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Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) coined by inflammation and 
neurodegeneration. The actual cause of the neurodegenerative component of the disease is however unclear. We investigated 
here the direct and differential effects of inflammatory mediators on human neurons. We used embryonic stem cell-derived 
(H9) human neuronal stem cells (hNSC) to generate neuronal cultures. Neurons were subsequently treated with tumour 
necrosis factor alpha (TNFα), interferon gamma (IFNγ), granulocyte–macrophage colony-stimulating factor (GM-CSF), 
interleukin 17A (IL-17A) and interleukin 10 (IL-10) separately or in combination. Immunofluorescence staining and quan-
titative polymerase chain reaction (qPCR) were used to assess cytokine receptor expression, cell integrity and transcriptomic 
changes upon treatment. H9-hNSC-derived neurons expressed cytokine receptors for IFNγ, TNFα, IL-10 and IL-17A. 
Neuronal exposure to these cytokines resulted in differential effects on neurite integrity parameters with a clear decrease 
for TNFα- and GM-CSF-treated neurons. The combinatorial treatment with IL-17A/IFNγ or IL-17A/TNFα induced a more 
pronounced effect on neurite integrity. Furthermore, combinatorial treatments with two cytokines induced several key sig-
nalling pathways, i.e. NFκB-, hedgehog and oxidative stress signalling, stronger than any of the cytokines alone. This work 
supports the idea of immune-neuronal crosstalk and the need to focus on the potential role of inflammatory cytokines on 
neuronal cytoarchitecture and function.
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Background

Multiple sclerosis (MS) is a chronic inflammatory disease of the 
central nervous system (CNS) characterized by both inflamma-
tion and neurodegeneration, which can lead to a variety of clini-
cal disabilities such as motor, sensory and cognitive symptoms 
(Reich et al. 2018; Thompson et al. 2018). Various pathobio-
logical processes including oxidative stress, glutamate-mediated  
excitotoxicity and direct immune cell-mediated damage  
have been linked with axonal and neuronal degeneration (Nikić  
et al. 2011). The underlying pathobiological processes and their 
proportional contribution to neurodegeneration found in MS are 
however still heavily debated. Most of the current knowledge 
about neurodegeneration in MS originates from animal models 
of the disease (i.e., experimental autoimmune encephalomyeli-
tis (EAE), (Friese et al. 2006). EAE mimics many clinical and 
neuropathological features but its comparability to the human 
disease is limited (Ransohoff 2012). Focusing on what is known 
in the human disease, in the early stages, invading lymphocytes  
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activate the CNS-innate immune system and attract further 
peripheral immune cells by secreting cytokines and other  
pro-inflammatory mediators, which leads to the formation of 
demyelinating lesions (Machado-Santos et al. 2018). In later 
disease stages, activated microglia are the major histopathologic 
hallmark, which gave rise to the hypothesis that maintenance of 
a proinflammatory environment by persistent secretion of pro-
inflammatory cytokines leads to neuronal damage (Jäckle et al. 
2020; Zrzavy et al. 2017). Sustained cytokine production is a 
consistent feature throughout the disease course of MS. Several 
studies have shown that classical pleotropic proinflammatory 
cytokines such as TNFα and IFNγ, as well as more specifically 
employed cytokines such as GM-CSF and IL-17A, are elevated  
in serum or cerebrospinal fluid (CSF) of Persons with MS 
(PwMS, (Schofield et al. 2016; Carrieri et al. 2008; Maimone 
et al. 1991). A reduction was observed in IL-10 (Carrieri et al. 
2008), which is known to have immune-regulatory properties. 
In MS, IL-10 production in blood lymphocytes inversely cor-
relates with lesion load and clinical disability and IL-10 serum 
levels showed to be a risk factor for further relapses in patients 
with clinically isolated syndrome (Petereit et al. 2003; Wei et al. 
2019). On the contrary, IL-17A secretion is associated with 
MRI disease activity (Hedegaard et al. 2008) and Th17 cells, the 
main producer of IL-17A, can disrupt the blood–brain barrier 
and stimulate neuroinflammation (Kebir et al. 2007). Further-
more, we have previously shown a correlation between Th17 
cells in the peripheral blood and strongly neurodegenerative 
(T1-hypointense) lesions in MS (Bühler et al. 2017). Another 
cytokine associated with MS inflammation is GM-CSF, which 
is disproportionally frequent in MS lesions (Imitola et al. 2018) 
and T helper cells only producing GM-CSF have been found in 
the CSF of PwMS (Noster et al. 2014), (Restorick et al. 2017).

Still, the main question how the “inflammatory milieu” 
contributes to the disease progression is largely unanswered. 
Inflammatory cytokines are thought to drive immune cells to 
either direct cytotoxic actions or indirectly to the production of 
humoral effector molecules, e.g. antibodies, complement factors 
or apoptosis-inducing ligands. However, it has remained unclear 
whether inflammatory cytokines typically involved in MS dis-
ease evolution, e.g. TNFα, IFNγ, GM-CSF and IL-17A, can 
directly contribute to MS neurotoxicity. To elucidate a potential 
direct contribution, we established a human in vitro neuronal 
cell culture model. Human neuronal cultures were treated with 
recombinantly produced cytokines and cytokine combinations 
followed by immunofluorescence and rt-qPCR analysis.

Material and Methods

Cell Cultivation

We used commercially available embryonic stem cell-
derived (H9) human neuronal stem cells (hNSC; Gibco) for 

the differentiation to neuronal cultures. hNSC were seeded 
on Geltrex™ (Gibco) coated wells in 2% StemPro Serum-
Free Human Neural Stem Cell Culture Medium (Ther-
moFisher) supplemented with 2 mM GlutaMAX (Gibco), 
20 ng/ml epidermal growth factor (EGF; Peprotech), 20 ng/
ml basic fibroblast growth factor (ß-FGF; Peprotech) and 
2% StemPro Neural Supplement (Gibco) and 1% Pen Strep 
(Gibco). Medium was changed every day for 5 days. After 
5  days, neuronal differentiation was started by adding 
DMEM/F12 medium (Gibco) with 1 × B-27 supplement 
(Gibco), 10 ng/ml brain-derived neurotrophic factor (BDNF; 
Miltenyi) and 10 ng/ml neurotrophin 3 (NT3; Miltenyi) and 
1% Pen Strep (Gibco). Medium was changed every other day 
for 14 days. After two weeks, cells were reseeded at a den-
sity of 2.6 ×  105 cells/cm2 in a Neurobasal medium (Gibco) 
containing 1 × B-27 supplement and 1% Pen Strep (Gibco) 
for neuronal maintenance. Cells were filtered before reseed-
ing to remove any remaining stem cell conglomerates using 
a 100 µm filter (nylon cell strainer 100 µM, REF 352,369, 
Corning). Cells were cultivated another 7 days in Neurobasal 
medium before the experimental stage.

Treatment with Cytokines and Inflammatory 
Mediators

Neuronal cell cultures were treated with IL-17, IL-10, IFNγ, 
TNFα, GM-CSF (concentration: 50  ng/mL; Miltenyi),  
l-glutamate (concentration: 250 µM; Miltenyi) or staurosporine 
(concentration: 0.5 µM; Selleckchem) for 24 h respectively. 
Concentrations of cytokines were selected based on assumed 
local concentrations in the CNS of PwMS as described in 
previous studies (Huppert et al. 2010), (Zong et al. 2016), 
(Ta et al. 2019), (Nasiri et al. 2020), (Neniskyte et al. 2014), 
(Riazi et al. 2008), (Schäbitz et al. 2007), (Vaarmann et al. 
2013), (Dikmen et al. 2020). We chose the duration of treat-
ment according to results of preliminary tests showing first 
signs of neuronal integrity alterations after 24 h without  
further changes upon prolongation of cytokine treatment.

Immunofluorescence Staining

After 24  h of cytokine/inflammatory mediator treat-
ment, cells were fixated (4% in paraformaldehyde (PFA) 
in phosphate-buffered saline (PBS)) and permeabilized 
(0.2% Titron X-100 in PBS; ThermoFisher Scientific) 
for immunofluorescence staining. Monoclonal antibodies 
against Class III ß-tubulin (TUBB3; 657,402, BioLegend), 
microtubule-associated protein 2 (MAP2; sc-74421, Santa 
Cruz), IL-17RA (clone G9, sc-376374, Santa Cruz), IL-
10RB (clone F6, sc-271969, Santa Cruz), TNFR1 (clone 
H-5, sc-8436 Santa Cruz) or IFNGR1 (clone GIR 94, 
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sc-12755, Santa Cruz) were added, and cells were incu-
bated for 1 h at room temperature. Afterwards, matching 
secondary antibodies (Alexa Fluor™ 594 goat anti-mouse 
IgG(H + L) A11032, Alexa Fluor™ 488 goat anti-mouse 
IgG(H + L) A11001, Alexa Fluor™ 488 donkey anti-rabbit 
IgG(H + L) A21206, Alexa Fluor™ 594 goat anti-rabbit 
IgG(H + L) A11012, all from Invitrogen) each in a dilu-
tion of 1:1000 were applied respectively for 1 h at room  
temperature and DAPI (4’,6-diamidino-2-phenylindole) 
was used for nuclear staining. Primary antibodies were 
used at the following concentrations in 1% BSA/PBS 
upon application: mouse anti hTUBB3 (1:250), rabbit anti 
hMAP-2 (1:100), anti hIL-17RA (1:100), anti hIL-10RB 
(1:100), anti hTNFR1 (1:100), anti hIFNGR1 (1:100).

Immunofluorescence Image Assessment

Immunofluorescence images were acquired with 20 × or 
40 × magnification with a f luorescence microscope 
(DM6000B, Leica) and LAS X Life science software 
(Leica) using the same microscope settings (expo-
sure time, gain, lamp intensity, magnification) for each 
experiment or test series. Images were assessed using the 
FilamentTracer algorithm of the commercially available 
IMARIS® software, which allows semi-automatic detec-
tion, tracing and measurement of neuronal cells and their 
processes. The software evaluates neurite features such as 
neurite area, neurite length, neurite diameter and neurite 
branches. We calculated neurite markers relative to the 

number of cell nuclei as ratio of a given neurite marker 
per nucleus.

Intracellular Calcium  (Ca2+) Imaging

Ca2+ imaging of neuronal cultures was performed on black 
96-well plates (Ibidi), loaded with 1 µM Fluo-4AM (Ther-
moFischer Scientific) in Neurobasal Medium without phe-
nol red (Gibco) for 15 min at 37 °C. Fluorescence imaging 
was performed on an inverted cell^R microscope (Olympus) 
within an incubation chamber at 37 °C and 5%  CO2. Record-
ing was conducted at 5 Hz for 5 min at 512 × 512 pixel reso-
lution using cellSens Imaging Software. ImageJ was used 
for further processing.

Cytokine Receptor Expression Analyses

Cytokine receptor expression analyses on untreated neu-
rons were conducted using rt-qPCR in four to five inde-
pendent experiments (Table 1). We used 300,000–500,000 
cells per condition and experiment. RNA was isolated 
with Quick-RNA™ MicroPrep (Zymo Research Europe) 
and isolated RNA was transcribed to cDNA using High-
Capacity cDNA Reverse Transcription Kit (Thermo 
Fisher Scientific) according to the manufacturer’s pro-
tocol. PCR was performed with SYBR® Green Fast SG 
qPCR Master Mix (Roboklon) according to the instruc-
tions using QuantStudio™ 5 Real-Time PCR System 
(Applied Biosystems).

Table 1  Primers used for gene expression analyses

Gene Forward primer Reverse primer

TUBB3 CCG AAG CCA GCA GTG TCT AAA CC GCA ATA GAT TTA TTA AGT ATC CC
MAP2 CAT GGG TCA CAG GGC ACC TAT TC GGT GGA GAA GGA GGC AGA TTA GCT G
VGLUT1 ACC TCC ATT CCA CTC ATC TC TTT GGG TAT CCT TGA AAC TGT C
CHAT ACT GGG TGT CTG AGT ACT GG TTG GAA GCC ATT TTG ACT AT
SLC6A GCC TTT TAC ATT GCT TCC TA CCA ATT GGG TTT CAA GTA GA
TH CAG TTC TCG CAG GAC ATT G CGT CTG GTC TTG GTA GGG 
IL-17RA GCT TCA CCC TGT GGA ACG AAT TAT GTG GTG CAT GTG CTC AAA 
IL-17RC CTG CCC TTG TGC AGT TTG G CAG ATT CGT ACC TCA CTC CCT A
IL-10RA CCT CCG TCT GTG TGG TTT GAA CAC TGC GGT AAG GTC ATA GGA 
IL-10RB TCA GAA ACC TGG AGC CAT GG AAG TGT GTT ATG ATG AGG ATG GCC 
TNFRSF1A TCA CCG CTT CAG AAA ACC ACC GGT CCA CTG TGC AAG AAG AGA 
TNFRSF1B TGA AAC ATC AGA CTG GTG TG TGC AAA TAT CCG TGG ATG AAG TC
INFGR1 AGC GAT TCC AGT ATC CTC ACT CCA GGC TAA GCA GAA AGA GT
INFGR2 CTC CTC AGC ACC CGA AGA TTC GCC GTG AAC CAT TTA CTG TCG 
GRM1 CCA GCG ATC TTT TTG GAG GTG TGG TGA TGG ACT GAG AAG AGG 
GRIN1 ACG CCA TCC TAG TTA GCC ATC GCA CGG GTA TGC GGT AGA AG
GRIA1 TGC TTT GTC GCA ACT CAC AGA GGC ATA GAC TCC TTT GGA GAA C
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Signalling Pathway‑Specific Target Expression 
Analyses

Expression of 84 genes associated with ten different 
signal transduction pathways in neurons incubated with 
IL-17, TNFα, IFNγ, IL-17/ TNFα and IL-17/IFNγ was 
analyzed using the Human Signal Transduction Path-
wayFinder™  RT2 Profiler™ PCR Array (PAHS-014Z, 
Qiagen). Total RNA of two independent experiments 
containing 300,000–500,000 cells per condition and 
experiment was isolated with Quick-RNA™ MicroPrep 
(Zymo Research Europe) and isolated RNA was tran-
scribed to cDNA using the  RT2 First Strand Kit (Qiagen) 
according to the manufacturer’s protocol.  RT2 Profiler™ 
PCR Array was performed with  RT2 SYBR® Green qPCR 

Mastermix (Qiagen) according to the instructions using 
QuantStudio™ 5 Real-Time PCR System (Applied Bio-
systems). qPCR array data were normalization against 
five housekeeping genes (ACTB, B2M, HPRT1, GAPDH 
and RPLP0) and relative quantification (RQ) was cal-
culated using the ΔΔCt-Method. R was used for data 
presentation as a heatmap. Please note: Expression of 
the following genes could not be analyzed due to a lack 
of expression either in control samples or in all samples: 
CA9 (hypoxia), FABP1 (PPAR), OLR1 (PPAR), BMP2 
(hedgehog), WNT1 (hedgehog), WNT3A (hedgehog), 
WNT6 (hedgehog), SOCS3 (JAK-STAT), IRF1 (JAK-
STAT), BCL2A (NFκB), BIRC3 (NFκB), IFNG (NFκB), 
TNF (NFκB), MMP7 (Wnt), WISP1 (Wnt).

Fig. 1  Characterization of differentiated H9-derived  neurons. (A, 
B) Perikarya and cell processes of neurons are stained using MAP2 
(A; in magenta) or TUBB3 (B; in green). Cell nuclei are stained with 
DAPI, scale bars 50 μm. (C) Expression of neuronal maturity genes 
(x-axis: TUBB3, MAP2, VGLUT1, CHAT, SLC6A, TH) in neuronal 
cells compared to H9-derived hNSCs as assessed using rt-qPCR 
(y-axis: quantification of relative changes in gene expression). Data 
was analysed using the Kruskal–Wallis test (*p ≤ 0.05, **p ≤ 0.01; 

n = 4 (except VGLUT1 n = 3)). Outlier tests (ROUT) were performed. 
(D) Live-cell  Ca2+ imaging was performed with Fluo-4 AM loaded 
neurons, which were recorded at 5–10 Hz for 5 min. Areas of spon-
taneous intracellular calcium transients are highlighted by black 
circles 1–8 to the left. Matching activity representations were calcu-
lated with ImageJ as change in fluorescence at a given time ranging 
from 1 to 8 from the top to the bottom (x-axis = time in milliseconds, 
y-axis = change in fluorescence, ΔF), scale bars 50 μm
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Results

hNSC‑Derived Neurons Exhibit Structural 
and Functional Properties of Mature Neurons 
of Mixed Phenotypes

To investigate the role of inflammatory cytokines and media-
tors associated with MS for neurons, we established a proto-
col to differentiate embryonic stem cell-derived (H9) hNSC 
to mixed neuronal cell cultures. We confirmed the successful 
neuronal differentiation by immunofluorescence staining for 
the neuronal maturation markers MAP2 (Fig. 1A) and TUBB3 
(Fig. 1B) in line with various studies reporting neuronal 

specificity of these markers (Mariani et al. 2015), (Liu et al. 
2007), (Caccamo et al. 1989). The results show that 94% of 
differentiated cells stained positive for MAP2 (Fig. 1A), which 
is found on both dendrites and perikarya. 89% of cells showed 
TUBB3-positive neurites (Fig. 1B). Furthermore, differenti-
ated neurons demonstrated extensive neuronal network forma-
tions with branching points and neurite projections (Fig. 1A, 
B). As assessed with rt-qPCR, differentiated neurons expressed 
MAP2, TUBB3 and further genes characteristic for different 
types of mature neuronal cells such as choline acetyltransferase 
(CHAT,for cholinergic neurons), solute carrier 6a (SLC6A; for 
serotonergic/GABAergic neurons), tyrosine hydroxylase (TH; 
for dopaminergic neurons) and vesicular glutamate transporter 

A

B

Fig. 2  Expression of cytokine receptors on H9-derived neurons. (A) 
Neuronal cultures were stained for the cytokine receptors IL-17RA, 
IL-10RB, TNFR1 (α-chain) and IFNGR1 (α-chain) in green respec-
tively, for MAP2 (in magenta) and for DAPI (in blue). Neurons dem-
onstrated a dense expression of receptors for IFNγ and TNFα mainly 
localized around the perikarya. Receptors for IL-17 and IL-10 were 
expressed on a lower level. Scale bars 50  μm. (B) Expression of 

cytokine and inflammatory mediator receptors (x-axis) on neurons 
compared to PBMC as assessed with rt-qPCR (y-axis: quantification 
of relative changes in gene expression). All rt-qPCR were repeated 
four to five times on independent samples. Black bars represent neu-
rons, dotted line PBMC. Data was analysed using the Kruskal–Wallis 
test, no significant results
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(VGLUT1; for glutamatergic neurons). Comparing the differ-
entiated neurons to hNSC, neurons showed a 101-fold upregu-
lation of MAP2 (p ≤ 0.01), eightfold of TUBB3 (p ≤ 0.05) as 
well as a fourfold up-regulation of CHAT (p ≤ 0.05), 13-fold 
of SLC6A (p ≤ 0.05) and 11-fold of TH (p ≤ 0.05) suggesting a 
mixed group of neuronal phenotypes, predominantly of dopa-
minergic and serotonergic/GABAergic neurons (Fig. 1C).

To assess cellular function, calcium  (Ca2+) imaging by 
fluorescence microscopy of Fluo-4 AM loaded neuronal cul-
tures was performed. Electrophysiological proof of sponta-
neous activity confirms the cell cultures’ functional maturity 
(Vőfély et al. 2018). Influx and redistribution of calcium ions 
generates intracellular signals, which are essential for neuronal 
functions such as synaptic plasticity and exocytosis of synaptic 
vesicles. Microscopic results show regular spontaneous intra-
cellular calcium transients as expected in mature neuronal cells 
from different neurons (1–8), which differ in terms of their fre-
quency and amplitude (Fig. 1D). For instance, neurons 7 and 
8 show a higher firing rate than neurons 1 to 3 (Fig. 1D and 
Supplemental Video S1).

Neurons Express Low but Detectable Levels 
of Receptors of Inflammatory Cytokines

Next, differentiated neuronal cultures were exposed to dif-
ferent mediators associated with neuroinflammation such 
as the proinflammatory cytokines TNFα, IFNγ, GM-CSF 
and IL-17A and the anti-inflammatory IL-10. Changes in 
cellular morphology and gene regulation potentially affect-
ing cellular integrity and homeostasis were assessed using 
immunofluorescence staining and quantitative polymerase 
chain reaction (qPCR). In order to evaluate the basic poten-
tial of neurons to respond to these cytokines, we assessed the 
expression of cytokine receptors using immunofluorescence 
staining.

We found that neurons expressed the receptors TNFR1 
(for TNFα) and IFNGR1 (for IFNγ) on a medium level 
as well as IL-17RA (for IL-17A) on a low level and IL-
10RB (for IL-10) on a very low level (Fig. 2A). No distinct 
cytokine receptor distribution patterns were associated with 
specific neuronal subtypes as assessed in phenotypically 
mixed neuronal cultures (Supplemental Fig. 1). Assessing 
cytokine and mediator receptor expression using rt-qPCR, 
we compared the cytokine receptor expression between dif-
ferentiated neurons and peripheral blood mononuclear cells 
(PBMCs). Genes for IL-17RA (0.4-fold), IL-10RA (0.005-
fold), IL-10RB (0.1-fold), TNFRSF1A (0.5-fold), TNFRSF1B 
(0.2-fold), IFNGR1 (0.4-fold) and IFNGR2 (0.7-fold) 
were expressed on a lower level and the glutamate recep-
tors GRM1 (6.0-fold) and GRIN1 (2.8-fold) and IL-17RC 
(2.4-fold) on a higher level than in PBMCs (Fig. 2B). The 

glutamate receptor GRIA1 was expressed on neurons but not 
detectable on PBMCs. To evaluate cytokine receptor expres-
sion changes upon neuronal exposure to these cytokines, we 
repeated the same experiment in neurons, which were treated 
with IL-17A, IL-10, TNFα, IFNγ or -glutamate (Supplemen-
tal Fig. 2). Neuronal cultures exposed to IFNγ showed the 
most distinct expression changes compared to untreated cells 
(i.e., upregulation of cytokine receptors investigated except 
for IFNGR1 and IFNGR2). By contrast, IL-17A triggered an 
overall cytokine receptor downregulation, most profoundly 
for TNFRSF1A and TNFRSF1B and GRM1.

Inflammatory Cytokines TNFα, IFNγ, GM‑CSF 
and IL‑17A have a Distinct Effect on Neurite 
Morphology

Next, we assessed the cellular integrity after incubation of 
H9-hNSC-derived neuronal cultures with cytokines and neu-
rotoxic substances, e.g. staurosporine (apoptosis-inducing 
protein kinase inhibitor) or l-glutamate (excitotoxic trans-
mitter). We compared the effect of the classical proinflam-
matory mediators TNFα, IFNγ and GM-CSF to IL-17A 
and anti-inflammatory IL-10 on neuronal cell integrity 
using immunofluorescence staining. For this purpose, we 
incubated neuronal cultures with the cytokines/mediators 
(concentrations: 50 ng/mL for IL-17A, IL-10, IFNγ, TNFα, 
GM-CSF; 250 µM for l-glutamate; 0.5 µM for staurosporine) 
for 24 h. After incubation, we performed immunofluores-
cence staining for TUBB3 as essential protein of the neu-
ronal cytoskeleton. We analysed neurite integrity using the 
FilamentTracer algorithm of the commercially available 
IMARIS® software. We quantified neurite area, neurite 
length, neurite diameter and number of neurite branches per 
cell nucleus in a blinded analysis (Fig. 3B). Staurosporine 
or l-glutamate treated samples served as positive controls. 
Exposure to staurosporine led to a significant reduction 

Fig. 3  Evaluation of neurite integrity of neurons incubated with l-glu-
tamate, staurosporine and different cytokines. (A) Immunofluores-
cence staining of the neuronal marker TUBB3 (in green) and DAPI 
(in blue) of neuronal cultures treated with IL-10, IL-17A, TNFα, 
IFNγ, GM-CSF, l-glutamate and staurosporine. Scale bars 50 μm. (B) 
Image analysis of immunofluorescence images using IMARIS®. The 
parameters neurite area, neurite length, neurite diameter and neurite 
branches are shown. X-axis displays respective cytokine treatments; 
y-axis shows integrity parameters per cell nucleus relative to a con-
trol in [%]. Experiments were repeated 11 × for the control condition, 
6 × for staurosporine, 4 × for l-glutamate, 4 × for IL-10, 7 × for IL-17, 
6 × for TNFα, 6 × for IFNγ and 5 × for GM-CSF. Dots in graphs show 
mean values of four images per experiment and experimental condi-
tion (IL-10 n = 4, IL-17A n = 7, TNFα n = 6, IFNγ n = 6, GM-CSF 
n = 5, l-glutamate n = 5, staurosporine n = 6). Data was analysed using 
the Kruskal–Wallis test (*p ≤ 0.05, **p ≤ 0.01, **p ≤ 0.001). Outlier 
tests (ROUT) were performed on all experiments

◂
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of neuronal processes (Fig. 3A) with all neurite integrity 
parameters being significantly impacted (Fig. 3B). L-glu-
tamate showed a similar effect for all parameters (Fig. 3B). 
The impact of TNFα, IFNγ and GM-CSF on neurite mor-
phology and branching was unlike the one observed in the 
neurotoxic controls. Upon treatment with each of the three 
pro-inflammatory cytokines, neurons display a “pearl-on-
string” morphology as potential sign of disturbed axonal 
trafficking and a reduced branching (Fig. 3A). TNFα and 
GM-CSF caused a decrease of neurite integrity parameters 
though statistically significant only for the reduction of neu-
rite diameter per cell nucleus by TNFα (61.8%; p ≤ 0.05) 
and neurite diameter and branches per nucleus by GM-CSF 
(60.2%; p ≤ 0.05; 53.4%; p ≤ 0.05; Fig. 3B). IL-17A showed 
a similarly decreasing, albeit non-significant effect on most 
of the neurite integrity parameters (Fig. 3B). Interestingly, 
neurons exposed to IL-17A display an overall thinning of 
neurite processes as demonstrated in Fig. 3A. In line with 
the findings of very low receptor expression, we could not 
find any characteristic morphologic alterations (Fig. 3A) or 
significant changes of neurite parameters after IL-10 treat-
ment (Fig. 3B).

Combinatorial Treatment with IL‑17A/IFNγ 
and IL‑17A/TNFα Leads to more Pronounced Effects 
on Neuronal Integrity than with IL‑17A Alone

As a release of proinflammatory mediators is usually an 
orchestrated process involving several of these mediators, we 
were interested in whether simultaneous neuronal treatment 
with IL-17A and one of the well-described proinflamma-
tory cytokines TNFα and IFNγ may synergistically enhance 
the effect of IL-17A on neurite integrity. Neuronal cultures 
were incubated with either IL-17A/TNFα or IL-17A/IFNγ 
(concentrations: 50 ng/mL for IL-17A, TNFα and IFNγ 
respectively) for 24 h. We additionally exposed neurons to 
a combination of TNFα/IFNγ for comparison. Our results 
show that combinatorial incubation with IL-17A had an 
amplified impact on neuronal integrity markers extending 
distinctly beyond the effect of IL-17A, IFNγ or TNFα alone. 
Both combinations including IL-17A triggered a significant 
decrease of all cell integrity markers (p ≤ 0.01—p ≤ 0.001; 
Fig. 4). In line with the results of single treatments, this 
decrease was slightly more pronounced in samples treated 
with IL-17A in combination with TNFα than with IFNγ. We 

Fig. 4  Impact of combinatorial 
cytokine incubation on neurite 
integrity. Image analysis of 
immunofluorescence stain-
ing for the neuronal marker 
TUBB3. X-axis displays respec-
tive combinatorial cytokine 
treatments; y-axis displays 
integrity markers per cell 
nucleus. Dots in graphs show 
mean values of four images per 
experiment and experimental 
condition (IL-17A n = 7, TNFα 
n = 6, IFNγ n = 6, IL-17/TNFα 
n = 6, IL-17/IFNγ n = 6, TNFα/
IFNγ n = 3). Data was analysed 
using the Kruskal–Wallis 
test (*p ≤ 0.05, **p ≤ 0.01, 
**p ≤ 0.001). Outlier tests 
(ROUT) were performed on all 
experiments
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found the largest impact to be on neurite area (IL-17A/TNFα 
ratio 39.8%; IL-17A/IFNγ ratio 46.3%) and neurite length 
(IL-17A/TNFα ratio 39.7%; IL-17A/IFNγ ratio 51.3%; 
Fig. 4). By contrast, a combined treatment of neurons with 
TNFα/IFNγ showed a less deteriorating and non-significant 
effect on cell integrity parameters than either of these media-
tors in combination with IL-17A resembling single cytokine 
exposure.

NFκB Pathway Induction is Amplified 
by Combinatorial Neuronal Exposure to IL‑17A/IFNγ, 
IL‑17A/TNFα or TNFα/IFNγ

To investigate how pro-inflammatory mediators impact sig-
nalling pathways in hNSC-derived neurons, we analysed 
expression regulation of target genes associated with ten 
different signalling pathways upon neuronal treatment with 
single or combinatory inflammatory mediators for 24 h using 
a commercially available rt-qPCR array (Fig. 5). Here, we 
found that TNFα and IFNγ showed the most pronounced 
impact on the NFκB pathway with up-regulation for ICAM1 
(encodes for a transmembrane intercellular adhesion glyco-
protein; RQ 54.73 (TNFα), 105.08 (IFNγ)), CCL5 (chem-
otactic cytokine; RQ 3.44 (TNFα), 6.60 (IFNγ)), CSF1 
(cytokine which induces differentiation into macrophages; 
RQ 1.19 (TNFα), 3.50 (IFNγ)) and STAT1 (cytokine signal-
ling relevant transcription factor; 6.74 (IFNγ)). This target 
gene up-regulation was further amplified upon combina-
torial treatment with IL-17A particularly in combination 
with TNFα or combination of TNFα and IFNγ: ICAM1 RQ 
162.47 (IL-17/TNFα), RQ 2066.08 (TNFα/IFNγ), CCL5 
RQ 9.26 (IL-17/TNFα), RQ 3442.26 (TNFα/IFNγ), CSF1 
RQ 5.48 (IL-17/TNFα), RQ 21.97 (TNFα/IFNγ) and STAT1 
RQ 9.96 (IL-17/TNFα), RQ 84.08 (TNFα/IFNγ). Interest-
ingly, IL-17A alone did not lead to an increase in target 
gene expression of the NFκB pathway or any other pathway 
investigated. However, combinatorial exposure of neurons 
to IL-17A and TNFα caused a target gene up-regulation that 
exceeded single treatments including those of TNFα alone. 
Furthermore, other signalling pathways were also activated 
by IL-17/TNFα or TNFα/IFNγ: oxidative stress (glutathione 
reductase (GSR) RQ 6.82 (IL-17/TNFα), RQ 1.99 (TNFα/
IFNγ)), hypoxia (erythropoietin (EPO) RQ 3.0 (IL-17/
TNFα), vascular endothelial growth factor A (VEGFA) RQ 
3.11 (TNFα/IFNγ)), hedgehog (growth factors WNT5A RQ 
5.53 (IL-17/TNFα), RQ 2.22 (TNFα/IFNγ) and BMP4 RQ 
3.85 (IL-17/TNFα), RQ 3.64 (TNFα/IFNγ)) and peroxisome 
proliferator-activated receptor (PPAR; ACSL5 RQ 3.27 (IL-
17/TNFα), RQ 9.51 (TNFα/IFNγ)). These regulation pat-
terns were comparable to those of single IFNγ (oxidative 
stress (glutathione reductase (GSR) RQ 3.28), hypoxia 
(erythropoietin (EPO) RQ 4.9), hedgehog (WNT5A RQ 
11.59, BMP4 RQ 4.75), peroxisome proliferator-activated 

receptor (PPAR; enzyme ACSL5 RQ 3.01)) and were not 
triggered by single IL-17A or TNFα exposure alone. Com-
parable to TNFα, IL-17A alone did not up-regulate signal-
ling pathway target genes except for gsr (RQ 1.87) but rather 
decreased expression of target genes involved in the TGFb 
(RQ 0.08), JAK/STAT (lRG1 RQ 0.57, CEBPD RQ 0.57), 
hedgehog (WNT5A RQ 0.36) and hypoxia (SERPINE1 RQ 
0.64, EPO RQ 0.70) pathways.

Discussion

In this study, we show that proinflammatory cytokines fre-
quently found and cited in the pathophysiology of MS have 
direct effects on neurons and their cellular integrity in a 
human in-vitro neuronal cell culture model. We identified 
cytokine receptor expression on mature mixed neuronal 
cultures using immunofluorescence staining and qPCR. 
Treatment with the respective cytokines and in particular 
with cytokine combinations had distinct effects on neu-
ronal morphology and intracellular signalling events. This 
is to our best knowledge the first study on direct effects 
of inflammatory cytokines and cytokine combinations on 
human neuronal cytoarchitecture. All data presented were 
collected from an embryonic stem cell derived hNSC cell 
line with no reported disease. Therefore, these findings 
might be relevant not only for MS, but for any CNS disease 
involving the investigated cytokines.

The common idea of MS pathogenesis consists of a 
persistent pathological immune response evoked by lym-
phocytes entering the CNS. In this paradigm, periph-
eral immune cells enter the CNS, induce demyelination 
and activate CNS-endogenous immune cells, which in 
the long-run leads to neuronal and axonal damage. The 
mechanisms leading from inflammation and demyelination 
to axonal and neuronal damage have, however, remained 
unclear. Here, we evaluated the role of cytokines and 
cytokine combinations as part of an immune-neuronal 
crosstalk. We show that mature human neuronal cultures 
express cytokine receptors already in the steady state, 
which is furthermore modulated upon exposure to these 
pro-inflammatory cytokines. Among these cytokines is the 
pleiotropic TNFα. TNFα signalling is multifaceted and 
complex, i.e., depending on temporality and location of 
its expression, and TNFα has been reported to have both 
beneficial and detrimental effects in a context-dependent 
manner (Bruce et al. 1996; Downen et al. 1999). Two 
high-affinity cell surface receptors with distinct regulatory 
effects named TNFR1 and TNFR2 recognize TNFα, which 
exists in a soluble and a transmembrane form. While the 
transmembrane form is considered to mediate rather ben-
eficial effects via TNFR2, the soluble cytokine triggers 
pro-inflammatory pathways through TNFR1 (Chen and 
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Goeddel 2002), which includes a death domain (Yang 
et  al. 2018; Sedger and McDermott 2014). A genome 
wide association study has identified an MS risk single 
nucleotide polymorphism (SNP), which was associated 
with increased levels of soluble TNFR1 (Gregory et al. 
2012). In line with this finding, TNFα inhibitors (mim-
icking the effect of increased levels of soluble TNFR1) 
were found to exacerbate the course of MS (Pegoretti 
et al. 2018). In our study, TNFR1 and TNFR2 (although 
in smaller quantities) were both expressed on mixed neu-
ronal cultures. Incubation with TNFα resulted in distinct 
structural alterations of neuronal processes presenting a 
prominent beading. This effect of neurite morphology 
changes was levered by the cytokine IL-17A, which is 
relevant in context of EAE and MS. The IL-17 cytokine 
family, which consists of the six cytokines IL-17A to IL-
17F, binds to a receptor complex formed by IL-17RA and 
IL-17RC (Yao et al. 1995). IL-17RA shows its highest 
expression in hematopoietic cells but is also expressed 
in non-hematopoietic epithelial and mesenchymal tissues 
(Ishigame et al. 2009; Kuestner et al. 2007). Our find-
ings demonstrate that hNSC-derived neurons expressed 
IL-17RA (both epitope and mRNA) although to a lesser 
extent than immune cells. IL-17 signal transduction is well 
understood in cells of non-hematopoietic origin such as 
keratinocytes and in colonic epithelial cells. IL-17 upregu-
lates chemokines and metalloproteases, which stimulate 
neutrophile recruitment and IL-17 blocking agents have 
been successfully used to treat psoriasis (Liang et al. 2006; 
Nograles et al. 2008; Lee et al. 2008; Ly et al. 2019) and 
also MS (Havrdová et al. 2016). Nevertheless, little is 
known about IL-17 signaling in the CNS. A murine EAE 
study showed that IL-17RA is constitutively expressed 
in murine astrocytes and microglia and its expression is 
upregulated in a proinflammatory environment (Das Sarma 
et al. 2009). Murine neuronal cells in the dorsal root gan-
glia, the spinal cord and the cortex express IL-17 recep-
tors in-vitro as previously demonstrated (Luo et al. 2019; 
Segond von Banchet et al. 2013; Wang et al. 2009). IL-17 
is produced by innate and adaptive immune cells and in 
particular by Th17 cells, which are considered crucial for 
chronic inflammatory and autoimmune pathologies such 
as MS (Korn et al. 2009). Initially, Th1 cells were consid-
ered major drivers of MS disease and a recent study found 

the extent of their contribution to be related to MS stage 
(Arellano et al. 2017). The main effector cytokine of Th1 
cells is IFNγ, which binds to IFNGR1, the ligand binding 
chain of the IFNγ receptor. Most cells including neurons 
express IFNγ receptors (Bach et al. 2003). In line with our 
findings, Th1 and Th17 cells mediate development of EAE 
and Th17 cells were formerly found to induce functional 
damage in human neurons pointing towards an important 
role of these effector T cells for direct neuronal damage, 
which is classically attributed to cytotoxic T cells (Siffrin 
et al. 2010), (Loos et al. 2020).

IL-10 is considered an antagonist to these pro-inflamma-
tory cytokines exerting immunosuppressive functions and 
dysregulation or deficiency is often associated with autoim-
mune diseases and chronic infections (Engelhardt and Grim-
bacher 2014; Couper et al. 2008). A large variety of immune 
cells produce IL-10 (Moore et al. 2003). The heterodimeric 
receptor complex for IL-10 consists of an alpha (IL-10RA) 
and a beta subunit (IL-10RB, (Yoon et al. 2010). In our human 
neuronal model, IL-10RB is only lowly expressed. This is in 
line with previous studies showing that IL-10 receptors are 
mainly expressed on hematopoietic cell lines but they were 
also found on non-hematopoietic cells such as neurons in ani-
mal models (Chen et al. 2016), (Zhou et al. 2009).

Neurotoxic effects of cytokines and mediators such as 
TNFα, IFNγ, GM-CSF and l-glutamate on neuronal cell 
integrity have been extensively investigated, mainly in 
animal models. In this study, we compared these known 
pro-inflammatory substrates to the MS-relevant cytokines 
IL-17A and IL-10. In human neurons, IFNγ indirectly trig-
gered neurotoxic effects mediated by astrocytes and induced 
direct neurotoxic effects visualized as neurite bead forma-
tion (Mizuno et al. 2008). Direct neurodegenerative effects 
have also been reported by TNFα in mice through silencing 
of survival signals (Zhao et al. 2001; Takeuchi et al. 2006). 
This is in line with our findings on neuronal exposure to 
TNFα and IFNγ, which demonstrate a reduction in neurite 
integrity including branching (significant for TNFα), diam-
eter, area and length and characteristic morphology altera-
tions suggesting disruption of cytoarchitecture. GM-CSF 
classically induces cellular proliferation and differentiation 
and is therefore considered to promote pathogenic processes 
in autoimmune diseases that rely on cellular mechanisms 
(Lotfi et al. 2019). Consistently in the EAE model, GM-
CSF promotes migration of monocytes through the BBB 
and induces proliferation and activation of microglia, which 
in turn secrete pro-inflammatory cytokines to maintain the 
inflammatory environment (Dikmen et al. 2020; Spath et al. 
2017; Aram et al. 2019). Directly harmful effects on CNS 
cells have not been shown to date. We here demonstrate that 
GM-CSF has similar effects on neuronal integrity as seen 
in TNFα and IFNγ with a significant decrease of neurite 
branching. IL-17 was found to be the highest-ranking gene 

Fig. 5  Signalling pathway alterations in neuronal cells upon media-
tor treatment. Regulation of signalling pathway-specific target genes 
in neuronal cells after 24  h of treatment with individual proinflam-
matory mediators (x-axis: IL-17A, TNFα, IFNγ and combination of 
IL-17A/TNFα, IL-17A/IFNγ and TNFα/IFNγ (concentration: 50 ng/
mL)) in comparison to untreated cells as assessed with rt-qPCR 
arrays (y-axis: respective pathway-specific target genes). Colours 
quantify RQ in gene expression. Rt-qPCR arrays were performed 
twice with independent samples (pooled data shown)

◂
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expressed in autopsy samples of PwMS (Lock et al. 2002). 
In mice, suppression of IL-17 slowed down EAE progres-
sion (Langrish et al. 2005; Waisman et al. 2015; Tzartos 
et al. 2008). In our experiments, exposing hNSC-derived 
neurite length and neurite diameter as compared to typical 
pro-inflammatory mediators. This is in line with findings 
by (Paintlia et al. 2011) who showed that IL-17 exacer-
bated oligodendrocyte loss in rats in vitro and (Kang et al. 
2013) who demonstrated that IL-17 inhibits murine CNS 
cell maturation. In our hNSC-derived neuronal cell line, 
the damaging effect of IL-17A was increased in combina-
tion with IFNγ and particularly with TNFα surpassing the 
effects of TNFα and IFNγ alone. Interestingly, the combi-
nation of TNFα/IFNγ – although strongly inducing NFκB-
associated genes – did not induce phenotype alterations of 
neurites comparable to the IL-17A combinations. This find-
ing suggests that IL-17A has a distinct effect on neurons 
and is essential for the damaging morphology alterations 
observed. Other research groups have shown similar syner-
gistic effects of IL-17 and TNFα in autoimmune liver dis-
ease and on oligodendrocytes (Paintlia et al. 2011; Beringer 
et al. 2018). The combinatorial effect of IL-17A/TNFα or 
IL-17A/IFNγ may be explained by harnessing cooperating 
signalling pathways. We thus studied cytokine-mediated 
expression regulation of multiple target genes associated 
with ten different signalling pathways in our neuronal cell 
model. Here, we found the most pronounced up-regulation 
of target genes assigned to the NFκB pathway. NFκB is a 
transcription factor essential for inflammatory responses and 
in this function targets genes involved in cell proliferation, 
cytokine release and apoptosis (Taniguchi and Karin 2018). 
Consistent with our findings on neurite integrity alterations, 
NFκB-associated gene up-regulation was again amplified 
upon neuronal exposure to combinatorial cytokines and in 
particular to IL-17A/TNFα. In contrast, IL-17A or TNFα 
alone (except ICAM1 and CCL5 by TNFα) did not lead to 
up-regulation of target genes investigated in this array. This 
is different to the effects of IL-17A and IFNγ in which case 
a combination did not increase up-regulation. Highlighting 
the synergistic effect of IL-17A and TNFα, we observed 
further IL-17A/TNFα-mediated target gene up-regulation 
for the hedgehog pathway, the PPAR pathway and oxida-
tive stress and hypoxia pathways. Combination of TNFα and 
IFNγ showed a pronounced amplification of genes in par-
ticular in the NFκB pathway, however, also effects distinct 
to the IL-17A combinations in other pathways, e.g. oxida-
tive stress signalling or hedgehog signalling. The differential 
effect on neurite morphology and signalling pathways war-
rants further investigation. The PPAR pathway is involved 
in energy homeostasis, lipid and glucose metabolism (Tyagi 
et al. 2011) and promotes anti-inflammatory neuroprotective 
mechanisms after brain injury (Victor et al. 2006; Villapol 
et al. 2015). The hedgehog pathway is classically affiliated 

with embryonic development and cell repair (Briscoe and 
Thérond 2013; Lopez-Bergami and Barbero 2020). Activa-
tion of hedgehog pathways induced by acute brain injury 
has previously been shown in other studies (Allahyari et al. 
2019), (Wu et al. 2020) and underlines the potentially dam-
aging effect of neuronal exposure to cytokines as demon-
strated in our findings. Cytokines may reach very high local 
concentrations when cells directly interact. Inversely, more 
remote inflammatory processes can lead to lower exposure. 
Therefore, future studies should focus on effects of different 
cytokine concentrations and combinations, which may have 
differential effects on neuronal integrity and survival.

Taken together, we show that distinct cytokines are a 
potential cause for neuronal damage in autoimmune CNS 
disease. In particular, synergistic cytokine exposure con-
siderably impacts neuronal integrity. As compared to other 
studies, we could first demonstrate these effects in a human 
cell culture system and pinpoint the IL-17A/TNFα combi-
nation as most relevant neurodegenerative trigger. Future 
studies targeted at stopping neurodegeneration may con-
sider controlling several cytokine pathways or simultane-
ous inhibition of combined cytokines.
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