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SUPPLEMENT 

 

Title: 

Disintegration of the NuRD complex in primary human muscle stem cells in critical illness 

myopathy. 
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Figure S1  

 

Figure S1. Study design. Muscle biopsies were obtained from n=30 ICU-patients (with and 

without CIM) in study cohort described in detail by Weber-Carstens et. al, 2013. Only some of the 

patients or legal proxies had agreed to the isolation of MuSC (12/30 patients). Of these 12 patients, 

n=3 underwent EMS, of which n=6 cell populations were obtained (n=3 cell populations from 

stimulated muscle and n=3 cell populations from nonstimulated muscle). None of the biopsied 

individuals had previous evidence of neuromuscular disorder and no history of critical illness. 

CIM-MuSC and control MuSC were isolated in the same period of time.  
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Figure S2 

 

Figure S2. ATAC-Seq analysis.  

(A) The MA plot shows the log2 fold changes versus the mean of normalized counts allows to 

inspect the results of the differential analysis. (B) Heatmap of row normalized counts of the 1035 

differential peaks between CIM and control MuSC. (C) Enrichr Biological Process of more closed 

peaks (inactive genes) in CIM-MuSC versus control. The genes involved in positive regulation of 

deacetylase activity are affected.  
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Figure S3 

 

 

Figure S3. Non-CIM-MuSC isolated from ICU patients behave like healthy controls.  

Immunofluorescence staining for Ki-67, PAX7, H3K9me9, γH2AX, MTA2, RBBP4. Scale bar 50 

µm. Data are presented as mean ± SD. 
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Figure S4 

 

Figure S4. Comparison of CIM-MuSC with healthy, aged MuSC.  

(A) Proliferation rate and dsDSBs in early passage (P<10, EP) (n=11 different cell populations) 

and late passage (P>15, LP) (n=7 different cell populations) in normal control MuSC, and in CIM-

MuSC (n=12 different cell populations). Immunofluorescent staining for Ki-67 (red), γH2AX 

(green), Hoechst (blue). (B) Quantification of nuclear size of control healthy and CIM-MuSC at 

different culture passages (P). Three different control MuSC populations were analyzed at P=10, 

20, 30 and four different CIM-MuSc populations at P<10.  

Data information: In (A), scale bar for all images: 50µm. Data are presented as mean ± SEM. At 

least 200 nuclei were analyzed/cell population. In (B), nuclear size was evaluated by Image J 

‘Analyze Particles’ function with images of DAPI stained cells. At least 100 myonuclei/cell 

population were analyzed, except control P30 had less cells available (n=37). Plots were generated 

by sigmaplot. In (A,B), Mann-Whitney-U test were used. ***p<0.001. 
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Table S1. Identification of cell population usage for study. 

Patient Sex, 

age 

MuSC using for: 

IF WB RNA-

Seq 

Atac

-Seq 
qPCR 

dsDNA 

breaks 

analysis 

nuclear 

size 

 

transplant 

CIM 1 m/67 + + + + + +   + 

CIM 2 m/74 + + +   + +    

CIM 3 m/64 + + +   + +    

CIM 4 m/53 + + +   + + +  

CIM 5 f/48 + +     +      

CIM 6 m/67 +              

CIM 7 m/41 +     +        

CIM 8 m/36 +              

CIM 9 m/54 +           +  

CIM 10 m/41 +     +        

CIM 11 m/42 +     +        

CIM 12 m/67 +           +  

ICU CON 1 m/18 +              

ICU CON 2 m/50 +              

ICU CON 3 f/ 69 +              

CON 1 m/33 + +     +      

CON 2 m/18 +              

CON 3 m/50 + + +   +      

CON 4 m/48 + + +   +      

CON 5 m/66 + +           

CON 6 m/47 +    +   +      

CON 7 f/48 + +     +      

CON 8 m/57 + +            

CON 9 m/44 +              

CON 10 f/51 +             + 

CON 11 f/48 +         +    

CON 12 m/34           +    

CON 13 m/58           +    

CON 14 m/20   +       +    

CON 15 m/68           +    

CON 16 m/37       +        

CON 17 f/28       +       + 

CON 18 m/35       +        
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Table S2. Clinical characterization of control-MuSC donors. 

Cell 

population 

Donor 

gender/age 

Diagnosis CK Muscle 

histology 

CON1 m/33 Myalgias, myositis 

excluded 

2x elevated normal 

CON2 m/18 Myalgias normal normal 

CON3 m/50 Myalgias normal normal 

CON4 m/48 Myalgias normal normal 

CON5 m/66 Myalgias normal normal 

CON6 m/47 Myalgias normal normal 

CON7 f/48 Myalgias normal normal 

CON8 m/57 Myalgias normal normal 

CON9 m/44 Myalgias normal normal 

CON10 f/51 Myalgias, myositis 

excluded 

1.5x elevated normal 

CON11 f/48 Myalgias normal normal 

CON12 m/34 Myalgias normal normal 

CON13 m/58 Myalgias normal normal 

CON14 m/20 Myalgias 3x elevated normal 

CON15 m/68 Statin-induced 

myalgias 

normal normal 

CON16 m/37 Myalgias normal normal 

CON17 f/28 Myalgias normal normal 

CON18 m/35 Carrier normal normal 
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Table S3. Primary antibodies. 

Antibody Company Catalog # 
Dilution 

IF1 

Dilution 

WB2 

Blocking 

solution WB 

alpha-Tubulin Sigma-Aldrich  T5168   1:1000 
4% milk in 

TBS 

beta-Tubulin Abcam  ab6046   1:1000 
4% milk in 

TBS 

Desmin DAKO  M0760 1:100   

Desmin Abcam  ab8592 1:100     

HDAC1 Santa Cruz sc-7872 1:200     

Histone 1 Abcam ab125027 1:100 1:500 
4% BSA in 

TBS 

Histone 3 

(trimethyl K9) 
Abcam ab8898 1:10000 1:2000 

4% BSA in 

TBS 

Ki-67 Thermo Fisher MA514520 1:300     

Lamin AC Abcam  ab108595 1:2000   

MTA2 Santa Cruz sc-9447 1:200 1:500 
4% milk in 

TBS 

Myosin Heavy 

Chain (fast) 
NovoCastra NCL-MHCf 1:300   

Myosin Heavy 

Chain (slow) 
NovoCastra  NCL-MHCs 1:20   

PAX7 Santa Cruz sc-81648 1:200   

phospho-H2A.X Millipore 05-636 1:200 1:1000 
4% BSA in 

TBS 

RBPP4 

(RbAp48) 
Abcam ab488 1:400 1:500 

4% milk in 

TBS 

Spectrin Leica NCL-SPEC1 1:100   

 

1IF = immunofluorescence; 2WB = Western blot 
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Table S4. Secondary antibodies.  

Antibody Company 
Catalog 

number 
Dilution Application 

Alexa 488 Invitrogen A11055 1:500 1IF 

Alexa 488 Invitrogen A11001 1:500 IF 

Alexa 488 Invitrogen A11008 1:500 IF 

Alexa 568 Invitrogen A11031 1:500 IF 

Alexa 568 Invitrogen A10042 1:500 IF 

Alexa 568 
life 

Technologies 
A11057 1:500 IF 

Alexa 568 
life 

Technologies 
A11036 1:500 IF 

Alexa 647 Invitrogen A21469 1:500 IF 

Alexa 647 Invitrogen A21245 1:500 IF 

Alexa 647 Invitrogen A21236 1:500 IF 

Alexa 647 Invitrogen A31571 1:500 IF 

800 Licor 92632214 1:5000 2WB 

800 Rockland 611-745-127 1:5000 WB 

800 Rockland 610-732-124 1:5000 WB 

700 Rockland 611-730-127 1:5000 WB 

700 biomol 21056 1:5000 WB 

HRP GE Healthcare NA934 1:2000 WB 

HRP Invitrogen 626520 1:2000 WB 

 

1IF, immunofluorescence; 2WB, Western blot 
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Table S5. Primer used for qPCR analysis. 

 

Gene Forward primer Reverse primer 

HIST1H3D GCCAAGGCAGGGTTTAGAAG TGCTTGCGTGGCGCTTT 

HIST1H2AE GCAACGACGAGGAGCTAAA TCCGTCTTCTTAGGCAGCAA 

HIST1H3C AGGACTTCAAAACCGACCTG TTAGCGTGAATAGCGCACAG 

PAX7 GATTCCCTTTGGAAGTGTCC ACTATCTTGTGGCGGATGTG 

CyclophilinA CGCCGAGGAAAACCGTGTAC

TATT 

GACCTTGTCTGCAAACAGCTCA

AAG 

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

RPL13a CGTGCGTCTGAAGCCTACA GGAGTCCGTGGGTCTTGAG 
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Table S6. ATAC-Seq. Mapping Stats. 

Sample 

Total 

Number 

of Reads 

Total 

Number 

of paired 

Reads 

Numbe

r of 

Reads 

not 

aligned 

Numbe

r of 

Reads 

aligned 

once 

Numbe

r of 

Reads 

aligned 

multipl

e times 

Over

all 

align

ment 

rate 

(%) 

Number 

of 

Reads 

after 

Filtering 

Non-

Redund

ant 

Fractio

n 

(NRF) 

CIM 1 105’967’

776 

105’967’

776 

2’827’5

51 

69’804’

678 

33’335’

547 

97.33 67’592’

069 

0.638 

CIM 7 101’145’

206 

101’145’

206 

2’880’5

01 

64’893’

460 

33’371’

245 

97.15 33’045’

906 

0.327 

CIM 10 117’499’

450 

117’499’

450 

2’762’4

45 

75’236’

211 

39’500’

794 

97.65 84’786’

234 

0.722 

CIM 11                                                                                                    122’654’

119 

122’654’

119 

3’320’8

67 

80’945’

354 

38’387’

898 

97.29 60’346’

667 

0.492 

Control 

16 

128’259’

988 

128’259’

988 

4’420’6

62 

82’816’

488 

41’022’

838 

96.55 47’673’

488 

0.372 

Control 

17 

113’114’

747 

113’114’

747 

3’547’1

67 

73’857’

109 

35’710’

471 

96.86 60’233’

550 

0.532 

Control 

18 

123’349’

087 

123’349’

087 

4’219’3

23 

80’326’

238 

38’803’

526 

96.58 53’263’

782 

0.432 

 

 

 

Table S7. ATAC-Seq. Peak Calling Stats.  

 

Sample 

Number 

of Peaks 

Fraction of Peaks in 

Blacklist (%) 

Fraction of Reads 

in Peaks (%) 

Fraction of Reads in 

Blacklist (%) 

CIM 1 42’350 2.413 4.063 2.064 

CIM 7 37’533 2.363 5.925 3.144 

CIM 10 162’417 0.687 14.159 1.402 

CIM 11                                                                                                    63’012 1.652 7.640 2.230 

Control 16 72’156 1.457 10.811 2.821 

Control 17 78’029 1.466 9.927 2.670 

Control 18 41’950 2.410 5.448 2.644 

CIM 

group 

340’433 0.570 - - 

Control 

group 

227’232 0.743 - - 
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Table S8. ATAC-Seq. Consensus Stats.  

 

Group 

Number of Peaks in 

Group Consensus 

Fraction of Peaks in 

Consensus Set (%) 

Number of unique 

Peaks for Group 

CIM 34’520 10.140 1’275 

Control 53’869 23.707 6’919 
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SUPPLEMENTAL METHODS: 

ATAC-Seq 

Generate count matrix over consensus peaks: The number of reads overlapping the derived 

consensus peaks for each sample has been acquired using the bedtools module multicov, where 

only reads with a minimum mapping quality score of 10 have been counted (version 2.27.1, ‘-q 

10’). 

Post processing removal of the unwanted variations: Upon initial principal component analysis 

(PCA) using the raw count data, we noticed that patient age was the most discriminative feature 

(PC1: 87.3%), whereas the health condition of the patients seemed to be the second most distinctive 

information. This indicated the need for normalization techniques which account for the in-group 

variation and estimate the influence of covariates, e.g. the age of the respective patient, which 

impact in the chromatin dynamics of patients irrespective of the health condition. Due to similar 

characteristics of the sequencing data, like genome wide distribution and variable length 

enrichment, we decided to use methods designed for RNA-Seq, especially for differential 

expression (DE) analysis. We used an approach called RUVSeq which identifies known or 

unknown factors of “unwanted variation”, e.g., batch, library preparation, and other nuisance 

effects, using the between-sample normalization methods proposed in [45]. The influence of the 

identified factors is estimated per patient and can be accounted for in the differential analysis 

framework. In a recent study Koberstein et. al. analyzed how learning alters chromatin accessibility 

in the mouse hippocampus and showed that this method can be successfully applied to epigenetics 

data to correct for unwanted variability [46].  

Differential analysis: The subsequent differential analysis was performed on the raw read counts 

of the 74292 consensus peaks with DESeq2 (version 1.20.0) using three factors of unwanted 

variation derived from RUVr as covaritiates in the design formula. We performed Wald test 

comparing health conditions CIM vs Control followed by multiple testing correction of the p-

values using Benjamini-Hochberg method, then we employed a log2 fold change threshold of 0.1 
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to account for background signal and a significance cutoff of 0.05 for the adjusted p-values to 

identify 1128 differential sites (more open: 660, 0.89%; more closed: 468, 0.63%). 

The following post processing steps have been performed using in-house scripts written in R 

heavily employing software provided through the Bioconductor infrastructure, especially using the 

software for computing and annotating genomic ranges [47] and graphics have been created using 

the ggplot2 R package (version 3.0.0) unless otherwise stated. 

Generation of fragment size distribution: The fragment lengths were acquired by extracting the 

value of the TLEN field of the alignments from all proper read pairs that were marked as primary 

alignments and not being duplicate. Then the fragment length was plotted against the read density 

to see the expected open chromatin region (peak at < 100bp) followed by nucleosome phasing 

pattern (peak every ~ 200 bp). 

Plot fragment size classes at TSS: The fragment lengths were extracted from reads mapping within 

4kb (+/- 2kb) of transcription start sites of Ensembl annotated genes (Release GRCh37.87). TSS 

specific fractions of template lengths were acquired for all samples and plotted averaged over all 

samples per group (Figure 2C in the middle), where error bars show the standard deviation of 

fractions per group. The bar graph shows the fraction of template length occurrences relative to all 

extracted template lengths. 

Plot fragment sizes intergenic classes: The fragment lengths were extracted from reads mapping to 

non-gene covered regions of the genome (intergenic regions). Intergenic fractions of template 

lengths were acquired for all samples and plotted averaged over all samples per group (Figure 2C 

on the right), where error bars show the standard deviation of fractions per group. The bar graph 

shows the fraction of template length occurrences relative to all extracted template lengths. 

Removal of unwanted variations: In detail, the RUVr approach were followed as described in the 

package manual, first we performed upper-quartile (UQ) normalization of the data and then we 
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estimated residuals from an initial generalized linear model (GLM) regression of the counts on the 

covariates of interest to estimate the factors of unwanted variation. The factors of unwanted 

variation were validated by comparing them against known covariates as for example age of the 

patient donor. 

Differential analysis with DESeq2: The differential analysis was performed with DESeq2 (version 

1.20.0) using the design formula, based on the three factors of unwanted variation derived from 

RUVr. The MA plot showing the log2 fold changes versus the mean of normalized counts allows 

to inspect the results of the differential analysis (Figure S2A). The row normalized counts of 

differential peaks indicate equal group sizes for more open and more closed peaks. The heatmap 

have been created with the R package pheatmap (version 1.0.10) (Figure S2B). 

Effect on housekeeping genes: Furthermore, we were interested in the effect that this normalization 

has on the counts of stable genes, like housekeeping genes. We downloaded a list of housekeeping 

genes derived from the analysis of next-generation sequencing (RNA-Seq) data 

(https://www.tau.ac.il/~elieis/HKG/) and extracted their promoter regions (+2kb,-200b from TSS) 

from the UCSC knownGene annotation for hg19. Next, the genes with overlapping peaks were 

filtered out and raw counts of mapped peaks against the RUVseq normalized counts were 

compared. We observed a constant smoothing of the count values upon removal of more factors of 

unwanted variation. 

Genomic Feature Annotation: A basic annotation of the peak sets were performed using the 

annotateWithGeneParts function of the genomation package to assign peaks to genomic features 

and found that most of the peaks lie in non-coding regions like introns or intergenic regions. 

Enrichment Analysis: Since many of our peaks of interest are located in non-coding areas of the 

genome distal to promoters of genes, we use rGREAT (version 1.12.1) a client to the Genomic 

Regions Enrichment of Annotations Tool (GREAT) (version 3.0.0) to analyze the peaks as long 

range acting cis-regulatory elements. Annotation was performed Regulatory domains of genes are 

https://www.tau.ac.il/~elieis/HKG/
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defined based on curated regulatory domains and GREAT’s Basal plus extension model, where 

each gene is assigned a minimal regulatory domain spanning 5 kb upstream and 1 kb downstream 

of the TSS regardless of neighboring genes, which is then extended in both directions to the 

minimal regulatory domain of the nearest gene or up to 1000 kb. GREAT assigns the peaks to these 

regulatory domains and performs a genomic region–based enrichment test against the whole 

Genome allowing to assign a functional significance to the identified long-range gene regulatory 

domains. The results of the enrichment analysis were filtered for having an adjusted binomial p-

value (BinomQ) below 0.1 and an adjusted hypergeometric p-value (HyperQ) below 0.5 to account 

for biases in gene regulatory domain size and correct for the number of genes located in regulatory 

domains. These filters removed any results for the enrichment analysis of the more open peaks but 

highlighted significant gene ontology terms for the more closed regions. 

Enrichr: To validate our findings, we used the webservice Enrichr at  

http://amp.pharm.mssm.edu/Enrichr to analyze our differential peak sets. Enrichr queries a large 

collection of diverse gene set libraries given BED files of the regions of interest. The sets of more 

closed and more open peaks were queried separately and the ontology analysis was consistent with 

GREAT’s results, apart from a change in ranking of the terms due to a different scoring method 

(Figure S2C). 

 

http://amp.pharm.mssm.edu/Enrichr

