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Background: We investigated the pleiotropic effects of an angiotensin

receptor-neprilysin inhibitor (ARNi) on collateral-dependent myocardial

perfusion in a rat model of coronary arteriogenesis, and performed

comprehensive analyses to uncover the underlying molecular mechanisms.

Methods: A rat model of coronary arteriogenesis was established by

implanting an inflatable occluder on the left anterior descending coronary

artery followed by a 7-day repetitive occlusion procedure (ROP). Coronary

collateral perfusion was measured by using a myocardial particle infusion

technique. The putative ARNi-induced pro-arteriogenic effects were further

investigated and compared with an angiotensin-converting enzyme inhibitor

(ACEi). Expression of the membrane receptors and key enzymes in the

natriuretic peptide system (NPS), renin-angiotensin-aldosterone system

(RAAS) and kallikrein-kinin system (KKS) were analyzed by quantitative

polymerase chain reaction (qPCR) and immunoblot assay, respectively.

Protein levels of pro-arteriogenic cytokines were measured by enzyme-linked

immunosorbent assay, and mitochondrial DNA copy number was assessed

by qPCR due to their roles in arteriogenesis. Furthermore, murine heart

endothelial cells (MHEC5-T) were treated with a neprilysin inhibitor (NEPi)
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alone, or in combination with bradykinin receptor antagonists. MHEC5-T

proliferation was analyzed by colorimetric assay.

Results: The in vivo study showed that ARNis markedly improved coronary

collateral perfusion, regulated the gene expression of KKS, and increased

the concentrations of relevant pro-arteriogenic cytokines. The in vitro

study demonstrated that NEPis significantly promoted MHEC5-T proliferation,

which was diminished by bradykinin receptor antagonists.

Conclusion: ARNis improve coronary collateral perfusion and exert pro-

arteriogenic effects via the bradykinin receptor signaling pathway.

KEYWORDS

angiotensin receptor-neprilysin inhibitor, angiotensin-converting enzyme inhibitor,
kallikrein-kinin system, heart failure, myocardial infarction, coronary collateral
perfusion, arteriogenesis

Introduction

Heart failure (HF) is a major negative prognostic factor
in patients after myocardial infarction (MI). Despite this,
efforts to improve myocardial repair have not been translated
into clinical therapies. Post-MI HF remains a leading cause
of morbidity and mortality worldwide, and is marked by a
sharply rising prevalence in the Western population over age
of 75 years (1). Recently, an angiotensin receptor-neprilysin
inhibitor (ARNi) was approved as a first-in-class drug for the
treatment of HF in both Europe and the U.S., representing
a new milestone in pharmaceutical treatment for HF (2).
ARNi is a sodium supramolecular complex of a neprilysin
inhibitor (NEPi) (i.e., Sacubitril) and an angiotensin receptor
blocker (ARB) (i.e., Valsartan) at a 1:1 ratio. Neprilysin
(NEP), also known as neutral endopeptidase, enzymatically
degrades natriuretic peptides (NPs), which includes atrial
natriuretic peptide (ANP), B-type natriuretic peptide (BNP),
and C-type natriuretic peptide (CNP). The natriuretic peptide
system (NPS) plays a key role in cardiovascular homeostasis
by regulating a wide spectrum of physiological processes,
such as natriuresis and vasodilation. Therefore, NEPis are
used clinically to counteract the defects of NPS during the
pathological process of HF (3). However, because NEP also
depletes angiotensin I (Ang I) and angiotensin II (Ang II),
the NEPi (Sacubitril) is combined with the ARB (Valsartan)
to further reduce the Ang II-induced vasoconstriction (4).
Hence, the pharmacological mechanisms of ARNis are based
on augmentation of NPS and inhibition of renin-angiotensin-
aldosterone system (RAAS), thereby countering the damage
caused by sustained neurohormonal overactivation of RAAS
and sympathetic nervous system (SNS) in chronic HF (5).

Yet, the cardiovascular hormone regulation modulated
by ARNis is not limited to NPS and RAAS. Since NEP

cleaves a wide range of peptides such as bradykinin (BK)
and kallidin (KD), the kallikrein-kinin system (KKS) is also
involved in the hormonal regulation by ARNi (Figure 1). KKS
is a key proteolytic system regulating vascular permeability,
blood pressure and collateral blood flow (6). KKS exerts its
biological functions by stimulating two G protein-coupled
receptors (GPCRs): bradykinin receptor 1 (BDKRB1) and
bradykinin receptor 2 (BDKRB2). Notably, our group was
the first to demonstrate that arteriogenesis is modulated by
bradykinin receptor signaling (7). Here, arteriogenesis is defined
as the remodeling and outgrowth of pre-existing collateral
arteries following stenosis or occlusion. More specifically,
arteriogenesis is an adaptive response that a small collateral
arteriole (native collateral) converts into a larger conduit
artery, thereby restoring the nutritive blood flow to ischemic
area (8). Therefore, arteriogenesis is regarded as the most
effective compensatory mechanism to prevent cardiovascular
ischemia (9).

For decades, clinicians and scientists have focused on
therapeutic arteriogenesis by investigating the pleiotropic roles
of new or classical medications in this context (10). Indeed,
our latest study verified that cerebral arteriogenesis can be
therapeutically stimulated by an angiotensin-converting enzyme
inhibitor (ACEi) through the bradykinin receptor signaling
pathway (11). As the cornerstones in cardiovascular disease
management, ACEis cause inhibition of angiotensin-converting
enzyme (ACE, also known as kininase II). ACE not only
converts Ang I to Ang II, but also degrades BK and bradykinin-
(1-8) (BK1-8). Therefore, inhibition of ACE accumulates BK
and BK1-8, which in turn activate the bradykinin receptors
directly or indirectly (12). Interestingly, because NEP is a
major kininase like ACE, it is speculated that NEPis can
stabilize and activate bradykinin receptors like ACEis, thereby
exerting further cardiovascular protective effects. Therefore, in
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FIGURE 1

Pharmacological mechanisms of ARNis and ACEis in NPS, RAAS, and KKS. Blue lines indicate inhibitory or blocking effects, red lines indicate
activating or stimulating effects, and red dashed lines indicate the hypothetical activating effects of NEPis on bradykinin receptors. AGT:
angiotensinogen, Ang-(1-7): angiotensin-(1-7), Ang-(1-9): angiotensin-(1-9), BK1-4: bradykinin-(1-4), BK1-5: bradykinin-(1-5), BK1-7:
bradykinin-(1-7), BK1-8: bradykinin-(1-8), dAK: des-Arg10-kallidin, HMWK: high-molecular-weight kininogen, LMWK: low-molecular-weight
kininogen, NT-proANP: N-Terminal proANP, NT-proBNP: N-Terminal proBNP, NT-proCNP: N-Terminal proCNP, PK: plasma kallikrein, TK: tissue
kallikrein. (A) Membrane receptors in NPS are NPRA, NPRB, and NPRC; key enzymes in NPS are NEP1 and NEP2. Precursor molecules of
pro-ANP, pro-BNP, and pro-CNP break up into active ligands (ANP, BNP, and CNP) and corresponding inactive amino-terminal fragments
(NT-proANP, NT-proBNP, and NT-proCNP), respectively. (B) Membrane receptors in RAAS are AGTR1, AGTR2, MAS1 proto-oncogene (MAS1);
key enzymes in RAAS are ACE1 and ACE2. ACE1 converts Ang I to Ang II and subsequently activates AGTR1 and AGTR2. Either NEP1 or ACE2
converts Ang I or Ang II to Ang-(1-7), which then activates MAS1. (C) Membrane receptors in KKS are BDKRB1 and BDKRB2, both ACE1 and NEPs
are involved in degradation of BK and KD in multiple steps. BK is cleaved by PK from HMWK, while KD is cleaved by TK from LMWK. BK and KD
are the ligands of BDKRB2. BK and KD can be converted to BK1-8 and dAK, respectively. BK1-8 and dAK are the ligands of BDKRB1.

our current study, we hypothesized that coronary arteriogenesis
can be therapeutically enhanced beyond its natural time
course by administration of ARNis, and the putative ARNi-
induced pro-arteriogenic effects are based on activation of
bradykinin receptors.

To investigate the role of ARNis on coronary
collateralization, a suitable animal model is needed. By
conducting a repetitive occlusion procedure on the left anterior
descending artery (LAD), a rat model of coronary arteriogenesis
has been established successfully (Figure 2) (13). The current
study consists of three sub-projects. (1) First, we investigated
the effects of ARNis on coronary arteriogenesis by assessing
collateral-dependent myocardial perfusion in a rat model. Since
the ARNi is a dual-acting complex composed of a NEPi and an
ARB, the effects of the ARB (Valsartan) were also investigated.
(2) Second, to uncover the underlying molecular mechanism of
ARNi-induced coronary arteriogenesis, we analyzed mRNA and
protein expression levels of the relevant membrane receptors
and key enzymes, concentrations of pro-arteriogenic cytokines
and mitochondrial DNA copy number. Since ACEi-induced
cerebral arteriogenesis was characterized in our recent study
(11), an ACEi (Ramipril) was also investigated for coronary
arteriogenesis for comparison. (3) Finally, we investigated the
role of the NEPi (Sacubitril) on murine endothelial cells (ECs)

proliferation, and functionally validated whether the putative
NEPi-induced pro-arteriogenic effects were modulated by the
bradykinin signaling pathway in vitro.

Materials and methods

Surgical protocol

Male Sprague-Dawley rats (300–350 g) were sedated by
using ketamine (75 mg/kg; i.p.) (Wirtschaftsgenossenschaft
deutscher Tierärzte eG) and xylazine (5 mg/kg; i.p.) (Bayer AG)
before endotracheal intubation. Endotracheal general anesthesia
was maintained during surgery by using isoflurane (1.2% in 95%
O2/5% CO2) (CP-Pharma Handelsgesellschaft mbH).

Left-sided thoracotomy was performed to expose the rat
heart. The so called “occluder” consists of a latex balloon (a
micro-pneumatic snare mounted within an umbrella sheath)
and a catheter, the former part was implanted on the heart wall.
In brief, a 5-0 Prolene suture was tied around the proximal
LAD when the latex balloon was inflated with 0.6 ml of air.
The latex balloon was connected to the catheter, which was
protected by a stainless steel coil and externalized between the
rat’s scapulae, and finally connected to an air pump machine
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FIGURE 2

Schematic representation of rat model of coronary arteriogenesis. RV, right ventricle; LV, left ventricle; LAD, left anterior descending artery.
(A–D) A highly flexible latex balloon catheter is fixed around the proximal LAD, compressed air is used to briefly and temporarily inflate the
catheter, repetitively ligating the LAD, and thus stimulating coronary collateral development. (E) Established rat model with the stainless steel
coil. (F) Sample of excised rat heart with the occluder. The figures were partly generated using Servier Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0 unported license.

Frontiers in Cardiovascular Medicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.981333
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-981333 February 1, 2023 Time: 6:42 # 5

Li et al. 10.3389/fcvm.2022.981333

outside of the animal cage. The machine was pumping according
to a relevant procedure described hereinafter and supplying air
through the catheter to the latex balloon. Consequently, the
LAD was cyclically blocked and unblocked during the inflation
and deflation of the latex balloon (Figure 2 and Supplementary
Video).

Repetitive occlusion procedure

It has been verified that the repetitive occlusion of a main
coronary artery is an optimal method to establish animal models
of coronary arteriogenesis (13). In addition, a moderate intensity
and duration of myocardial ischemia are necessary to initiate
collateral development (14). The repetitive occlusion procedure
(ROP) began on the next day of occluder implantation surgery.
The preset ROP consists of 7 × 24-h repetitive routines, and
each 24-h individual routine again consists of 3 × 8-h repetitive
routines, and each 8-h individual routine again consists of a 2-h
and 20-min stimulating stage and followed by a 5-h and 40-
min resting stage. Further, each stimulating stage again consists
of 7 × 20-min repetitive routines, and each 20-min individual
routine again consists of a 40-s balloon inflation and followed
by an 18-min and 20-s balloon deflation.

Microspheres–based myocardial
perfusion measurement

The sensitivity and ability to measure myocardial perfusion
in intact tissue using the stable isotope-labeled microspheres
have been validated by comparison with the standard
conventional radioactive method (15). Since the injected
microspheres circulate in the blood and finally deposit in the
region supplied by its corresponding artery, the deposited
microsphere concentration is proportional to the blood flow.
Given that the occluder was implanted around the LAD and
the aim of our experiment was to evaluate coronary collateral
perfusion, the LAD-dependent myocardial region distal to the
occluder was referred to as the collateral dependent zone (CZ),
and the left circumflex artery-dependent myocardial region
was referred to as the normal zone (NZ). In order to ensure
as many microspheres as possible enter the CZ, microspheres
were injected rapidly during the occluder was inflated. In brief,
15 µl of 5 × 105 isotope-labeled 15 µm-diameter microspheres
were injected twice into the left ventricle (LV) on Day 0 (the
day of occluder implantation) (Samarium STERIspheres,
BioPAL, Inc.), and Day 7 (the day of animal sacrifice) (Gold
STERIspheres, BioPAL, Inc). After sacrificing, 100 mg of NZ
and CZ were collected, respectively and sent to BioPAL, Inc., for
further analysis.

During the measurement of microspheres-based myocardial
perfusion (MMP), the microsphere activity concentration was
expressed as disintegrations per minute per gram (dpm/g). Here,

MMP of different myocardial regions (CZ and NZ) at different
time points (Day 0 and Day 7) were recorded, respectively.
Specifically, MMP of CZ at Day 0, MMP of CZ at Day 7, MMP
of NZ at Day 0 and MMP of NZ at Day 7 were represented
by MMPCZ(D0), MMPCZ(D7), MMPNZ(D0), and MMPNZ(D7),
respectively. MMP at Day 0 was regarded as a reference at
baseline, and the difference value of MMP between Day 7 and
Day 0 was represented by 1MMP. Specifically, the difference
value of MMPCZ between Day 7 and Day 0 was represented by
1MMPCZ [MMPCZ(D7) – MMPCZ(D0)]; similarly, the difference
value of MMPNZ between Day 7 and Day 0 was represented by
1MMPNZ [MMPNZ(D7) – MMPNZ(D0)].

Animal grouping and treatment
protocol

All experimental animals were randomly assigned to
the following groups (n = 6–8/group): (1) SHAM group:
the occluder was implanted but without any procedures of
inflation or deflation for 7 days, meanwhile, distilled water
(0.5 ml per day) was administrated via gavage. (2) ROP-Ctrl
group: ROP procedure was conducted for 7 days, meanwhile,
distilled water (0.5 ml per day) was administrated via gavage.
(3). ROP+ARB group: ROP procedure was conducted for
7 days, meanwhile, Valsartan (31 mg/kg per day) (Novartis
International AG) was dissolved in 0.5 ml distilled water
and administrated via gavage. (4). ROP+ACEi group: ROP
procedure was conducted for 7 days, meanwhile, Ramipril
(1 mg/kg per day) (AbZ-Pharma GmbH) was dissolved in 0.5 ml
distilled water and administrated via gavage. (5) ROP+ARNi
group: ROP procedure was conducted for 7 days, meanwhile,
Sacubitril/Valsartan (68 mg/kg per day) (Novartis International
AG) was dissolved in 0.5 ml distilled water and administrated
via gavage.

Analysis for mRNA expression of
membrane receptors and key enzymes

Tissue samples from CZ (n = 6/group) were snap frozen
and stored in liquid nitrogen before RNA isolation. Two cubic
millimeter tissue from CZ was homogenized using the liquid
nitrogen grinding method. Total RNA was extracted using
the Trizol reagent (Thermo Fisher Scientific) in compliance
with the manufacturer’s instructions. Quantitative analysis of
RNA was performed using the NanodropTM Microvolume
Spectrophotometer (Thermo Fisher Scientific). 1 µg of total
RNA was reverse transcribed into cDNA by using the
QuantiTect Reverse Transcription Kit (QIAGEN) and the
peqSTAR thermal cycler (VWR International). The obtained
cDNA was diluted in 60 µl RNAse/DNAase-free water. The
quantitative polymerase chain reaction (qPCR) based analysis
was performed by using the LightCycler R© 96 Real-Time PCR
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System (Roche). Each reaction system consists of 1 µl cDNA,
1 µl of forward/reverse primer each, 7 µl RNase/DNase-free
water and 10 µl PowerTrack SYBR Green Master Mix (Thermo
Fisher Scientific). 40 cycles of three-step qPCR were performed,
all samples were run in triplicate. All of the primers were
synthesized by the Eurofins Genomics Germany GmbH, the
detailed sequences of primers are showed in Table 1.

Immunoblot assay

Total proteins were extracted from CZ by using the
MinuteTM total protein extraction kit (Invent Biotechnologies).
Protein samples were separated on 10% SDS-PAGE and
transferred to PVDF membranes (Merck Chemicals GmbH).
After incubation in 5% milk (Carl Roth GmbH) in TBST for
1 h at room temperature, membranes were incubated overnight
at 4◦C with diluted primary antibodies: Anti-NPR-A+NPR-B
antibody (ab139188) (1:300), Anti-NEP1 antibody (ab79423)
(1:1000), Anti-ACE1 antibody (ab254222) (1:1000), Anti-ACE2
antibody (ab108252) (1:200), Anti-KLK1 antibody (ab131029)
(1:1000), Anti-beta Actin antibody (ab115777) (1:1000) and
Anti-alpha Tubulin antibody (ab7291) (1:5000). After washing
with TBST three times, membranes were incubated with 1:5000
diluted conjugated peroxidase-labeled secondary antibodies
Goat Anti-Mouse IgG H&L (HRP) (ab205719) or Goat Anti-
Rabbit IgG H&L (HRP) (ab205718) at room temperature
for 1 h, followed by washing with TBST three times. The
PVDF membrane was reacted with the PierceTM ECL Western
Blotting Substrate (Thermo Fisher Scientific) for 1 min at
room temperature. After absorbing the liquid, blots were
visualized by using the VWR R© Imager CHEMI Premium (VWR
International) system, and analyzed by using the Quantity One
Software (Bio-Rad Laboratories). All the primary and secondary
antibodies were purchased from Abcam. Each experiment for
target protein analysis was repeated three times.

Enzyme-linked immunosorbent assay

Total proteins were extracted from CZ by using the
MinuteTM total protein extraction kit (Invent Biotechnologies).
Quantification of total proteins was achieved by using the
PierceTM BCATM Protein-Assay (Thermo Fisher Scientific).
Measurements of protein concentrations of granulocyte-
macrophage colony-stimulating factor (GM-CSF), monocyte
chemoattractant protein-1 (MCP-1) and vascular endothelial
growth factor (VEGF) were performed by using the Rat GM-
CSF ELISA Kit (Assay Genie, RTFI00020), MCP1 (CCL2)
Rat ELISA Kit (Abcam, ab100778) and VEGF Rat ELISA
Kit (Abcam, ab100787), respectively. Concentrations were
measured spectrophotometrically by light absorbance using the
Spark multimode microplate reader (Tecan Group AG). All
samples were run in triplicate. The final concentration was
expressed as pg/µg total protein.

Analysis of mitochondrial DNA copy
number

Two cubic millimeter tissue from LV were homogenized by
using the liquid nitrogen grinding method. Genomic DNA was
extracted by using the DNeasy Blood & Tissue Kit (Qiagen)
according to the manufacturer’s instructions. Quantitative
analysis of DNA was performed using the NanodropTM

Microvolume Spectrophotometer (Thermo Fisher Scientific).
DNA was further diluted to a final concentration of 50 ng/µl.
The mitochondrial copy number (mtDNA-CN) was expressed
relative to a nuclear DNA specific gene proliferator-activated
receptor-γ coactivator-1α (PGC-1α). Here, mtDNA-CN was
calculated according to the formula: mtDNA-CN = 2 × 21Ct,
1CT = CTPGC−1α – CTmtDNA. 60 cycles of a two-step qPCR
were performed.

Cell culture and treatment

Murine heart endothelial cells (MHEC5-T) (Leibniz
Institute DSMZ-German Collection of Microorganisms and
Cell Cultures GmbH) were grown in RPMI 1640 medium
(Thermo Fisher Scientific) containing 10% fetal bovine serum
(Sigma-Aldrich Chemie GmbH). Cells were treated with 0.01,
0.1, 1, 10, and 20 µM of the compounds as follows: Ramipril
(ACEi) (Sigma-Aldrich Chemie GmbH), Valsartan (ARB)
(Sigma-Aldrich Chemie GmbH), Sacubitril calcium salt (NEPi)
(Sigma-Aldrich Chemie GmbH), Valsartan and Sacubitril
calcium salt (ARNi), R715 [antagonist of BDKRB1 (BDKRB1i)]
(Tocris Bioscience) and HOE 140 [antagonist of BDKRB2
(BDKRB2i)] (Enzo Life Sciences GmbH) to determine the
optimal concentration.

Cell proliferation assay

MHEC5-T were cultured in a 96-well plate with 4000
cells per well. After 4 h attachment, cells were cultured in
RPMI-1640 medium alone as control or containing 0.01 µM
Ramipril (ACEi), 0.01 µM Ramipril and 0.01 µM R715
(ACEi + BDKRB1i), 0.01 µM Ramipril and 0.01 µM HOE 140
(ACEi + BDKRB2i), 0.01 µM Ramipril, 0.01 µM R715 and
0.01 µM HOE 140 (ACEi + BDKRB1i + BDKRB2i); 0.01 µM
Sacubitril calcium salt (NEPi), 0.01 µM Sacubitril calcium
salt + 0.01 µM R715 (NEPi + BDKRB1i), 0.01 µM Sacubitril
calcium salt and 0.01 µM HOE 140 (NEPi + BDKRB2i),
0.01 µM Sacubitril calcium salt, 0.01 µM R715 and 0.01 µM
HOE 140 (NEPi + BDKRB1i + BDKRB2i). Cell proliferation
was assessed by using the WST-1 Assay Kit (Cell Proliferation)
(Abcam) according to the manufacturer’s instructions.
Absorbance was spectrophotometrically measured at 450 nm
by using the Spark multimode microplate reader (Tecan Group
AG), and expressed as optical density (O.D.).
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TABLE 1 List of qPCR primers sequences.

Gene Accession no. Forward Reverse

NPRA NM_012613.1 CCTTTCAGGCTGCCAAAAT ATCCTCCACGGTGAAGTTGA

NPRB NM_053838.1 TCTATGCCAAGAAGCTGTGG CCAGGCCTTCCAAGTAGAAA

NPRC NM_012868.1 TGACACCATTCGGAGAATCA CATCTCCGTAAGAAGAACTGTTGA

NEP1 NM_012608.2 GGATCTTGTAAGCAGCCTCAGC AGTTGGCACACCGTCTCCAG

NEP2 NM_001107997.1 AAGGCGGCAGAGACCAGAGAC CTTGATGGACTGGATGGCGAACTC

AGTR1a NM_030985.4 GCTTCAACCTCTACGCCAGTGTG CGAGACTTCATTGGGTGGACGATG

AGTR2 NM_012494.3 TAGTCTCTCTCTTGCCTTGG CTGACCTTCTTGGATGCTCT

MAS1 NM_012757.2 TGACAGCCATCAGTGTGGAGA GCATGAAAGTGCCCACAGGA

ACE1 NM_012544.1 GACGGAAGCATCACCAAGGAGAAC CTAGGCACTGGAGGGCAGAGAC

ACE2 NM_001012006.1 AAGCCACCTTACGAGCCTCCTG ACAATGCCAACCACTACCGTTCC

BDKRB1 NM_030851.1 CCAAGACAGCAGTCACCATCAA CAGCAGGTCCCAGTCTTCTAG

BDKRB2 M59967.2 ATCACCATCGCCAATAACTTCGA CACCACGCGGCACAG

KLK1 NM_012593.1 GGAGAGTTGGAAGGAGGCAAAGAC TTGGTGTAGATGGCTGGCATGTTG

KLK10 NM_001004100.1 TCCAGAGCGAGCAACTGAGGTC GTCGTGTTCATCTGAGCGGAGTG

GAPDH NM_017008 AGACAGCCGCATCTTCTTGT CTTGCCGTGGGTAGAGTCAT

18S X00686 TCAACTTTCGATGGTAGTCGCCGT TCCTTGGATGTGGTAGCCGTTTCT

mtDNA NC_001665.2 ACACCAAAAGGACGAACCTG ATGGGGAAGAAGCCCTAGAA

PGC-1α NM_031347.1 ATGAATGCAGCGGTCTTAGC AACAATGGCAGGGTTTGTTC

Statistical analysis

All statistical analyses were performed by using IBM SPSS
26 or Graphpad prism 9. Relative mRNA expression fold change
and mtDNA-CN were given as mean ± standard error of the
mean (SEM), other parameters were given as mean ± standard
deviation (SD). Kolmogorov–Smirnov test was performed to
analyze the distribution of quantitative variables. Normally
distributed data (1MMP, protein expression levels, O.D. values
of cytokines concentrations and cell proliferation) were analyzed
by one-way analysis of variance (Fisher’s protected least
significant difference test), abnormally distributed data (Relative
mRNA expression fold change and mtDNA-CN) were analyzed
by Kruskal–Wallis test. Comparison of MMP between Day 0 and
Day 7 was performed using a paired t-test. P-values less than
0.05 (≤0.05) were considered to be statistically significant.

Results

Angiotensin receptor-neprilysin
inhibitors markedly improve coronary
collateral perfusion

First, MMPCZ(D7) was significantly higher than MMPCZ(D0)

in all ROP groups, but it was unchanged in the SHAM group
(Figure 3A and Table 2). Moreover, 1MMPCZ in all ROP

groups were significantly greater than in the SHAM group. In
addition, 1MMPCZ in the ROP+ARNi group was significantly
greater than in the ROP-Ctrl group and ROP+ARB group.
Although 1MMPCZ in the ROP+ARB group was significantly
greater than in the SHAM group, it remained unchanged
when compared with the ROP-Ctrl group (Figure 3B and
Table 2). In contrast, MMPNZ(D7) was unchanged compared
with MMPNZ(D0) in all groups (Figure 3A). With regard to
1MMPNZ , no significant difference was detected between all
groups (Table 2).

Angiotensin receptor-neprilysin
inhibitors regulate natriuretic peptide
system, renin-angiotensin-aldosterone
system, and kallikrein-kinin system

mRNA and protein expression levels of the membrane
receptors and key enzymes in NPS, RAAS, and KKS were
analyzed, respectively (Figure 1). With regard to NPS, results
showed that the mRNA expression levels of natriuretic peptide
A receptor (NPRA), natriuretic peptide B receptor (NPRB) and
natriuretic peptide C receptor (NPRC) in the ROP+ARNi group
were highest among all groups, but these results were statistically
non-significant. The mRNA expression levels of neprilysin-
1 (NEP1) in the ROP+ACEi group (0.60-fold ± 0.06) were
significantly lower than in the SHAM group (1.00-fold ± 0.19)
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FIGURE 3

Measurement of myocardial collateral perfusion. MMP, microspheres-based myocardial perfusion; MMPCZ, MMP of CZ; MMPNZ, MMP of NZ;
1MMPCZ, difference value of MMPCZ at Day 7 and Day 0. (A) Microspheres-based myocardial perfusion at Day 0 and Day 7. Blue lines indicate
changes of MMPNZ from Day 0 to Day 7, red lines indicate the changes of MMPCZ from Day 0 to Day 7. ∗∗∗∗P ≤ 0.0001, compared to Day 0.
(B) Difference value of MMPCZ among groups. ∗∗∗∗P ≤ 0.0001, compared to SHAM, ††††P ≤ 0.0001, compared to ROP-Ctrl, ‡‡‡‡P ≤ 0.0001,
compared to ROP+ARB.

TABLE 2 Measurement of the coronary collateral perfusion.

Group MMPCZ(D0)

(dmp/g)
MMPCZ(D7)

(dmp/g)
1 MMPCZ
(dmp/g)

MMPNZ(D0)

(dmp/g)
MMPNZ(D7)

(dmp/g)
1 MMPNZ
(dmp/g)

SHAM 203626 ± 10391 211218 ± 14218 7591 ± 19957 1117493 ± 3072 1119576 ± 3299 2084 ± 4451

ROP-Ctrl 287118 ± 18279 619780 ± 11321#### 332663 ± 21728∗∗∗∗ 1124653 ± 6334 1130470 ± 2118 5818 ± 6984

ROP+ARB 279846 ± 17332 600495 ± 44262#### 320649 ± 53317∗∗∗∗ 1127521 ± 9373 1130063 ± 7646 2541 ± 11744

ROP+ARNi 303161 ± 10094 799348 ± 20406#### 496186 ± 21723∗∗∗∗††††‡‡‡‡ 1126644 ± 8494 1128854 ± 9321 2210 ± 16523

MMP, microspheres-based myocardial perfusion; MMPCZ(D0) , MMP of CZ at Day 0; MMPCZ(D7) , MMP of CZ at Day 7; 1MMPCZ , difference value between MMPCZ(D7) and
MMPCZ(D0) ; MMPNZ(D0) , MMP of NZ at Day 0; MMPNZ(D7) , MMP of NZ at Day 7; 1MMPNZ , difference value between MMPNZ(D7) and MMPNZ(D0) . ####P ≤ 0.0001, compared
to Day 0, ∗∗∗∗P ≤ 0.0001, compared to SHAM, ††††P ≤ 0.0001, compared to ROP-Ctrl, ‡‡‡‡P ≤ 0.0001, compared to ROP+ARB.

(P = 0.0372). In addition, the mRNA expression levels of
neprilysin-2 (NEP2) in the ROP+ARNi group (0.45-fold ± 0.06)
were significantly lower than in the SHAM group (1.00-
fold ± 0.28) (P = 0.0275) and the ROP+ACEi group (1.04-
fold ± 0.18) (P = 0.0052) (Figure 4A). Moreover, results from
immunoblot assay indicated that the protein expression levels of
NPRA + NPRB were unchanged between all groups. However,
the protein expression levels of NEP1 in the ROP+ACEi group
(0.42-fold ± 0.18) were significantly lower than in the SHAM
group (1.00-fold ± 0.38) (P = 0.0023), ROP-Ctrl group (0.75-
fold ± 0.18) (P = 0.0489), and ROP+ARNi group (1.11-
fold ± 0.25) (P = 0.0004), respectively (Figures 4D, E).

With regard to RAAS, results showed that the mRNA
expression levels of angiotensin II receptor type 1a (AGTR1a)
in either the ROP+ACEi group or the ROP+ARNi group
were higher than in the ROP-Ctrl group, but no significant

differences were detected. In contrast, the mRNA expression
levels of angiotensin II receptor type 2 (AGTR2) in the
ROP+ARNi group (0.29-fold ± 0.17) were significantly lower
than in the ROP-Ctrl group (0.90-fold ± 0.42) (P = 0.0412).
In consequence, the relative mRNA expression ratios of
AGTR1a/AGTR2 in the ROP+ARNi group were highest among
all groups. In addition, the mRNA expression levels of
angiotensin converting enzyme 1 (ACE1) in the ROP+ACEi
group (3.00-fold ± 0.81) were significantly higher than in
the ROP-Ctrl group (0.63-fold ± 0.17) (P = 0.0037) and in
the SHAM group (1.00-fold ± 0.22) (P = 0.0275). Moreover,
ACE1 mRNA expression levels were also significantly higher
in the ROP+ARNi group (2.84-fold ± 0.59) compared with
the ROP-Ctrl group (P = 0.0033) and the SHAM group
(P = 0.0247). Similarly, the mRNA expression levels of
angiotensin converting enzyme 2 (ACE2) in the ROP+ACEi
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FIGURE 4

Molecular and biochemical quantification of target molecules of NPS, RAAS, and KKS. (A) Relative mRNA expression levels of membrane
receptors and key enzymes in NPS. (B) Relative mRNA expression levels of membrane receptors and key enzymes in RAAS. (C) Relative mRNA
expression levels of membrane receptors and key enzymes in KKS. (D,E) Relative protein expression levels of target molecules. (A–C) Data were
given as mean ± standard error of the mean (SEM) and presented here as 2-1 CT values and normalized against SHAM. *P ≤ 0.05, **P ≤ 0.01,
***P ≤ 0.001, compared to SHAM. †P ≤ 0.05, ††P ≤ 0.01, compared to ROP-Ctrl. ‡‡P ≤ 0.01, ‡‡‡P ≤ 0.001, compared to ROP+ACEi.

group (1.91-fold ± 0.44) were significantly higher than in
the ROP-Ctrl (0.79-fold ± 0.18) (P = 0.0373). Besides, ACE2
mRNA expression levels were significantly higher in the
ROP+ARNi group (1.91-fold ± 0.36) compared with the SHAM
group (1.00-fold ± 0.20) (P = 0.0373) and the ROP-Ctrl
group (P = 0.0143). As a consequence, the relative mRNA
expression ratios of ACE1/ACE2 in either the ROP+ACEi

group (1.48-fold ± 0.15) (P = 0.0017) or the ROP+ARNi
group (1.39-fold ± 0.11) (P = 0.0023) were significantly higher
than in the ROP-Ctrl group (0.77-fold ± 0.09) (Figure 4B).
Moreover, the protein expression levels of ACE1 in the
SHAM group (1.00-fold ± 0.33) were significantly higher
than in the ROP-Ctrl group (0.49-fold ± 0.30) (P = 0.0058),
ROP+ACEi group (0.34-fold ± 0.21) (P = 0.0008), and
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FIGURE 5

Analysis of pro-arteriogenic cytokines. (A–C) Protein concentrations of pro-arteriogenic cytokines. *P ≤ 0.05, **P ≤ 0.01, compared to SHAM.
†P ≤ 0.05, ††P ≤ 0.01, compared to ROP-Ctrl.

the ROP+ARNi group (0.50-fold ± 0.22) (P = 0.0086),
respectively (Figures 4D, E).

Finally, with regard to KKS, the mRNA expression levels
of BDKRB1 in the ROP+ARNi group (1.11-fold ± 0.43)
were significantly higher than in the ROP-Ctrl group (0.32-
fold ± 0.22) (P = 0.0367). BDKRB1 mRNA expression
levels were also higher in the ROP+ACEi group compared
with the ROP-Ctrl group, but the results were without any
statistical significance. In addition, the mRNA expression levels
of BDKRB2 in the ROP+ACEi group (1.00-fold ± 0.15)
were significantly higher than in the ROP-Ctrl group (0.56-
fold ± 0.08) (P = 0.0453). BDKRB2 mRNA expression levels
were slightly higher in the ROP+ARNi group compared with
the ROP-Ctrl group. In addition, the relative mRNA expression
ratios of BDKRB1/BDKRB2 in either the ROP+ACEi group or
the ROP+ARNi group were higher than in the ROP-Ctrl group,
but no statistical significance was reached. Moreover, the mRNA
expression levels of kallikrein 1 (KLK1) in the ROP+ARNi group
(1.82-fold ± 0.43) were significantly higher than in the ROP-Ctrl
group (0.72-fold ± 0.22) (P = 0.0500). In addition, the mRNA
expression levels of kallikrein 10 (KLK10) were unchanged
between all groups. As a consequence, the relative mRNA
expression ratios of KLK1/KLK10 in the ROP+ACEi group
(1.63-fold ± 0.40) were significantly higher than in the ROP-
Ctrl group (0.68-fold ± 0.24) (P = 0.0275). The KLK1/KLK10
mRNA expression ratios were also significantly higher in the
ROP+ARNi group (2.12-fold ± 0.22) compared with the SHAM
group (1.00-fold ± 0.33) (P = 0.0412) and the ROP-Ctrl group
(P = 0.0019) (Figure 4C). Furthermore, the protein expression
levels of KLK1 in both the ROP+ACEi group (1.43-fold ± 0.42)
(P = 0.0043) and the ROP+ARNi group (1.29-fold ± 0.50)
(P = 0.0165) were higher than in the ROP-Ctrl group (0.66-
fold ± 0.33) (Figures 4D, E).

Angiotensin receptor-neprilysin
inhibitors increase pro-arteriogenic
cytokines concentrations

MCP-1 concentration in the ROP+ARNi group
(2.13 ± 0.74 pg/µg total protein) was significantly higher
than in the ROP-Ctrl group (0.92 ± 0.61 pg/µg total protein)
(P = 0.0359). Moreover, MCP-1 concentration in the ROP-
Ctrl group was markedly lower than in the SHAM group
(2.06 ± 1.50 pg/µg total protein) (P = 0.0457) (Figure 5A).
In addition, GM-CSF concentration in the ROP+ACEi group
(0.0299 ± 0.0064 pg/µg total protein) was significantly
higher than in the SHAM group (0.0170 ± 0.0084 pg/µg
total protein) (P = 0.0116) and the ROP-Ctrl group
(0.0150 ± 0.0097 pg/µg total protein) (P = 0.0045). GM-
CSF concentration was significantly higher in the ROP+ARNi
(0.0306 ± 0.0072 pg/µg total protein) compared with the
SHAM group (P = 0.0081) and ROP-Ctrl (P = 0.0031)
(Figure 5B). Regarding VEGF concentration, results showed
that there was no statistical significance between all groups
(Figure 5C).

Angiotensin receptor-neprilysin
inhibitors hardly affect mitochondrial
genome synthesis

mtDNA-CN in either the ROP+ACEi group (0.73-
fold ± 0.07) or the ROP+ARNi group (0.77-fold ± 0.12) was
slightly lower than in either the SHAM group (1.00-fold ± 0.10)
or the ROP-Ctrl (0.98-fold ± 0.11), however, these results were
not statistically significant.
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FIGURE 6

Effects of ACEi, NEPi, ARB, ARNi, and antagonists of bradykinin receptors on MHEC5-T proliferation. (A–D) Effects of ACEi, NEPi, ARB, ARNi on
MHEC5-T proliferation at different concentrations, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001, compared to control. (E) Effects of ACEi
and antagonists of bradykinin receptors on MHEC5-T proliferation. ***P ≤ 0.001, ****P ≤ 0.0001, compared to control. †††P ≤ 0.001,
††††P ≤ 0.0001, compared to ACEi. (F) Effects of NEPi and antagonists of bradykinin receptors on MHEC5-T proliferation. **P ≤ 0.01, compared
to control. †P ≤ 0.05, †††P ≤ 0.001, compared to NEPi.

Neprilysin inhibitors exert
pro-arteriogenic effects through the
bradykinin receptor signaling pathway

In vitro experiments were performed to investigate the roles
of ACEis, ARBs, NEPis, and ARNis on MHEC5-T proliferation.
The results showed that 0.01 µM ACEi (0.1797 ± 0.0086)
significantly promoted cell proliferation compared with the
control (0.1677 ± 0.0088) (P = 0.0196) (Figure 6A). Similarly,
both 0.01 µM NEPi (0.2311 ± 0.0080) (P = 0.0009) and 0.1 µM
NEPi (0.2294 ± 0.0177) (P = 0.0014) significantly promoted
cell proliferation compared with the control (0.1969 ± 0.0180)

(Figure 6B). In contrast, both 10 µM ARB (0.1495 ± 0.0069)
(P = 0.0008) and 20 µM ARB (0.1318 ± 0.0101) (P < 0.0001)
significantly inhibited cell proliferation compared with the
control (0.1693 ± 0.0202) (Figure 6C). Moreover, ARNi
(NEPi + ARB) significantly inhibited cell proliferation in
a concentration-dependent manner from 0.01 to 20 µM
(Figure 6D).

Then, we functionally validated whether the pro-
arteriogenic effects of ACEis and ARNis were mediated
through the bradykinin signaling pathway. The results
showed that ACEi (0.1421 ± 0.0086) significantly promoted
cell proliferation compared with control (0.1276 ± 0.0109)
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(P = 0.0010). In contrast, ACEi in combination with BDKRB1i
(0.1213 ± 0.0070) (P < 0.0001) or BDKRB2i (0.1254 ± 0.0069)
(P = 0.0002) significantly inhibited cell proliferation compared
with ACEi alone. However, ACEi in combination with
BDKRB1i and BDKRB2i (0.1460 ± 0.0055) showed a markedly
increased cell proliferation when compared with control
(P = 0.0001) (Figure 6E). Furthermore, NEPi (0.1505 ± 0.0119)
significantly promoted cell proliferation compared with
control (0.1294 ± 0.0115) (P = 0.0018). In contrast, NEPi in
combination with BDKRB2i (0.1344 ± 0.0105) (P = 0.0141),
or NEPi in combination with BDKRB1i and BDKRB2i
(0.1276 ± 0.0169) (P = 0.0008) significantly inhibited cell
proliferation compared with NEPi alone (Figure 6F).

Discussion

In case of coronary occlusion, collateral growth is the
most efficient compensatory mechanism to adequately supply
blood to ischemic myocardium. This study demonstrated
for the first time that ARNis significantly improve coronary
collateral perfusion in vivo. Furthermore, we demonstrated that
NEPis exert pro-arteriogenic efforts via the bradykinin receptor
signaling pathway in vitro.

In our current research, we validated again that ROP is an
ideal approach to stimulate coronary collateral growth. Most
importantly, administration of 7-day ROP+ARNi significantly
increased coronary collateral perfusion compared with ROP
alone. In contrast, ROP+ARB had no effect on coronary
collateral perfusion. Thus, we confirmed that the ARNi induced
improvement in coronary collateral perfusion was due to the
NEPi (Sacubitril), rather than the ARB (Valsartan). This result
is consistent with our most recent study, in which a beneficial
effect of an ARB (Candesartan) on cerebral collateral blood flow
was not observed (11).

Neprilysin degrades both BK and NPs, and there is
overwhelming evidence that both BK and NPs are the most
potent endogenous vasodilators modulating coronary blood
flow (CBF). It has been well documented that exogenous BK
increased CBF in a dose-dependent manner (16), while NPs
enhanced coronary artery dilation and increased coronary flow
velocity (17, 18). The results presented here were obtained in
an established rat model of coronary arteriogenesis. Hence,
the improvement in myocardial perfusion was clearly the
result of chronic remodeling of the coronary collateral arteries
rather than a transient regulation of vascular tone. BK and
NPs exert their biological functions by binding bradykinin
receptors and natriuretic peptide receptors, respectively. Indeed,
increasing evidence suggests that both bradykinin receptors and
natriuretic peptide receptors play critical role in collateral artery
development (7, 19, 20).

Therefore, in the second part, by analyzing the relevant
membrane receptors and key enzymes in NPS, RAAS and KKS,

we aimed to understand the underlying molecular mechanism
and cross-talk in these three hormonal systems under the
administration of ACEis or ARNis. First, NPS is the most
prevalent system regulated by ARNis. Hence, we analyzed three
major membrane receptors (NPRA, NPRB, NPRC) in NPS,
and the results showed that their mRNA expression levels were
highest in the ROP+ARNi group among all groups, but a
statistical significance was not confirmed. NEP1 is one of the key
degradative enzymes in NPS. Our results showed that ACEis,
but not ARNis, significantly inhibited NEP1 expression at both
mRNA and protein expression levels. Yet, ARNis significantly
inhibited the mRNA expression levels of NEP2. Currently, there
are no specific studies that clarify the effect of ACEis on the
NEP family. However, Pare et al. analyzed the candidate genes
associated with ACEi-induced angioedema in a genome-wide
study, and the results showed that NEP variants were likely
involved in ACEi-induced immunoregulation (21), which may
explain the putative ACEi-modulated downregulation of NEP1
mRNA expression observed in our study. Regarding NEP2,
Bland et al. demonstrated a high expression of NEP2 in the
soluble melanogaster embryo fraction (22). Our previous in vivo
study also demonstrated that embryonic stage is the most critical
phase for arterial identity (23). To date, however, little is known
about NEP2 in the context of vascular adaptations.

Second, with respect to RAAS, the main membrane
receptors are AGTR1a (AGTR1 consists of AGTR1a and
AGTR1b, the first subunit is strongly expressed in the heart)
and AGTR2 (24). Our results showed that ARNis significantly
downregulated AGTR2 mRNA expression and led to an
upregulation of the AGTR1a/AGTR2 ratio. In principle both
Ang I and Ang II are cleaved by NEP, so inhibition of
NEP increases their concentrations in the circulation system.
Indeed, it was reported that NEPis increased blood pressure
in normotensive subjects (25), which was identified as an
Ang II-dependent effect (26). Although both AGTR1 and
AGTR2 have the similar binding affinity for Ang II, they exert
opposite biological functions in cardiovascular homeostasis
(27). However, an imbalance of the AGTR1/AGTR2 ratio should
be theoretically reversed when the ARB (Valsartan) is combined
with the NEPi (Sacubitril). In this regard, numerous studies have
shown that the cardiovascular protective function of ARBs was
partly due to the enhancement of the biological effect of AGTR2
(28). In addition, recent preclinical studies indeed demonstrated
that ARNis downregulated AGTR1 expression but upregulated
AGTR2 expression at the transcriptional level (29, 30), which
are in contrast to our finding. Here, the underlying mechanism
is still not clear.

With regard to the key enzymes in RAAS, our results showed
that the mRNA expression levels of both ACE1 and ACE2
were upregulated under the administration of either ACEis or
ARNis, and a greatly increased ACE1/ACE2 ratio was observed.
Indeed, early in the development of ACEis, it was reported
that administration of ACEis upregulated ACE mRNA (31, 32),
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which was considered as a negative feedback effect of inhibited
ACE activity and decreased Ang II levels (33). However, studies
subsequently reported that ACEis decreased ACE1 mRNA
expression but increased ACE2 (34, 35). It is now generally
accepted that ACE2 converts Ang II to Ang-(1-7), which is a
potent vasodepressor that counteracts the vasopressor Ang II.
Therefore, ACEis exert an important cardiovascular protective
function by regulating the imbalance of the ACE1/ACE2 ratio
(36). In contrast, Emilsson et al. recently reported that ACEis
even increased serum protein levels of ACE1, whereas ACE2
levels remained unchanged (37). Still, the roles of ACEis and
ARNis on ACEs expression in this context remain controversial.

Third, to verify our hypothesis that ARNis functionally
activate KKS like ACEis, we analyzed the mRNA expression
of bradykinin receptors and two members of the tissue
kallikrein family. Our results showed that the gene expression
of bradykinin receptors was modulated by both ARNis and
ACEis. Notably, an upregulated mRNA expression of BDKRB1
was observed in the ROP+ARNi group, while an upregulated
mRNA expression of BDKRB2 was observed in the ROP+ACEi
group, respectively.

The mechanism of ACEis on bradykinin receptor activation
has been intensively investigated in numerous studies. In
summary, as agonists, ACEis directly active BDKRB1 by binding
the zinc finger motif of the second extracellular loop. As
allosteric enhancers, ACEis indirectly resensitize BDKRB2 by
altering the conformation of ACE domains of the ACE-
BDKRB2 receptor heterodimer. Here, the possible molecular
mechanisms of NEPis on bradykinin receptor activation seem
conceivable. First, inhibition of NEP leads to increased BK
concentration levels, which thereby stabilizing and activing
BDKRB1 and BDKRB2. Second, it is speculated that NEP
may also associate with BDKRB2 to form a “NEP-BDKRB2
heterodimer,” thereby enhancing peptide ligand binding and
activating BDKRB2 (38). Intriguingly, it has been reported
that NEP was much more responsible for kininase function
(68 ± 2%) than ACE (9 ± 0.4%) in the murine kidney (39).
If NEP has a stronger effect on BK degradation than ACE
in the heart, we speculate that NEPis may be more efficient
than ACEis to stimulate coronary arteriogenesis therapeutically
in ischemic cardiovascular disease, and likely through the
bradykinin receptor signaling pathway.

Previous research demonstrated that NEPis could augment
the beneficial effect of KKS by particularly stimulating BDKRB2.
Ura et al. reported that NEPi-induced increase in renal kinin
levels were blocked by the BDKRB2 antagonist (HOE140) (40).
In addition, Deddish et al. demonstrated that NEPis resensitized
BDKRB2 in human pulmonary fibroblasts (38). However, in our
current study, only an upregulated BDKRB1 mRNA expression
was detected under the administration of ARNi, suggesting
that BDKRB1 plays a greater role than BDKRB2 in ARNi-
induced arteriogenesis. Indeed, we previously observed a large
reduction in peripheral arteriogenesis in BDKRB1 knock out

mice, and a minor reduction in BDKRB2 knock out mice (7).
Therefore, BDKRB1 can be regarded as a novel pro-arteriogenic
therapeutic target in GPCR drug discovery.

Furthermore, our work showed that both ACEis and ARNis
regulated gene expression of the kallikreins, KLK1 and KLK10.
KLK1 converts low-molecular-weight kininogen (LMWK) to
KD. KD is the ligand of BDKRB2, which is known to exert
numerous biological processes implicated in vascular growth
(41). In contrast, several studies concluded that KLK10 is
a tumor suppressor gene, which is a major modulator of
inhibition of vascular cell proliferation and migration (42, 43).
Theoretically, downregulation of KLK10 mRNA levels could
be associated with vascular cell proliferation and migration,
which are the prerequisites of arteriogenesis. Therefore, we
considered the mRNA expression ratio of KLK1/KLK10 as
a pro-arteriogenic indicator. Here, our results showed for
the first time that both ACEis and ARNis significantly
upregulated this pro-arteriogenic ratio. In addition, our results
also showed that both ACEis and ARNis upregulated KLK1 at
the translational level.

Many research has been made regarding the expression ratio
of AGTR1/AGTR2, ACE1/ACE2, and BDKRB1/BDKRB2 (44–
46). Upregulation or imbalance of these ratios was considered a
hallmark of cardiac decompensation and arterial inflammation.
Most investigators attributed the pharmacological benefits of
ACEis or ARBs to rebalancing of these ratios (34). However,
arteriogenesis is a process in which immune activation
and inflammatory activation play crucial roles. In particular,
leukocyte extravasation is triggered after arterial occlusion.
Subsequently, monocytes adhere and transmigrate across
vascular endothelium, and differentiate into macrophages,
which release numerous cytokines (e.g., GM-CSF, MCP-1,
and VEGF). These pro-arteriogenic cytokines significantly
promote ECs proliferation via the paracrine signaling processes
(47). In summary, at the mechanistic level, there are both
beneficial and adverse effects of ACEis and ARNis therapy,
but ultimately the beneficial effects predominate, leading to
improved collateral formation.

Because paracrine factors play a critical role in
arteriogenesis, we analyzed whether administration of
ACEis or ARNis would result in therapeutic modulation
of three main pro-inflammatory cytokines at the protein level.
Our results suggested that the pro-arteriogenic cytokines
were strongly induced during therapeutic modulation of
arteriogenesis. Here, we demonstrated that ARNis, but not
ACEis, significantly increased MCP-1 concentration, and that
both ACEis and ARNis increased GM-CSF concentration.
It has been reported that MCP-1 plays an important role in
monocyte/macrophage activation, and that GM-CSF stimulates
the release of pluripotent monocyte cells from the bone marrow
into the collateral circulation (48–50). The therapeutic and
pro-arteriogenic roles of GM-CSF and granulocyte colony-
stimulating factor (G-CSF) have been demonstrated in a
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variety of animal models of coronary, cerebral, and peripheral
arteriogenesis, respectively (13, 51, 52). Yet, a modulation of
VEGF at the protein level by ACEis or ARNis was not confirmed
in our current study.

Vascular regeneration can be regarded as a plastic process,
in which physiological and pathophysiological processes work
against each other, ultimately the former gains the upper
hand (53). Mitochondrial dysfunction is a hallmark of age-
related cardiovascular disease. In fact, the heart is a “muscle
pump” that constantly has an extraordinarily high demand for
adenosine triphosphate, which is why it has a high density
of mitochondria (54). Sabbah et al. demonstrated that ARNis
could ameliorate left ventricular mitochondrial dysfunction
(55). However, there was no study demonstrating the role of
ARNis in mitochondrial biogenesis, whereas previous research
has shown that administration of ACEis increased mtDNA-
CN (56, 57). Yet, a beneficial effect of ARNis or ACEis on
myocardial mitochondrial biogenesis was not confirmed in
our current study.

To verify our hypothesis that ARNis exert pro-arteriogenic
effects via the bradykinin receptor signaling pathway, additional
in vitro experiments were performed in this study. Because
it was confirmed here that NEPis, rather than ARBs,
promoted endothelial proliferation, the NEPi (Sacubitril) was
analyzed for the possible stimulation of bradykinin receptors.
Hence, in subsequent in vitro experiments, we verified our
hypothesis that NEPis, like ACEis, exert their biological
function on ECs through the bradykinin receptor signaling
pathway. Here, we have shown for the first time that NEPis
significantly promoted MHEC5-T proliferation, which can
be abrogated by antagonists of bradykinin receptors. Thus,
it can be demonstrated that NEPis exert pro-arteriogenic
effects via the bradykinin receptor signaling pathway. In
particular, since a stronger inhibition of cell proliferation
was observed in the NEPi + BDKRB2i treatment group
compared with the NEPi + BDKRB1i treatment group,
BDKRB2 plays a greater role than BDKRB1 in NEPi-induced
endothelial proliferation.

Vascular proliferation and migration play crucial roles
in various contexts of arterial remodeling. The endothelium
is a thin monocellular layer that lines the inner surface
of the heart and blood vessels. As a receptor-effector, the
endothelium has the property to respond to physical or
chemical stimuli. It maintains vasomotor balance and vascular
homeostasis by producing agonistic and antagonistic substances
(58). Conversely, endothelial dysfunction is characterized by
an imbalanced vasodilation and vasoconstriction (59). It
has been demonstrated that endothelial dysfunction precedes
atherosclerosis (60). Because atherosclerotic lesions result in
the migration of vascular smooth muscle cells from the media
to intima (61, 62), and endothelial integrity is maintained
by replacement of damaged ECs (63), atherosclerosis is
characterized by pathologic intimal thickening. In contrast,

with regard to arteriogenesis, collateral arterioles undergo
active outward remodeling, which is associated with wall
thickening and lumen enlargement. Here, ECs proliferation
and migration are essential for collateral artery formation. It
is speculated that novel medications for cardiovascular disease
may shift the process of pathologic atherosclerosis toward
physiological arteriogenesis (64). Recent research has shown
that arterial network expansion complemented collateral arterial
development to recover from an ischemic insult, in which
endothelial function plays an important role in arterial flow
recovery (65, 66).

From bench to bedside, ARNis were used only for
HF patients with reduced ejection fraction (HFrEF) at the
very beginning after it appeared. On the positive side,
the indications of ARNis were expanded for both HF
with preserved ejection fraction (HFpEF) (approved by the
U.S. Food and Drug Administration) (67) and hypertension
(approved by the China Food and Drug Administration)
(68) in 2021. In addition, results of the PARADISE-MI
trial (n = 5661) showed that administration of ARNis
reduced the composite outcome by 10% compared with
ACEis, and provided additional clinical benefits in patients
with acute MI (69). Meanwhile, results from another multi-
center randomized control clinical trial conducted in China
(n = 7556) showed that ARNis were superior to ACEis
in reducing major adverse cardiovascular events after MI
(70). Considering that our current study suggests that
ARNis significantly facilitate coronary collaterals development,
which is the most effective mechanism for maintaining
stable blood perfusion after arterial stenosis or occlusion,
ARNis may improve the prognosis of patients post-MI HF
(tertiary prevention), or even reduce the incidence of new-
onset MI (secondary prevention). More research is still
needed to provide a rationale for the clinical efficacy and
safety of ARNi in MI.

Conclusion

In summary, the results presented here indicate
that (1) ARNis improve coronary collateral perfusion
by stimulating arteriogenesis therapeutically. (2) NEPis
promote endothelial proliferation via the bradykinin receptor
signaling pathway.

Limitations

First, since our primary finding clearly showed that
ARNis significantly increased coronary arteriogenesis, it
would be supportive to demonstrate the increase in vessel
lumen of collateral arteries angiographically. We have already
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successfully verified the morphological features by visualizing
angioarchitecture in a rat model of cerebral arteriogenesis
(7, 47). However, anatomically, the situation of rat coronary
collaterals is more complicated. Second, it would be more
promising to evaluate the role of ARNis on coronary collateral
perfusion by using the bradykinin receptor knock out mouse
model. However, it is too challenging to perform microsurgery
and set up ROP system in the heart of a mouse. Finally,
because antibodies against some targets are not available,
and the specificity of some antibodies has been controversial,
the analysis of these targets at the translational level could
only be partial.
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