into, is very close to the ratio

of 1. For the higher O3 events (i.e., AQI3 and AQI4), ML2 under-

predicts most of these events, which is concerning as correctly

forecasting a high-O3 events is crucial to support air quality-related

public health.

The model evaluation statistics of MDA8 O3 at 30 AQS sites

over the PNW region during 2017 to 2020 are summarized in

Table 2. All ML models outperform AIRPACT, and ML2 is the best

among the MLmodels: ML2 has R2 of 0.79, NMB of−0.68%, NME

of 11%, and IOA of 0.79, while AIRPACT has R2 of 0.42, NMB of

7.6%, NME of 18%, and IOA of 0.64.

The model evaluations using HSS and KSS forecast verification

metrics are based on the AQI computed with only O3 from each

model and are presented in Table 3. Similar to the statistics in

Table 2, all ML models show higher HSS and KSS scores than

AIRPACT. For HSS,ML2 has a higher score (0.59) thanML1 (0.47).

For KSS, ML1 has a higher score (0.61) than ML2 (0.55), because

ML1 distinguishes the AQI categories better by predicting more

days with AQI3 and AQI4 categories than ML2.

The CSI in Table 3 measures the model’s AQI categorical

forecast. ML2 has the highest CSI1 (0.89) and CSI2 (0.46) score,

and ML1 has the highest CSI3 score (0.21), which is consistent with

what we see in Figure 1. However, the CSI4 score of ML1 (0.062)

is lower than ML2 (0.12), despite the number of AQI4 events

captured by ML1 and ML2 are same (see Supplementary Figure 2).

This is because ML1 tends to predict higher O3 levels than ML2

(see Figures 1B, C), which leads to more “false” AQI3 and AQI4
predictions. For a very rare event such as AQI4, the CSI score is

significantly influenced by having a few more false alarms.

In order to produce the most reliable O3 predictions with our

ML models, we build an operational ML modeling framework for

O3 to use ML2 for low O3 levels and ML1 for high O3 levels

(“ML_opr_O3” in Tables 2, 3). The ML_opr_O3 model requires a

threshold O3 level that determines which ML prediction (ML1 or

ML2) to be as a final forecast product. If the ML2 prediction is

lower than the threshold, then the ML2 prediction is selected; if

not, theML1 prediction is selected. To find an optimal threshold O3

level that enables either ML1 or ML2, we tested the threshold value

from 1 to 100 ppb and computed the evolutions of HSS and KSS

(see Figure 2). A low threshold means more ML1 predictions are

used. With increasing the threshold value, more ML2 predictions

are used and the HSS value is increased. This is consistent with the

high HSS value from ML2 in Table 2. When the threshold value is

above 50 ppb, the increasing trend of HSS stops and the KSS value

dramatically decreases. Thus, ML_opr_O3 uses ML2 when MDA8

O3 predictions by ML2 are less than 50 ppb and, otherwise, uses

ML1.ML_opr_O3 performance is mostly in betweenML1 andML2
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FIGURE 1

Ratio plots of model predicted MDA8 O3 to observations vs. observations for three models (A) AIRPACT, (B) ML1, and (C) ML2. The point color of dark

blue to bright pink indicates density of the data increasing. The white dashed lines mark the ideal condition (the ratio between model predictions and

observations is 1). The ratio below 1 represents the model under-prediction and the ratio above 1 represents the over-prediction.

TABLE 2 Statistics of the 10-time, 10-fold cross-validation of the MDA8

O3 predictions from AIRPACT and our ML models.

AIRPACT ML1 ML2 ML_opr_O3

R2 0.42 0.67 0.79 0.76

NMB (%) 7.6 2.2 −0.68 2.6

NME (%) 18 16 11 12

IOA 0.64 0.69 0.79 0.76

in Tables 2, 3. The statistics (R2, NME, IOA, HSS, CSI1, and CSI2)

betweenML2 andML_opr_O3 is close as ourO3 observation data is

mostly for lower O3 levels where ML_opr_O3 relies on ML2. Using

ML1 predictions improves the model performance (KSS and CSI3)

for high O3 events, although some over-predictions lead to a higher

NMB value than ML2.

To examine the model performance of MDA8 O3 at each

individual AQS site, we present the spatial distributions of NMB

in Figure 3 and those of IOA in Figure 4. AIRPACT tends to over-

predict the MDA8 O3 during the wildfire seasons, especially along

the coast, where the NMB can be up to 28% (see Figure 3A). It

is possibly due to the influence of boundary condition and model

representation of atmospheric mix layer (Chen et al., 2008). ML1

performs better than AIRPACT and does not over-predict along the

TABLE 3 Forecast verifications of the 10-time, 10-fold cross-validations

using AQI computed with only O3 from AIRPACT and our ML models.

AIRPACT ML1 ML2 ML_opr_O3

HSS 0.46 0.47 0.59 0.54

KSS 0.49 0.61 0.55 0.63

CSI

1 0.83 0.80 0.89 0.86

2 0.36 0.36 0.46 0.41

3 0.16 0.21 0.038 0.21

4 0 0.062 0.12 0.062

The best statistical values are marked with bold fonts.

coast. The individual AQS site’s NMB inML1 is mostly in the range

of −6 to 8%, while that in ML2 is −4% to 0. For ML_opr_O3, its

NMB is mostly close to the NMB of ML2 except at a few sites (i.e.,

sites near Salt Lake City, UT) where ML_opr_O3 performance is

close toML1. TheNME is not shown in the figures, butML_opr_O3

(10 to 14%) and ML2 (8 to 14%) have close performance, and

they are better than AIRPACT (12 to 33%) and ML1 (11 to 22%)

throughout the AQS sites.

For the site-specific IOA, most ML-based models show higher

values than AIRPACT, whose IOA values are mostly below 0.6
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(see Figure 4A), because AIRPACT suffers from extremely over-

predicted MDA8 O3 above 100 ppb and IOA is sensitive to them

(Legates and McCabe, 1999). The IOA values of ML_opr_O3 are

very close to those of ML2, similar to the site-specific NMB.

FIGURE 2

The evaluations of HSS and KSS with increasing the threshold.

We also use the Taylor diagram plot in Figure 5 to show the

model performance at the individual AQS site. Note that the

statistics used in the Taylor diagram are normalized to visualize

the difference among models more easily: for example, the SD

and centered RMS difference are normalized by dividing them

by the observed SD at each AQS site (Taylor, 2001). The Taylor

diagram shows that the correlation coefficients of ML2 are within

0.6 and 0.9 and the centered RMS difference values are all within

0.5 and 0.8. While the centered RMS difference of ML1 (0.5 to

1.2) and AIRPACT (0.8 to 2) are worse with a larger site-to-

site variation than ML2. However, the normalized SD of ML2 is

less than 1, which means the ML2 predictions have less variation

than the observations. For ML_opr_O3, it is quite like ML2 but

the normalized SD is close to 1 for most sites, which means

ML_opr_O3 is better at capturing the observed variation.

Overall, we find that ML2 predicts the low-MDA8 O3 events

best, while ML1 predicts the high-MDA8 O3 events best. The

ML_opr_O3 model take an advantage of both ML1 and ML2 by

using ML2 model when the ML2 predicted MDA8 O3 is lower than

50 ppb and ML1 model for all other cases. The overall ML_opr_O3

FIGURE 3

Maps showing NMB of MDA8 O3 predictions from (A) AIRPACT, (B) ML1, (C) ML2, and (D) ML_opr_O3 at the AQS sites throughout the PNW.
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FIGURE 4

Maps showing IOA of MDA8 O3 predictions from (A) AIRPACT, (B) ML1, (C) ML2, and (D) ML_opr_O3 at the AQS sites throughout the PNW.

performance is close toML2, but it also captures the high-O3 events

like ML1.

4. PM2.5 in 2017 to 2020 wildfire and
cold seasons

The PNW region experiences strong seasonal variations of

PM2.5 due to distinct sources. For instance, wildfires are the

main sources of PM2.5 from May to September, while wood-

burning stoves are the main source from November to February.

Based on this, our PM2.5 study is separated into the wildfire

season (May to September) and cold season (November to

February). We use a total of 103 AQS sites for the wildfire

season and 104 sites for the cold season, which are available from

2017 to 2020.

A summary of the PM2.5 observations during these seasons is

presented in Table 4. The mean PM2.5 concentrations during the

wildfire season range from 4.7 to 12 µg m−3 while those during the

cold season range from 6.9 to 9.2 µg m−3. In both seasons, daily

PM2.5 concentrations are mostly in the AQI category 1 (AQI1;

corresponding to Good) and AQI2 (Moderate). A large number

of wildfires occurred in 2017, 2018 and 2020, leading to 5.0 to

5.9% of monitor-days in the wildfire season experiencing AQI3
(unhealthy for sensitive groups) or above. There were few wildfires

in 2019, so the mean PM2.5 concentration is particularly low and

only 4 AQI4 (unhealthy) events occurred during that 2019 wildfire

season. The cold season has less variation in PM2.5 concentrations

during the 2017 to 2020 period, and experiences significantly fewer

unhealthy events (i.e., AQI3 and above) than the wildfire season:

only 0.1 to 1.1% of monitor-days in the cold season have AQI3
or above.

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.1124148
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Fan et al. 10.3389/fdata.2023.1124148

4.1. Evaluating PM2.5 predictions of
AIRPACT and ML models in wildfire season

Similar to the O3 evaluation for the ML models, 10-time,

10-fold cross-validation is used to evaluate the ML-based PM2.5

predictions. Because most daily PM2.5 concentrations are below

10 µg m−3, the x-axis of ratio plots in Figure 6 uses a log

scale. It is clear that PM2.5 predictions are much more scattered,

showing severe under-predictions as well as over-predictions than

O3 predictions shown in Figure 1 for all models. Focusing on the

density of data (see the bright pink region in Figure 6A), AIRPACT

mostly under-predicts the PM2.5 in the wildfire season: the densest

part of the data is below the ratio of 1 in Figure 6A, and Table 5

shows its NMB of −27%. Most of the ML1 and ML2 predictions

(bright pink regions in Figures 6B, C) are close to the ratio of 1,

and their NMB values (14 and 7.9%) are lower than AIRPACT,

FIGURE 5

Taylor diagram of MDA8 O3 at the AQS sites throughout the PNW.

Each circle symbol represents an AQS site, and the red color is for

AIRPACT, green for ML1, blue for ML2, and yellow for ML_opr_O3.

Note that centered RMS di�erence is proportional to the distance

from the point on the x-axis (standard deviation) marked with an

open circle.

although ML1 and ML2 tend to over-predict some low daily PM2.5

concentrations (AQI1 and AQI2).

Similar to O3, ML2 has a better overall performance than ML1:

lower NME (41 vs. 54%) and higher IOA (0.78 vs. 0.70) and higher

HSS (0.59 vs. 0.53) are shown in Tables 5, 6. However, unlike O3,

ML1 does not perform better for high-PM2.5 predictions. The KSS

scores from ML1 and ML2 are the same (0.66). The CSI scores for

AQI5 and AQI6 events from ML1 are 0.01 and 0.06 higher than

ML2, but the scores for AQI3 and AQI4 are 0.06 and 0.02 lower

than ML2. To reduce the false alarms, we decided to use only ML2

to forecast the daily PM2.5 at the AQS sites in the PNW.

As shown in Figure 7, AIRPACT under-predicts the daily

PM2.5 at most AQS sites (94 out of 103 sites) in the PNW, while

the ML models tend to over-predict the daily PM2.5. ML2 (−2 to

19%) performs better than ML1 (0 to 32%) because of fewer false

alarms. ML2 also has the lowest NME (22 to 60%) than AIRPACT

(43 to 103%) and ML1 (33 to 87%) throughout the AQS sites

(not shown in the figures). The IOA from AIRPACT in Figure 8A

is acceptable except for the AQS sites at the far eastern edge of

the model domain. Both ML1 and ML2 show higher IOA than

AIRPACT at several sites, but ML2 generally has the highest IOA

scores (see Figures 8B, C).

The Taylor diagram in Figure 9 shows that the AIRPACT

performance varies more widely among the 103 AQS sites than

ML1 and ML2. The correlation coefficients from AIRPACT range

from 0.2 to above 0.9, while both ML predictions are mostly in

the range of 0.6 to 0.9. The centered RMS difference values are all

within 0.5 to 0.8 for the ML models but AIRPACT has several sites

with large centered RMS difference values above 1. Similar to O3,

the normalized SD of ML1 is close to 1 but that of ML2 is slightly

below 1, suggesting the ML2 predictions have less variation than

the observations. Figure 9 shows extreme predictions by AIPRACT.

For example, the daily PM2.5 concentrations are below 40 µg

m−3 during wildfire seasons in 2017 to 2020 at Lindon, UT, but

AIRPACT predicts several extreme values up to 470 µg m−3. The

red circle outside the Taylor diagram in Figure 9 is the AQS site

represented by the red circle from AIRPACT in Figure 8A, where

both ML models perform well.

ML1 and ML2 exhibit better performance for PM2.5 than

AIRPACT. However, unlike the case of O3 where ML1 shows a

significantly better capability to predict high pollution events than

TABLE 4 Summary of the daily PM2.5 observations from two seasons in 2017 to 2020 at AQS sites in the PNW region. Note that daily AQI is computed

using PM2.5 only.

Season Year Mean (µg

m−3)

Percentage and # of monitor-days for each AQI

1 2 3 4 5 6 Total

Wildfire season (May to Sep) 2017 11 82.4% (11,442) 11.7% (1,623) 2.9% (409) 2.3% (319) 0.6% (80) 0.1% (16) 13,889

2018 9.7 83.7% (11,663) 11.2% (1,556) 2.7% (373) 2.3% (321) 0.1% (14) 0 (2) 13,929

2019 4.7 98.4% (14,144) 1.5% (211) 0.1% (16) 0 (4) 0 (0) 0 (0) 14,375

2020 12 88.9% (12,556) 6.2% (871) 1.2% (163) 2.1% (296) 1.0% (143) 0.7% (100) 14,129

Cold season (Nov to Feb) 2017 9.1 77.6% (7,997) 21.3% (2,194) 0.9% (97) 0.2% (16) - - 10,304

2018 7.9 82.1%(6,827) 17.7% (1,471) 0.3% (21) 0 (0) - - 8,319

2019 9.2 76.9% (8,843) 22.7% (2,606) 0.4% (51) 0 (3) - - 1,1503

2020 6.9 87.1% (8,647) 12.7% (1,261) 0.1% (14) 0 (0) - - 9,922
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FIGURE 6

Ratio plots of model predicted daily PM2.5 to observations vs. observations in the wildfire season for three models (A) AIRPACT, (B) ML1, and (C) ML2.

The point color of dark blue to bright pink indicates density of the data increasing. The white dashed lines mark the ideal condition (the ratio between

model predictions and observations is 1). The ratio below 1 represents the model under-prediction and the ratio above 1 represents the

over-prediction.

TABLE 5 Statistics of the 10-time, 10-fold cross-validations of the daily

PM2.5 concentrations during wildfire season from AIRPACT and our ML

models.

AIRPACT ML1 ML2

R2 0.51 0.69 0.72

NMB (%) −27 14 7.9

NME (%) 59 54 41

IOA 0.67 0.70 0.78

ML2, both ML1 and ML2 perform similarly for the high PM2.5

events. Since ML2 preforms noticeably better than ML1 for most

PM2.5 levels, we use only ML2 to provide the final PM2.5 forecasts.

4.2. Evaluating PM2.5 predictions of
AIRPACT and ML models in cold season

There are fewer severe pollution events in the cold season than

in wildfire season: only 19 unhealthy events in the cold season of

2017 to 2020; no very unhealthy or hazardous events. AIRPACT

during the cold season has the lower NMB (3.4%) and higher

TABLE 6 Forecast verifications of the 10-time, 10-fold cross-validations

using AQI computed with only PM2.5 during wildfire season from

AIRPACT and our ML models.

AIRPACT ML1 ML2

HSS 0.37 0.53 0.59

KSS 0.29 0.66 0.66

1 0.91 0.91 0.92

2 0.17 0.31 0.37

CSI
3 0.08 0.14 0.20

4 0.23 0.36 0.38

5 0.19 0.24 0.23

6 0.30 0.41 0.35

The best statistical values are marked with bold fonts.

NME (67%) than the wildfire season (NMB−27% and NME 59%).

Similar to the model performance in the wildfire season, ML1 and

ML2 have better statistics than AIRPACT and ML2 shows better

performance than ML1 as shown in Supplementary Table 1.

The ratio plot of AIRPACT in Supplementary Figure 3a shows

the densest part (bright pink in the figure) is below the 1-to-1 line,
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FIGURE 7

Maps showing NMB of daily PM2.5 predictions from (A) AIRPACT, (B) ML1, and (C) ML2 at the AQS sites throughout the PNW in the wildfire season of

2017 to 2020.

which is similar to its predictions during the wildfire season. The

low PM2.5 regions show both severe under-prediction and over-

prediction but most of the unhealthy events in the red region are

mainly under-predicted. BothML1 andML2 show better model-to-

observation agreements (the scatters in Supplementary Figures 3b,

c are closer to the 1-to-1 line), and their NME values (36 and 28%)

are much lower than AIRPACT (67%). The IOA, HSS, and KSS

scores of ML1 and ML2 are also 0.28 to 0.39 higher than AIRPACT

(shown in Supplementary Table 2). In the wildfire season, the CSI1
score from AIRPACT (0.91) is comparable to ML models (ML1

0.91, ML2 0.92), but the ML models show significantly better

performance at all levels of PM2.5 in the cold season. ML2 has

higher CSI1 (0.87) and CSI2 (0.53) scores than ML1 (0.83 and

0.50), and ML1 has higher CSI3 (0.17) and CSI4 (0.30) scores than

ML2 (0.11 and 0.21).

AIRPACT largely over-predicts the PM2.5 concentrations along

the coast in the cold season, where the NMB can be above

100%, while it under-predicts at several inland sites, where the

NMB is down to −85% (see Supplementary Figure 4). The NMB

values from ML1 and ML2 are mostly in the range of −10 to

20% and −1 to 10%, in respectively, which are better than their

performance in the wildfire season. Most of the NME values

from two ML models are below 50%, and the AIRPACT can

generate extremely high NME, up to 274% (not shown in the

figures). Supplementary Figure 5 shows that IOA of AIRPACT is

below 0.5 at many AQS sites but both ML models show IOA

above 0.5 at most of the AQS sites in the PNW. It clearly shows

that our ML models improve forecast performance compared to

AIRPACT, and overall ML2 performs better than ML1 at most

AQS sites.
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FIGURE 8

Maps showing IOA of daily PM2.5 predictions from (A) AIRPACT, (B) ML1, and (C) ML2 at the AQS sites throughout the PNW in the wildfire season of

2017 to 2020.

Compared to the wildfire season PM2.5 predictions in Figure 9,

the centered RMS difference values from AIPRACT are higher

than 2 at more sites, and the correlation coefficients decrease from

0.2–0.95 to 0–0.85 in Supplementary Figure 6. The normalized SD

values also show a large variation: one value is even above 4 (the

red circle outside the Taylor diagram in Supplementary Figure 6),

which represents the AQS site in Bellevue,WA. The observedmean

PM2.5 at Bellevue is 4.0 µg m−3, but the mean prediction from

AIRPACT is 14 µg m−3, and it predicts several high PM2.5 events

up to 67 µg m−3. The ML model performance is more stable, and

ML2 has more correlation coefficients in the range of 0.8 to 0.9.

With the better performance at most sites fromML2 than ML1, the

ML2 is also used for the operational PM2.5 forecasts in the cold

seasons.

5. Summary and conclusions

CTMs are widely used for air quality modeling and forecasting.

AIRPACT is a CTM-based operational forecasting system for the

PNW, which has been operated for more than a decade. There

have been costly efforts to improve AIRPACT forecast capability,

but its forecast capability has not been significantly improved,

especially for poor air quality events. We developed a MLmodeling

framework, which we applied successfully to forecast the O3 level

at Kennewick, WA and used it as a local operational O3 forecast. In

this study, we expanded the MLmodeling framework to predict O3

as well as PM2.5 at the AQS sites throughout the PNW. Since April

2020, our ML model has been used for the ensemble-mean 72-h

operational air quality forecasts across the AQS sites in the PNW.
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FIGURE 9

Taylor diagram of wildfire season daily PM2.5. Each circle symbol

represents an AQS site, and the red color is for AIRPACT, green for

ML1, and blue for ML2. Note that centered RMS di�erence is

proportional to the distance from the point on the x-axis (standard

deviation) marked with an open circle.

TheWashington State Department of Ecology utilizes our forecasts

for their winter forecasts and wildfire smoke forecasts.

There are 30 AQS sites with available O3 observations in the

wildfire season (May to September) from 2017 to 2020. AIRPACT

fails to capture the unhealthy events in the high-O3 year, 2017

and 2018, but it performs well in 2019 and 2020. ML1 shows

improved predictability for high-O3 events, while ML2 shows the

best performance for low MDA8 O3. The combined approach

uses the advantages of the two ML methods and improves the

model performance significantly over AIRPACT. The NMB and

NME decrease from 7.6 and 18% to 2.6 and 12%, respectively.

The statistical parameters, IOA, HSS, KSS, and CSI, are larger than

AIRPACT, and the higher CSI3 and CSI4 scores indicate that the

model identifies more high-O3 events.

There are 103 AQS sites with available PM2.5 observations

during wildfire season and 104 AQS sites during cold season

from 2017 to 2020. ML1 and ML2 are trained for two seasons,

separately. Both ML models perform much better than AIRPACT.

The associated HSS and KSS values for the ML models are 0.22

to 0.39 higher than those for AIRPACT. Compared to AIRPACT

and ML1, ML2 has lower NMB and NME and higher IOA in

both seasons. The CSI (from CSI3 to CSI6) values between ML1

and ML2 are quite close, suggesting both models are capable of

capturing high-PM2.5 events. Thus, we choose to operate ML2

alone to provide the final PM2.5 predictions.

Our ML modeling framework requires much fewer computing

resources than AIRPACT. For example, with the same CPU

resources, the ML modeling framework uses one processor to

finish training in 40 min with the historical WRF data, and

provides up to 30 WRF-member ensemble forecast of O3 at

47 AQS sites and PM2.5 at 138 AQS sites throughout the

PNW within 1–2 h of CPU time, while AIRPACT needs 120

processors for ∼3 h (∼360 h of CPU time) to complete the daily

operational forecasts.

Overall, the ML modeling framework requires much fewer

computational sources and fewer input datasets and provides

more reliable air quality forecasts at the selected locations than

the CTM-based forecasts, AIRPACT. Our ML models provide

more accurate forecasts (most R2 >0.7) and captures 70%

more high pollution events than AIRPACT. On the basis of

the random forest model, we developed this ML modeling

framework with preserving the accurate forecasts for the “good”

air quality and improving the performance for the “bad” air

quality by using the multiple regression model or second-phase

random forest.

This study demonstrates the successful application ofML for air

quality forecasting and how ourMLmodels can be utilized as a low-

cost reliable air quality forecasting system to support regional/local

air quality management. Since our ML forecasting system requires

previous day’s air quality measurement as input, its application is

limited to the sites with observations, such as the EPA AQS sites

in this study. To expand the utilization in the future, the low-

cost sensor measurements (e.g., Purple Air networks) could be

employed as the model input to our ML models to provide the air

quality forecasts at locations without AQS measurement stations,

which would effectively support local air quality management and

public awareness.
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