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Abstract

Motivation: Simulations of cancer evolution are highly useful to study the effects of selection and mutation rates on
cellular fitness. However, most methods are either lattice-based and cannot simulate realistically sized tumours, or
they omit spatial constraints and lack the clonal dynamics of real-world tumours.

Results: Stochastic model of intra-tumour heterogeneity (SMITH) is an efficient and explainable model of cancer
evolution that combines a branching process with a new confinement mechanism limiting clonal growth based on
the size of the individual clones as well as the overall tumour population. We demonstrate how confinement is suffi-
cient to induce the rich clonal dynamics observed in spatial models and cancer samples across tumour types, while
allowing for a clear geometric interpretation and simulation of 1 billion cells within a few minutes on a desktop PC.

Availability and implementation: SMITH is implemented in C# and freely available at https://bitbucket.org/schwar
zlab/smith. For visualizations, we provide the accompanying Python package PyFish at https://bitbucket.org/schwar
zlab/pyfish.

Contact: roland.schwarz@uni-koeln.de or adam.streck@mdc-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Carcinogenesis is governed by random mutational processes and se-
lection, which give rise to intra-tumour heterogeneity (ITH), a main
driver of progression, metastasis and treatment resistance (Marusyk
et al., 2020). To understand ITH, algorithms for inferring cancer
evolution from, for example, sequencing data of clinical tumour
specimens have proven highly valuable (Beerenwinkel et al., 2015).
Due to computational advances and the increasing availability of
data, forward simulations of cancer evolution are now gaining trac-
tion (Noble et al., 2022; West et al., 2021), as they allow direct test-
ing of biological hypotheses and modelling assumptions and enable
the rapid exploration of the effects of fitness distributions and muta-
tion rates on cancer evolution.

Models for simulating cancer evolution often employ variants of
cellular automata, where cells or groups of cells are positioned on a
2D or a 3D lattice (Iwasaki and Innan, 2017). The lattice embedding
directly creates spatial constraints which enable the simulation of,
for example, biopsy results (Chkhaidze et al., 2019) or the dispersal
of cells in space (Waclaw et al., 2015), or between neighbouring

tissues (Noble et al., 2022). However, capturing the mechanical be-
haviour of cells is difficult, and simplifying rules are frequently
employed, for example, that a whole row of cells needs to be moved
at once (Chkhaidze et al., 2019), or that dead cells have to disappear
from the lattice (West et al., 2021). Additionally, simulating
realistically sized tumours of 1–2 cm in diameter comprising around
1 billion cells (Del Monte, 2009) remains difficult even on super-
computer architecture (Rosenbauer et al., 2020). Thus, cells are usu-
ally grouped to uniform populations of glands (Sottoriva et al.,
2015), demes (Noble et al., 2022) or severely limited in number
(West et al., 2021).

Conversely, stochastic models of well-mixed populations, such
as the commonly used branching process model of cancer (Haccou
et al., 2005), are highly scalable, but assume an exponentially grow-
ing population without spatial constraints. These unconstrained
models only exhibit a limited amount of clonal dynamics and are
characterized by a low number of driver mutations and low-to-
medium clonal diversity (Noble et al., 2022). They have been suc-
cessfully applied to modelling clonal haematopoiesis, where space is
not a primary limiting factor (Watson et al., 2020), but their
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applicability to solid tumours remains limited. Therefore, there is a
general need for efficient and scalable models of tumour evolution
that include spatial constraints.

We therefore present Stochastic model of intra-tumour hetero-
geneity (SMITH)—a fast stochastic model of cancer evolution that
can simulate realistically sized tumours of up to 1 billion cells.
SMITH employs a classical branching model of cancer, with random
cell birth and death processes modulated by fitness-increasing muta-
tions, and without an explicit representation of cell location.
SMITH additionally introduces confinement, a mechanic that limits
the size of the growing population either by the size of the whole tu-
mour (global confinement) or individually per clone (local confine-
ment). Confinement separates the tumour into a proliferating shell
and a static core, providing a natural way to represent both well-
mixed and surface-growth models of cancer growth. Our approach
is inspired by the observation that in solid tumours the number of
cells that undergo cell division scales with the cell population raised
to the power of two-thirds, corresponding to the surface area of a
sphere (Talkington and Durrett, 2015).

We systematically assess the effects of confinement and demon-
strate that increasing global confinement, that is, increasing overall
selection pressure, causes an increase in the number of driver muta-
tions in the simulated tumours, whereas increasing local confine-
ment increases the clonal diversity. We show in principle and in
comparison to real cancer data (Noble et al., 2022) that local and
global confinement are sufficient to recreate most commonly
observed patterns of cancer evolution, including neutral, ‘linear’ and
‘branched’ evolution. Additionally, we leverage the high perform-
ance of SMITH to repeatedly simulate realistically sized tumour cell
populations, orders of magnitude faster than explicit spatial models
and evaluate the most important modelling assumptions and choices
made in literature, such as population size and fitness distribution.

2 Materials and methods

Our model stochastically describes the size of tumour cell popula-
tions over time, thereby tracking the number of cells, their mutations
and the evolutionary relationship between them. SMITH is based on
a Galton–Watson branching process (Roch, 2015) and makes use of
four key assumptions: (i) a low mutation probability with a non-
negative fitness effect (driver mutations), (ii) a well-mixed popula-
tion of cells, (iii) a spherical tumour shape and (iv) confined growth.
Assumptions (i) and (ii) are common in branching process modelling
and (iii) describes a well-studied group of tumours (Black and
McGranahan, 2021). Assumption (iv) is specific to our model and
directly changes the dynamics of the system. It is explained in detail
in Section 2.5.

2.1 Model overview
A tumour as modelled by SMITH comprises two different types of
cells: alive cells (which can be dividing or non-dividing) and necrotic
cells. A newly created cell is always alive. Upon its death it can either
be degraded (removed from the system) or remains embedded in the
tumour as a necrotic cell, where it continues to contribute to the
overall tumour mass, but does not divide any longer. SMITH does
not model cellular position explicitly, it only keeps track of the num-
ber of cells in clones, where each clone is a collection of cells sharing
the same set of mutations. Formally, a clone is a triplet
c ¼ ðca; cn; cMÞ, where ca; cn 2 N0 describe the number of alive and
necrotic cells in that clone, respectively, and cM describes the set of
mutations shared by all the cells in c. Each mutation from the set of
all possible mutations (m 2 M) is unique. The set of possible muta-
tions M is thereby considered infinite (infinite sites assumption;
Kimura, 1969) and every mutation can only occur once.

SMITH is parametrized via h ¼ ðhmut; hfit; hconf; hlocalÞ 2 ½0;1�
�Rþ � Rþ � Rþ, which describes the mutation probability per cell
division, the average fitness increase of a mutation and the global
and local confinement, respectively. Each parameter is explained in
a corresponding section below.

To describe the state of the system over time t 2 N0, we denote
as Ct the set of clones at time step t. All simulations start from a sin-
gle clone with a single alive cell characterized by a single identifying

mutation, that is, C0 ¼ fð1; 0; fmgÞg. A simulation is then a trans-
formation of Ct into Ctþ1 under the parameter set h. For brevity, we

use counts for alive and necrotic cells across the whole population as
Ct

a ¼
P

ct2Ct ct
a; Ct

d ¼
P

ct2Ct ct
d.

We use two stopping conditions for the simulation: the max-
imum number of time steps max steps and the maximum population

size max pop. The simulation stops at a step t when t ¼
max steps; ðCt

a þCt
nÞ > max pop or Ct

a ¼ 0. We also require the
model to reach a minimum population min pop. If the simulation

terminates while ðCt
a þ Ct

nÞ < min pop and t < max steps, the re-
sult is discarded and the simulation restarts. For a schematic over-

view of the algorithm, see Supplementary Figure S1.

2.2 Cell turnover
We first assume a basic system in homeostasis where the number of

cells is kept constant on average and without novel mutations or ne-
crosis. We define a birth and death process by sampling the number

of cells that are born BbðctÞ and that have died BdðctÞ at time step t
in clone c from a binomial distribution. The granularity of each
simulation step is given by the value step size 2 ð0; 1�, with the birth

probability function pbirthðctÞ ¼ step size and the death probability
pdeathðctÞ ¼ step size. The number of alive cells at time step tþ1 is
then defined as:

BdðctÞ � Binðct
a; pdeathðctÞÞ; (1)

BbðctÞ � Binðct
a; pbirthðctÞÞ; (2)

ctþ1
a ¼ ct

a þ BbðctÞ � BdðctÞ; (3)

where ct 2 Ct denotes the clone c at time step t. The next state of the

simulation is then obtained as Ctþ1 ¼ fctþ1 j ct 2 Ctg. Necrosis is
introduced in Section 2.5, therefore in the homeostatic system ct

n

stays at 0 for all t.
Note that if pbirth > pdeath, the population size increases exponen-

tially. In the opposite case, the population would eventually die out.

We thus set the birth and death probability equal to the turnover
probability, keeping the population size constant on average.
However, due to stochastic fluctuations, the population will always

die out after a large, but finite number of steps (extinction event).
This behaviour is common to all frameworks that include stochastic

cell death (Roch, 2015) and where the extinction probability grows
with step size (Supplementary Fig. S2). We avoid the problem in
practice by setting a sufficiently small step size and a corresponding-

ly large min pop. In summary, at this stage, our system comprises a
single clone, which is roughly constant in size and shows no clonal

dynamics.

2.3 Mutations
We next introduce mutations into the model. Because each mutation

is unique, a new mutation always creates a new clone. We extend
Equation (3) to

BmðctÞ � BinðBbðctÞ; hmutÞ; (4)

mutðctÞ ¼ minðBbðctÞ;BmðctÞÞ; (5)

ctþ1
a ¼ ct

a þ BbðctÞ � BdðctÞ �mutðctÞ: (6)

For simplicity, we only allow one driver mutation per cell div-
ision. Since hmut � 1, this does not affect the simulation in practice.

Mutated cells are removed from the group of new cells
(Equation 6) and each of them spawns a new clone each with exactly
one alive cell, such that for each ct 2 Ct:
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childrenðctÞ ¼ fð1; 0;0; cM [ fmigÞ j i 2 f1; . . . ;mutðctÞgg; (7)

where mi is a new, unique mutation. The new clones are then added
to the updated population, that is, Ctþ1 ¼ [ffctþ1g[
childrenðctÞ j ct 2 Ctg.

Our homeostatic system now consists of several clones of equal
fitness. In such a system, the appearance and disappearance of
clones is simply due to stochastic fluctuations and the constant accu-
mulation of new neutral mutations (Supplementary Figs S2 and S3).

2.4 Fitness
We now leave the homeostatic scenario by introducing fitness-
increasing driver mutations. The fitness increase F(m) that a new
mutation m provides is drawn from a fitness distribution,
dist 2 funi; exp; norm; constg, referring to the uniform, exponen-
tial, truncated normal and constant distributions, respectively. We
use the term constant distribution as a shorthand for a single-
element discrete uniform distribution. All the fitness distributions
are set to a mean around hfit s.t.,

FðmÞ �

Ufhfit; hfitg; if dist ¼ const;
U½0;2hfit �; if dist ¼ uni;

Expðh�1
fit Þ; if dist ¼ exp ;

N ½0;1�ðhfit;
hfit

2
Þ; if dist ¼ norm:

8>>>><
>>>>:

(8)

Here, N ½0;1� represents the truncated normal distribution with a
lower bound at 0 for which we chose a standard deviation of hfit

2 , in
line with Bozic et al. (2010). Note that for the truncated normal dis-
tribution, a lower bound of 0 and r ¼ l

2 leads to an expected value
of 1:027 � hfit. The exact shapes of the individual distributions are
shown in Supplementary Figure S4.

To obtain the final fitness of the clone, we sum the effects of the
individual mutations (in line with Fu et al., 2022), using the
function:

fitðctÞ ¼ 1þ
X

m2ct
M

FðmÞ: (9)

In addition to the above, our model also supports multiple var-
iants of the fitness accumulation, detailed in Supplementary Figure
S5.

2.5 Global confinement
We now introduce quasi-spatial constraints into our model of a
well-mixed population of cells. Driver mutations inevitably lead to
exponential growth in the absence of limiting factors, which might
include blood and nutrient supply or spatial constraints. We repre-
sent these constraints in an abstract manner using the confinement
parameter hconf. This global confinement acts in two ways. First, it
limits the number of cells that can divide based on the size of the tu-
mour. Second, it prevents some cells from disappearing after cell
death, instead turning them into necrotic cells which continue to
contribute to the overall size of the tumour.

To formulate global confinement, we create a geometrical repre-
sentation of the tumour as a sphere (Fig. 1a and Supplementary Fig.
S6). We fix the spatial scale of our model such that each individual
cell has unit volume and the volume of the whole tumour at the time
t is equal to the number of its alive and necrotic cells Ct

a þ Ct
n. The

tumour is thus divided into two regions, a proliferating shell and a
quiescent core. Cells in the shell can divide and get removed when
they die. Conversely, cells in the core cannot divide due to lack of
space or resources, and turn into necrotic cells upon death. We de-
note shell-VðCtÞ the volume of the shell and core-rðCtÞ the radius of
the core for the population contained in Ct. Under the assumption of
a perfect sphere, we can compute the fraction fracðCtÞ of the tumour
volume occupied by the shell, relative to the shell volume
shell-VðCtÞ and the radius of the core core-rðCtÞ as follows:

frac Ctð Þ ¼

0; if Ct
a ¼ 0;

1; else; if hconf ¼ 0;

max
shell-VðCtÞ

Ct
a

; 1

 !
; else; where :

8>>><
>>>:

(10)

shell-V Ctð Þ ¼ Ct
a þ Ct

n �
4

3
p
�

core-rððCtÞ
�3

(11)

core-r Ctð Þ ¼ max
3

4

Ct
a þ Ct

n

p

� �1
3

� h�1
conf ;0

!
: (12)

Note that the width of the shell is given by h�1
conf, meaning that

lower confinement values lead to a larger shell and subsequently a
larger proportion of proliferating cells (Supplementary Fig. S6b). In
particular, for hconf ! 1, the volume of the shell of a sphere approxi-
mates the surface area of that sphere, while for hconf ! 0 the whole
sphere is considered the shell, irrespective of its size. We then obtain
the confined model:

pbirthðctÞ ¼ min
�

1; fitðct
MÞ � fracðCtÞ � step size

�
; (13)

pnecroðctÞ ¼ 1� fracðCtÞ; (14)

BnðctÞ � Bin
�

BdðctÞ;pnecroðctÞ
�
; (15)

ctþ1
n ¼ ct

n þ BnðctÞ: (16)

The shell fraction fracðCtÞ (Equation 10) limits the number of
new cells (Equation 13) by limiting the birth probability. The death
probability is not affected by the shell fraction; however, it does sep-
arate necrotic and removed cells. Note that the total number of nec-
rotic cells is conditional on step_size through BdðctÞ as given in
Equation (1).

2.6 Local confinement
Global confinement as defined above represents a competition of
the whole cell population for shared resources. Additionally, in

Fig. 1. Confinement. (a) A tumour with four clones, where any individual cell is

assumed to constitute one unit volume of space. Global confinement (dashed circle)

splits the tumour into a proliferating shell, containing Vshell dividing cells, and a

core with radius rcore of alive but not dividing and necrotic cells. The probability of

a cell dividing is then a combination of its fitness and the probability of it being in

the shell, given by the ratio Vshell : ðVshell þ VcoreÞ. Similarly, dead cells are either

removed or become necrotic based on the shell fraction. (b) A model with only local

confinement (dotted circles). Each clone is independent and its growth is restricted

only by its own population. (c) An approximate illustration of the combination of

the global and the local confinement (solid outline). Clones compete for shared

resources but are also limited by their own size
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some tumours, local space or resource restrictions might apply, as
for example in the case of breast cancer arising from the mammary
glands, where smaller localized tumour cell populations press
against the glandular epithelium (Lomakin et al., 2022).

We represent these local spatial constraints in our framework by
adding a second (local) confinement term for each clone individual-
ly. When applied without global confinement, it limits each clone by
its own population size (Fig. 1b). When combined, the global con-
finement is modulated by the size of the clone (Fig. 1c).

To compute this effect, we introduce an additional function local
that is equal to the function frac (Equation 10) where the parameter

hlocal is used in place of hconf, which further limits the birth probabil-
ity of each clone ct 2 Ct such that:

local ¼ ½hconf=hlocal�frac; (17)

pbirth

�
ctÞ ¼ min

�
1; fitðctÞ � fracðCtÞ � localðctÞ � step size

�
; (18)

pnecroðctÞ ¼ 1� fracðCtÞ � localðctÞ; (19)

where ½x=y�f denotes substituting the parameter x in function f for y.

Fig. 2. Combinations of global and local confinement can create different modes of evolution: (a) non-spatial evolution in the absence of confinement, (b) linear evolution after

addition of global confinement, (c) branched evolution if only local confinement is enabled and (d) linear-to-branched evolution for the combination of local and global con-

finement. Left columns show the distribution of the mean number of drivers per cell and the clonal diversity for all 100 simulations per parametrization. The theoretical limit

for clonal sweeps is shown as a grey line. The middle and the right columns show the clonal evolution of a representative simulation run, marked by a red circle, through a fish

plot and a phylogenetic tree. For the phylogenetic trees, extinct clones (fewer than 1.000 alive cells) are crossed out. Note that for both the fish plots and phylogenetic trees, we

selected only clones with a population fraction higher than 1%

4 A.Streck et al.



Observe that if we set hlocal ¼ 0, the model is equal to the one in
Section 2.5, with hconf ¼ 0 to Section 2.4, with hfit ¼ 0 to Section
2.3 and with hmut ¼ 0 to Section 2.2.

2.7 Model configuration
We aim to simulate realistically sized tumours with �109 cells, cor-
responding to a tumour of > 1 cm3 in size (Del Monte, 2009). We
set the minimum population size min pop for a simulation to be
considered to 1000 cells. max pop is then derived from min_pop as
1000 � 220 � 109, hence population doubling occurs 20 times start-
ing from min_pop. To calibrate cell turnover step size, we used the
homeostatic model (Section 2.2) for a starting population size of
100 cells and evaluated step size 2 f0:1; 0:05;0:01; 0:005g. We
found that for step size ¼ 0:01 there was no extinction event within
max steps ¼ 1000 for any of the 1000 replicates considered, and we
thus selected 0.01 as a turnover value for all further simulations. We
fixed the limiting variable for the maximum number of generations
max steps to 106, such that without a mutation the initial cell
divides on average 106 � 0:01 ¼ 104 times. Assuming a typical div-
ision cycle of 24 h, this parametrization would correspond to �27
years of real time. In all subsequent simulations, the execution
reached the maximum population size before reaching the max-
imum number of generations.

As we are mainly interested in the effect of confinement, unless
stated otherwise we fix the mutation probability and mean fitness
gain of a single driver at hmut ¼ 2 � 10�5 and hfit ¼ 0:1 in line with
the literature (Noble et al., 2022; West et al., 2021). We additionally
set dist ¼ exp as in Noble et al. (2022).

For the robustness analysis in Sections 3.1and 3.2, we later per-
turbed these two parameters, testing hfit 2 f0:01; 0:05; 0:1; 0:15;0:2g
and hmut 2 f2 � 10�6; 10�5; 2 � 10�5; 10�4; 2 � 10�4g.

2.8 Population metrics
To evaluate the individual simulation runs and to compare their clo-
nal behaviour to prior work as well as experimental data, we use
two previously introduced metrics: the mean number of drivers per
cell and the clonal diversity index (Noble et al., 2022). To speed up
computation of summary statistics, we only consider clones larger
than a minimum fraction cutoff of the population
( ~C

t ¼ fct 2 Ct j ct
a � Ct

a � cutoffg) and only calculate the metrics at
every time step at which the population of alive cells doubles. The
Fish plots (e.g. Fig. 2a–d) are not affected by the cutoff, but only dis-
play clones that reached at least 1% of the population at some
point.

The mean number of drivers per cell d tracks the mutational bur-
den of the growing tumour and is defined as

dð ~C
tÞ ¼

X
ct2 ~C

t

ðjct
Mj � ct

aÞ � ð ~C
t

aÞ
�1: (20)

The clonal diversity index D reflects the total number of equally
sized clones and their size and is based on the inverse Simpson index
defined as expected:

Dð ~C
tÞ ¼

� X
ct2 ~C

t

�
ct

a � ð ~C
t

aÞ
�1
�2��1

: (21)

This measure has been shown to have a lower boundary of 1 and
to be robust to the presence or absence of small populations (Noble
et al., 2022).

2.9 Comparing with real tumour data
To compare our simulations to real data, we used six datasets from
the following cancer types (Noble et al., 2022): acute myeloid leu-
kaemia (AML, single-cell DNA sequencing) (Morita et al., 2020),
kidney (clear cell renal cell carcinoma, multi-region whole-exome
sequencing) (Turajlic et al., 2018), mesothelioma (multi-region
whole-exome sequencing) (Zhang et al., 2021), breast (triple-nega-
tive breast cancer, single-cell RNA sequencing) (Minussi et al.,
2021), lung (non-small cell lung cancer, multi-region whole-exome

sequencing) (Jamal-Hanjani et al., 2017), and uveal (uveal melan-
oma, single-cell RNA sequencing) (Durante et al., 2020). One add-
itional dataset of whole-genome sequenced breast cancer was
discarded since it only had three samples available.

To fit our simulations to the data, we considered all combina-
tions for hconf and hlocal in the range of ½0; 0:125; 0:25; 0:5; 1; 2� each.
For every combination, we simulated 100 runs and compared the
simulation with the data using a score based on the Iterative Closest
Point algorithm. To this end, we calculated the shortest Euclidean
distance between the simulated data and the real data in the two-
dimensional space defined by the mean number of drivers per cell
and the clonal diversity. The final score (S) is then defined as the
mean shortest distance for each simulated point, plus the mean
shortest distance for each data point, i.e.

SðXs;XdÞ ¼
1

jXsj
X

xs2Xs

Eðxs;XdÞ þ
1

jXdj
X

xd2Xd

Eðxd;XsÞ; (22)

Eðx;YÞ ¼ minfðdðxÞ � dðyÞÞ2 þ ðDðxÞ �DðyÞÞ2Þ
1
2 j y 2 Yg; (23)

where Xs are the clones in a simulation and Xd in a real dataset.
Additionally, we also analysed the fit of the spatial simulation

created by Noble et al. (2022) to the six datasets. To this end, we
downloaded all simulation results from https://github.com/robjohn
noble/ ModesOfEvolution, which included model parameters as
well as the clonal diversity and mean number of drivers per cell for
every simulation run. We then calculated a score (S) for every simu-
lation parametrization and cancer type using Equation (22). To
allow for fair comparisons, we choose the parametrization with the
best overlap for every cancer type by varying all model parameters
available in the data: spatial constraint, mutation probability, fitness
gain per driver and deme size.

2.10 Smith implementation and performance
SMITH has been implemented in C# as an open-source package
under the MIT license and is available at https://bitbucket.org/
schwarzlab/smith with pre-compiled binaries for Windows, Linux
and MacOS. Version 1.1 is used in this article and the code and data
to reproduce the figures can also be found at https://doi.org/10.
5281/zenodo.6885040. The Fish (Muller) plots were generated
using the accompanying open-source Python library PyFish, avail-
able at https://bitbucket.org/schwarzlab/pyfish.

SMITH performance was evaluated against tumopp, a high-
performance simulator of on-lattice cancer growth (Iwasaki and
Innan, 2017). Both SMITH and tumopp were parameterized with
the same driver mutation rates and effects, and performance was
compared on population sizes ranging from 104 to 109 cells with 10-
fold increases. Global confinement was set to 1 to mimic the
surface-growth model of tumopp. Overall, the SMITH simulation
proved to be about 1000-fold faster than tumopp. The maximum
population tumopp was able to simulate with 32 GB of memory was
107 cells. Simulation of a tumour population of 107 cells took
2341.55 s in tumopp compared with 1.32 s in SMITH with confine-
ment and 0.14 s without confinement. For a 1 billion model, the
average runtime was 8.95 s without and 256.47 s with global con-
finement, respectively (Supplementary Fig. S7). The memory usage
was less than 1 GB.

3 Results

3.1 Global and local confinement recreates common

modes of cancer evolution
Recent investigations into common patterns of cancer evolution
have revealed several major ‘modes’ of evolution. While non-spatial
tumours, including lymphomas and leukaemia, are characterized by
few driver events and rapid clonal expansions (Ferrando and López-
Ot�ın, 2017), in spatially organized solid tumours more diverse evo-
lutionary patterns have been described, including ‘neutral’, ‘linear’
and ‘branched’ evolution (Vendramin et al., 2021). We hypothesized
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that these evolutionary modes are driven by varying local and global
constraints acting on these tumours, including available physical
space, nutrient availability and blood supply. To test this hypothesis
within the scope of our model, we fixed the mutation probability
and fitness sampling and accumulation to literature derived default
values (Section 2.7) and only varied local and global confinement
(Supplementary Figs S8 and S9).

In the absence of confinement, our model is mathematically
equivalent to a traditional, non-spatial branching process (Section
2.1). By setting the average fitness increase per mutation to zero, we
obtain a fully neutral growth pattern (Supplementary Fig. S3). This
mode is characterized by variants that can reach fixation purely
through genetic drift but rarely observed in real-life tumours
(Sottoriva et al., 2015).

With the default fitness increase of 0.1 per driver mutation and
in the absence of confinement, SMITH simulations are characterized
by a low number of clones that grow exponentially (Fig. 2a), match-
ing the unconstrained evolution of non-spatial tumours, in particu-
lar leukaemia (Lee and Bozic, 2022). These simulations are also
characterized by low clonal diversity (median of 1.3) and a low
mean number of drivers (median of 2.0) as earlier clones dominate
the makeup of the tumour. Without spatial restrictions, these simu-
lations reach the final size of 1 billion cells faster than any paramet-
rization considered, in line with observations of exponential growth
in leukaemia (Lee and Bozic, 2022).

Intriguingly, adding global confinement to the model triggers de-
velopment of the typical ‘linear’ or ‘ladder-like’ evolutionary pat-
terns (Schwarz et al., 2015; Vendramin et al., 2021) characterized
by repeated clonal sweeps where individual subclones successively
take over the cell population (Fig. 2b). Global confinement here sim-
ulates a global competition for space and resources which slows the
growth of existing clones and favours well-adapted clones with
higher fitness, creating a tumour with a high number of driver
events. Consequently, we observe consistent accumulation of driver
mutations (median of 5.7) at the expense of diversity (median of
1.9).

In contrast, adding only local confinement to the model leads to
rapid and parallel clonal expansions and a corresponding high clo-
nal diversity (median of 112, Fig. 2c). Local confinement thereby
constricts the growth of each clone individually, as might, for ex-
ample, be caused by local tissue structures such as glands (Section
2.6). Consequently, many subbranches co-exist in the phylogeny of
these tumours and clones expand simultaneously creating a very di-
verse tumour with a highly ‘branched’ phylogeny. Arguably, local
confinement alone is unlikely to exist in real-world tumours, as it
omits the global limiting factor of shared resources.

More realistically, real-world tumours will likely be constrained
by both global and local growth restrictions and show patterns
somewhere in between the linear and branched evolutionary modes.
Notably, recent research has identified widespread transitions in
tumours wherein mutations first occur successively in the early stage
of tumour evolution. This is followed by branching of the evolution-
ary trees in the latter stage (Baslan et al., 2022; Lomakin et al.,
2022). In our model, when global confinement is larger than local
confinement (hconf > hlocal > 0), we also find a mixture of the linear
and branched modes which we refer to as ‘linear-to-branched evolu-
tion’ (Fig. 2d). These simulations evolve in two distinct phases. In
the beginning, clones are small and global confinement typically
leads to several early clonal sweeps. As the population grows, local
confinement begins to exhibit a greater influence, disproportionately
slowing the growth of larger clones and causing smaller clones to
appear—a fully branched tumour emerges. The linear-to-branched
mode of evolution shows both signs of rapid emergence of new
clones (median of 8.2 mean number of drivers) and high clonal di-
versity (median of 12.6) reminiscent of real, spatially organized
tumours (see below).

The observed results were robust with regard to changes to the
mutation probability (Supplementary Fig. S10) and the fitness ad-
vantage gained by a single driver (Supplementary Fig. S11). This ro-
bustness was to be expected as it was also observed in other

simulation frameworks (Fu et al., 2022; Noble et al., 2022; West
et al., 2021).

In summary, varying local and global confinement allows us to
recreate the evolutionary patterns observed in non-spatial and spa-
tially organized tumours. Global and local confinement thereby dir-
ectly affects the mean number of drivers and the extent of clonal
diversity (for detailed analysis, see Supplementary Fig. S8).

3.2 Confinement models recapitulate the clonal

evolution of real-life tumours
Next, we evaluated the ability of our model to fit real data from six
different cancer types (AML, lung, kidney, uveal, mesothelioma and
breast; Supplementary Fig. S12) derived by Noble et al. (2022)
(Section 2.9). To this end, we varied the global and local confine-
ment, each in the range of ½0; 0:125;0:25; 0:5;1;2�, with the model
setup as given in Section 2.7. For each parameter combination, we
created 100 simulations and found the optimal confinement values
per dataset by minimizing the score function (Equation 22), which
takes into account the mean number of drivers per cell and the clo-
nal diversity (Section 2.9). For visualization of the optimal confine-
ment values, see Supplementary Figure S13.

In AML, as expected, the optimal fit was achieved by setting
both global and local confinement to zero, corresponding to a trad-
itional non-spatial simulation (Fig. 3a), appropriate for non-
spatially organized cancers (Lee and Bozic, 2022).

Most other spatially organized tumour types (kidney, mesotheli-
oma, breast and lung) are characterized by a moderate number of
drivers per cell (median of 4.9 for breast, 5.3 for kidney, 5.8 for
mesothelioma and 6.0 for lung) and hence were fit best by a global
confinement value of 0.5 (Fig. 3b–e).

Additionally, tumours of the kidney and mesothelioma datasets
had a comparatively low median clonal diversity (2.9 and 4.1, re-
spectively) resulting in a best fit in the absence of local confinement
(Fig. 3b, c) and leading to ‘linear’ evolutionary patterns marked by
repeated clonal sweeps (see Fig. 2c). In fact, two out of the five sam-
ples in the kidney dataset and one sample in the mesothelioma data-
set are currently mid-sweep as demonstrated by a clonal diversity of
�1.

In contrast, the samples from the lung and breast cohorts were
best fit with local confinement of hlocal ¼ 0:125 (Fig. 3d, e) to ac-
count for their relatively high median clonal diversity of 8.1 and 8.0,
respectively. The comparatively high local confinement in these
tumours might correspond to localized growth into separate mam-
mary glands for breast cancer and alveoli for lung cancer. With the
combination of global and local confinement, these samples are best
described with the linear-to-branched clonal evolution produced
within our model (Fig. 2d).

Finally, the samples in the uveal cancer dataset have a compara-
tively high number of drivers (median of 11.2) which is recapitulated
in our model through the highest global confinement value of 2, cor-
responding to half of the cells in the outer layer dividing, in combin-
ation with local confinement of 0.125 (Fig. 3f). Interestingly, uveal
melanomas indeed show unique physiological characteristics in that
they are slowly growing and heavily restricted to the eye (Kaliki and
Shields, 2017).

Furthermore, we evaluated the robustness of our estimates and
found that the scores for each dataset were robust to variations in
fitness mean and mutation probability (Supplementary Fig. S14) as
described in Section 3.1 (Supplementary Figs S10 and S11).

Next, we compared our best fits to the ones obtained from the
explicitly spatial model of (Noble et al., 2022) using the same score
function (Equation 22) as above (Section 2.9). As expected, for the
AML data, SMITH and the Noble model provided similarly good
fits (Supplementary Fig. S15), owing to the fact that in the absence
of confinement and spatial organization both models describe a
non-spatial branching process. For the spatially organized cancer
types, our model outperforms the Noble et al. model for all cancer
types (kidney, lung, uveal and mesothelioma) with the exception of
breast cancer, for which both models generate a similarly good fit
(with 1.67 and 1.86, respectively, Supplementary Fig. S15).
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Interestingly, in the kidney cancer dataset, two out of the five
samples are currently mid-clonal sweep, which is marked by a clonal
diversity of 	 1:5. Due to the spatial arrangement of the Noble
et al. simulation, clonal sweeps are extremely rare to occur (less
than 2% of the 2.700 simulations of the invasive glandular mode
have clonal diversity 	 1:5), whereas they frequently occur in our
simulation framework (39% for hconf ¼ 0:5; hlocal ¼ 0).

3.3 Population size affects the evolutionary dynamics of

tumours
Due to computational limitations, current explicit spatial models do
not exceed 107 individual simulation voxels: 106 for Noble et al.
(2022) and 8 � 106 for Fu et al. (2022), West et al. (2021) and
Sottoriva et al. (2015). In some of these models, larger population
sizes can be reached only by making each voxel represent a clone of
a fixed size (e.g. 104 cells per gland in Sottoriva et al.). By replacing
explicit spatial representations with the confinement mechanics, we
can simulate populations beyond 1 billion cells, corresponding to tu-
mour sizes commonly encountered in the clinic at initial diagnosis
(Del Monte, 2009; Welch et al., 2016). Leveraging the efficiency of
SMITH, we investigated the advantages of simulating large popula-
tions and assessed how ITH changes over time in the course of
repeated simulations.

We observed that for all scenarios that include global or local
confinement the mean number of drivers grows logarithmically with
the population size (Supplementary Fig. S16), demonstrating that
newly appearing clones eventually overtake the population. This
logarithmic increase is of particular interest for the uveal cancer
dataset which contains up to 14 mean drivers per cell, which would
be difficult to reach in populations as small as 106 cells.

In the absence of confinement (i.e. non-spatial), tumours develop
mostly one clearly dominant clone with only a few competitors.
Clonal diversity therefore barely reaches a score of 2 for the final
size of 109 cells. If only global confinement is applied, clonal diver-
sity plateaus after an initial surge at around 106 cells, after which
clonal sweeps increase in frequency and repeatedly reduce the clonal
diversity to 1. Conversely, with only local confinement active, clonal
diversity continuously rises until the end of the simulation, since the
growth rate of larger clones is dampened relative to smaller clones.
When both local and global confinements are employed, we first see
clonal sweeps until about 107 cells (corresponding to �100 cells
in diameter for a solid tumour), after which we increasingly

observe a branching behaviour and diversification of the tumour.
Interestingly, this transition from a ‘linear’ progression to a branch-
ing in the phylogeny would be missed in simulations smaller than
107 cells.

Furthermore, when investigating individual trajectories in the
presence of global confinement, we observe extensive heterogeneity
in their behaviour, governed by alternating periods of clonal sweeps
and diversification (Supplementary Fig. S17).

4 Discussion

The effects of spatial restrictions have long been observed in explicit
spatial models, in particular in West et al. (2021), where the authors
investigated both local and global growth limitations. Additionally,
other authors postulated that it is indeed the explicit spatial repre-
sentation from which ITH emerges (Fu et al., 2022; Noble et al.,
2022).

Here, we have presented SMITH, a new simulation model for
cancer evolution based on confinement, which limits population
growth globally and locally in a non-linear way. By combining dif-
ferent values for global and local confinement, SMITH is able to re-
produce commonly observed modes of cancer evolution including
non-spatial, neutral, linear, branched as well as linear-to-branched
evolution. Adjusting global and local confinement thereby directly
affects the mean number of drivers per cell and the clonal diversity
of a tumour, respectively. Additionally, we have demonstrated that
specific combinations of global and local confinement can recreate
the behaviour of real-life tumours. However, the available data are
limited in size and additional data are needed to ascertain whether
this observation generalizes to other cancer entities.

Other extensions to branching processes have been proposed,
including a logistic-growth model which focuses on modelling spe-
cific hallmarks of cancer (Nagornov and Kato, 2020). Others pro-
vided spherical interpretations of tumours in mathematical models
of tumour growth (Dassios et al., 2012; Paterson et al., 2016). In
implementing our confinement mechanism, we worked under the as-
sumption of a spherical tumour, which gives rise to the 2

3 power law
(Section 2.5). While this might not be suitable for all kinds of
tumours, it should be noted that more general formulations of the
confinement mechanism could easily be derived, as long as the
growth rate scales non-linearly with the population size (see also
Talkington and Durrett, 2015).

Fig. 3. Different values for global and local confinement recreate the clonal evolution of different tumour types. For every dataset, we show the mean number of drivers per cell

and the clonal diversity both for the real tumour samples (black crosses) and the 100 simulations with the global and local confinement combination that best fit the dataset

(blue circles)
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One decisive advantage of our model is its speed advantage over
explicit spatial models, which are commonly run on high-
performance computers in parallel with cell populations limited to
�107 (Rosenbauer et al., 2020). In contrast, SMITH performs a sin-
gle simulation up to 109 cells in minutes on a desktop computer,
which allows for the analysis of the variability of evolutionary tra-
jectories under a variety of different parametrizations.

Besides confinement, fitness mean and mutation rate, other mod-
elling choices might influence the outcome of simulations, most
prominently the choice of the fitness distribution. Other authors
have proposed the use of a constant (West et al., 2021), uniform (Fu
et al., 2022), normal (Sottoriva et al., 2015) and exponential (Noble
et al., 2022) distribution from which to draw fitness values (Section
2.4). We systematically explored the effect of the choice of fitness
distribution on the simulation results of SMITH (Supplementary
Fig. S18). In the absence of confinement, corresponding to non-
spatial evolution, the number of drivers and clonal diversity were
largely unaffected, with the exception of the constant distribution
(Supplementary Fig. S18) and in line with previous findings
(McFarland et al., 2013). In contrast, the choice of fitness distribu-
tion did influence the number of mean drivers per cell and the clonal
diversity in the presence of spatial constraints but without funda-
mentally changing the effect of local and global confinement on the
simulation outcomes. Further investigations into these and other
commonly made modelling choices are warranted to improve com-
parability between models and parameters in the future. SMITH,
with its fast computation, simplicity and the ability to capture differ-
ent data types and evolutionary modes are well poised to serve as a
testbed for such analyses in the future.

In this work, we have developed a minimal model of tumour evolu-
tion centred around the concepts of global and local spatial restrictions.
By linking our model to established modes of tumour evolution as well
as real-life tumours, we propose local and global confinement as a
major determinant of ITH and the clonal evolution of tumours.
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