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Translating principles of quality 
control to cardiovascular magnetic 
resonance: assessing quantitative 
parameters of the left ventricle 
in a large cohort
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Cardiac magnetic resonance (CMR) examinations require standardization to achieve reproducible 
results. Therefore, quality control as known as in other industries such as in‑vitro diagnostics, could be 
of essential value. One such method is the statistical detection of long‑time drifts of clinically relevant 
measurements. Starting in 2010, reports from all CMR examinations of a high‑volume center were 
stored in a hospital information system. Quantitative parameters of the left ventricle were analyzed 
over time with moving averages of different window sizes. Influencing factors on the acquisition and 
on the downstream analysis were captured. 26,902 patient examinations were exported from the 
clinical information system. The moving median was compared to predefined tolerance ranges, which 
revealed an overall of 50 potential quality relevant changes (“alerts”) in SV, EDV and LVM. Potential 
causes such as change of staff, scanner relocation and software changes were found not to be causal 
of the alerts. No other influencing factors were identified retrospectively. Statistical quality assurance 
systems based on moving average control charts may provide an important step towards reliability of 
quantitative CMR. A prospective evaluation is needed for the effective root cause analysis of quality 
relevant alerts.

Cardiovascular Magnetic Resonance (CMR) is a valuable diagnostic tool increasingly used in clinical routine. 
It is generally regarded as the gold standard for quantification of the left  ventricle1,2 such as the ejection fraction 
(EF), stroke volume (SV), end-diastolic volume (EDV), end-systolic volume (ESV) and left ventricular mass 
(LVM)3. CMR has unique capabilities to differentiate myocardial tissue with prevalent inflammation as well 
as ischemic injury. The differentiation of cardiomyopathies enables an advanced level of diagnostic  quality4–6. 
The use of CMR is integrated in different clinical  guidelines2 and changed the diagnostic pathways, i.e., in heart 
failure, specific diseases like myocarditis, ischemic disorders and/or left ventricular  hypertrophy7.

As the method is less dependent on the operator compared to echocardiography and is characterized by a high 
repeatability and precision of the derived quantitative parameters, it provides several advantages. One example 
is the ability to significantly reduce the sample size in clinical  trials8,9. However, the use of quantitative markers 
suffers from the lack of standardization. Consequently, parameters are not necessarily reproducible or acquired 
in a consistent way. The results can be influenced by a multitude of potentially unknown factors, both technical 
and human in nature. Therefore, a systematic quality assurance system for clinical settings is an essential step 
forward and is experiencing growing attention, especially as more and more Artificial Intelligence (AI)-generated 
quantitative parameters are entering the  field10.
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Quality in CMR imaging is fundamental as images and their derived parameters are used for therapy guid-
ance. Therefore, the whole imaging chain has previously been a subject of intensive studies. Well established 
scores were used to objectify the quality of a given  image11. However, this often stops with the assurance of image 
 quality12 looking at the obvious dependencies from imaging sequences or protocols. However, beyond the image 
quality many other confounders can influence the whole imaging chain and lead to a degradation of the quantita-
tive output, e.g., any human interaction or different analysis  methods13. There are efforts from various societies 
to develop consensus  criteria14 to mitigate the effects but the use is inconsistent and leads to different  results15.

Two principal approaches of quality assurance are often  followed16.
The first approach is to define a reference standard and use specific quality control material to check against 

that standard. This “snapshot” quality control is performed in regular intervals and on special occasions, e.g., 
before and after changes involving the analyzer. Comparable methods are applied in imaging by using a phantom 
or a specified set of  volunteers12,13 but with severe limitations. A phantom does not fully represent the human 
body, using volunteers is not practical in clinical routine.

The second approach of quality assurance involves the analysis of the quantitative output itself, especially 
for the detection of long-term effects. Shewhart first introduced the control  chart17, which has been adapted to 
clinical  chemistry16. Specifically, for the detection of drifts in the data, the “Average of Normals” was  introduced18. 
This procedure, often referred to as moving average or rolling mean/median, acts as a filter to remove natural 
variation in a group of measurements and can reveal drifts over time. This statistical quality control method has 
not been applied to imaging until now.

In this study, our aim is to prove that the method can detect unwanted deviations in measuring critical 
quantitative cardiac parameters that could potentially have adverse consequences when used for diagnostics or 
for taking therapy decisions.

Materials and methods
In a high-volume CMR center, a new digital hospital information system was introduced in 2009. For CMR spe-
cific parameters, a software provided by SAP (Walldorf, Germany) has been used since 2010. The 5th of January 
2010 defines the starting point of this analysis.

Quantitative CMR results are inserted into a predefined template containing all reports in a systematic man-
ner. The clinical data management software allowed for an export of quantitative data, which was anonymized 
in order to avoid inclusion of any patient- or examiner-specific information. Due to the retrospective nature of 
our study, no written informed consent could be collected. The specific protocol of the present study has been 
approved by the ethical committee of Charité Universitätsmedizin Berlin during the instance EA1/253/21 and 
is therefore carried out in accordance with relevant guidelines and regulations. The exported dataset contained 
the following general fields: date of examination, age, weight, height, sex as well as the following LV function 
parameters: EF, LVM, SV, EDV. The LV ESV was not present in our data due to technical limitations, but was 
instead calculated as the difference of EDV and SV, as

The LV parameters were calculated using the commercial software  cvi42
19. Contours were drawn manually 

at the timepoint of reporting in accordance with specific operating procedures (SOP) and were supervised by 
an experienced reader. The contours were not edited thereafter. The SCMR  guidelines14 were published within 
the timespan of this study. Although the contours partially predate the guideline publication, they conform to 
guideline standards. Throughout the whole time, the same MRI scanning protocol was used. The MRI scanner 
was upgraded in June 2014 and moved once in September 2016.

The Body Surface Area (BSA) is computed according to the formula given by  Mosteller20.
The MRI scanner is dedicated to CMR only and approximately 2700 patient scans take place per year. The 

clinical range covers all indications with an underrepresentation of patients with congenital diseases, because 
the group focuses on acquired heart  diseases21. All scans were performed on a 1.5 T Siemens MRI scanner and 
analyzed with various post-processing applications according to well-defined standard operating procedures. 
The software and hardware sub-systems experienced multiple updates. A well-defined training program allows 
for a high number of medical doctors to perform CMR. Every 6 months a new fellow joins the unit for an at 
least one-year fellowship to perform clinical routine CMR. The entries of new readers are documented. Highly 
trained experts (SCMR level 3) supervise the scans as well as the post-processing steps.

We are looking for confounding factors that are influencing the measurement chain and distort the LV func-
tion parameters. The confounding factors can include hardware and software changes, but there is also a human 
factor to be considered. Software changes include MR-sequences as well as different post-processing  tools13 
for image analysis. Human factors include any influence introduced by the human reader, e.g., lack of training 
or change of readers. By nature, they can be minimized but not eliminated entirely. Zange et al.13 analyzed the 
human influence in CMR and defined tolerance intervals as the intra-observer variabilities occurred in multiple 
measurements.

In an effort to identify the root cause of non-human potential confounding factors, dates of various events 
were collected. These dates included the introduction of new CMR readers, the relocation of the MR scanner, 
MR scanner software updates as well as quantification postprocessing software changes. Furthermore, a survey 
of all clinical and research studies conducted on the scanner have been collected, in order to detect any influence 
of an uneven distribution of indications.

Phantom experiment—synthetic data generation. In order to provide a proof of concept, a phantom 
was created by simulating a bimodal normal variable as shown in Fig. 4a). The resulting samples are drift-free 

ESV = EDV − SV .
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by definition, since there is no dependence on the time component (Fig. 4b). We drew 20,000 samples, which 
roughly represents the size of our present dataset. Figure 4c) is perceptually equal to Fig. 4b), however, here 
we added 5 ml to all LV SV values from x = 10,000 onwards. Computing MM for different window sizes gives 
Fig. 4b), the same computation on the shifted dataset gives Fig. 4c).

Statistical method and distortion model. Data sets were reviewed for suitability for every parameter 
individually. In order to be included in the analysis, a data point had to be strictly larger than zero and smaller 
than 1.5 times the 99th percentile of the uncleaned dataset. An overview of all data selection is included in Fig. 1. 
Furthermore, the date of examination had to be a valid date with an existing day, month and year.

The previously mentioned confounding factors are time-discrete in nature, meaning that the individual dis-
torting event happened at a single timepoint. Therefore, the quantitative parameters will react with an immediate 
introduction of a bias which causes a drift of the quantitative parameters over time. The bias is the information we 
are looking for and is mathematically convoluted with the natural variations from patient to patient (the noise). 
It is therefore not easy to detect, especially when the extent of the bias is smaller than the statistical variation. 
The sought method needs to suppress the noise and augment the bias to the emergence (or the vanishing) of a 
confounding factor.

In this paper we chose to use moving median over time with a fixed window size. Therefore, the analysis will 
be influenced by the prescribed window size. Larger ones lead to stronger noise suppression but also longer time 
periods until an introduced bias becomes visible. Therefore, a trade-off must be made, i.e., maximizing the time 
between two false positive alerts (“Average Run Length”) on one hand side and minimizing the time to a true 
positive alert (“Average Delay Time”) for an underlying bias on the other  side22.

In this paper we analyzed two different window sizes with 250 and 750 samples were analyzed, roughly reflect-
ing a one month and one quarter period of scanning time. The window sizes are an estimate for a time-frame 
during which there is an even distribution of indications for CMR).

Statistical analysis. The moving median values are plotted in time-dependent charts with added upper 
and lower boundary limits (“control limits”)23,24.

These “control charts” are used to determine whether quantitative parameter results are within expectations 
(“in control”) or outside (“out of control”). Deviations will be handled as “alerts” and indicate potential confound-
ing factors. As control limits, we used the tolerance intervals defined by Zange et. al.13.

A control chart is shown in Fig. 2. The control limits are depicted with dashed lines, the solid black line depicts 
the median value over the whole time period. It also shows the basic deviations we will focus on in this paper: 
Any entry of the moving median curve outside of the tolerance interval is regarded as an alert. The number of 
alerts is quantified by an aggregation to percentage per year.

CMR examinations were exported from the hospital information system as a comma-separated-values (CSV) 
file. This file was processed using Python 3.725 on MacOS. The function used for computing moving medians is 
the “pandas”26 function “.rolling().median()”. For the generation of Table 1, we used  Rstudio27,28 with the library 
“Table1”29. The statistical test used inside Table 1 is a two-sample t-test.

The whole process of the imaging chain and the downstream analysis is shown in Fig. 3.
For our proof of concept, we used the Granger Causality  Test30. This is a statistical test, often used in econo-

metrics, for testing causality between two time series.

Figure 1.  Flowchart of data selection. Abbreviations: CMR, cardiac magnetic resonance; LV EF, left ventricular 
ejection fraction; LV EDV, left ventricular end-diastolic volume; LV SV, left ventricular stroke volume; LVM, left 
ventricular mass.
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Results
Phantom experiment—synthetic data. Our proof of concept demonstrates that a permanent shift in 
data magnitude will translate into a drift in the MM curves (Fig. 4d,e,f). The Granger Causality Test gave a sig-
nificant (P < 0.0001) result for the confounder to have caused the dummy drift dataset. As a plausibility-check, 
we tested whether the dummy drift caused the confounder, which was not significant (P = 0.93).

Demographics. Between March 18th 2010 and March 12th 2019, N = 26,902 CMR examinations were 
recorded in the clinical data management system of the Helios hospital in Berlin-Buch. Of N = 26,902 data-
sets, N = 20,337 datasets could be included for evaluation of all parameters (Table 1), after excluding unreason-
able values as previously described in the methods section. The data spans 111 months, with an average of 197 
patients (82 females and 115 males) per month. This yields to 10 years which could be included, with an average 

Figure 2.  Quality control charts scheme explained by means of a moving median (MM) chart of left ventricular 
stroke volume (LV SV) values. The green curve shows the MM with a window of 750. The horizontal black line 
shows the median of all LV SV values. The red dashed lines show the tolerance interval boundaries. The area 
under the curve is colored green or red, to show that the curve is inside and outside of the tolerance interval 
respectively. A box is drawn into the plot, which transfers the reader to a zoom on the right side of the figure. 
The zoomed figure shows the drift inside the curve with an arrow.

Table 1.  Demographical summary, giving the number of scans per parameter, as well as mean value with 
standard deviation and median with minimum and maximum values. LV EF, left ventricular ejection fraction; 
LV EDV, left ventricular end-diastolic volume; LV SV, left ventricular stroke volume; LVM, left ventricular 
mass. The P-value indicates the result of the two-sample t-test on the respective rows.

Female (N = 8553) Male (N = 11,784) P-value

Age

 Mean (SD) 59.1 (16.3) 58.2 (16.0)  < 0.001

 Median [Min, Max] 61.0 [7.00, 94.0] 60.0 [9.00, 94.0]

Height (cm)

 Mean (SD) 164 (9.94) 177 (8.25)  < 0.001

 Median [Min, Max] 164 [99.0, 760] 178 [86.0, 203]

LV EF (%)

 Mean (SD) 60.9 (9.68) 56.9 (11.5)  < 0.001

 Median [Min, Max] 62.0 [11.0, 98.0] 59.0 [7.00, 85.0]

LV EDV (ml)

 Mean (SD) 127 (36.6) 171 (55.6)  < 0.001

 Median [Min, Max] 121 [11.0, 457] 162 [11.0, 493]

LV SV (ml)

 Mean (SD) 75.5 (18.1) 93.9 (25.5)  < 0.001

 Median [Min, Max] 74.0 [15.0, 195] 92.0 [3.00, 231]

LVM (g)

 Mean (SD) 104 (29.4) 152 (42.7)  < 0.001

 Median [Min, Max] 99.0 [1.00, 406] 145 [6.00, 411]
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scan count of 2188 per year (912 females and 1276 males). Table 1 summarizes the number of scans that could 
be included for each parameter including mean, standard deviation and median values.

The time series curves of the moving median with window sizes 250 and 750 regarding age, weight, BMI and 
BSA are shown in Fig. 5. The data was divided by sex in order to capture potential differences. Over the course 
of the analysis, the age and weight of the populations remained stable with a slight but insignificant increase in 

Figure 3.  Flowchart of quality control procedure. The examination procedure can be divided into multiple 
steps with varying processing locations. All these steps may have an impact on the result of the examination. 
Abbreviations: CMR, cardiac magnetic resonance; LV, left ventricle.

Figure 4.  Simulated phantom dataset with a demonstration of the proposed method. (a) Bi-modal distribution 
of simulated LV SV values. (b) 20,000 random samples of the LV SV dataset were drawn and concatenated to 
simulate a stationary time series. (c) The data from (b), where 5 ml have been added to the last 10,000 samples 
to demonstrate a sudden and permanent change in the setup. No perceptual difference is visible. (d) The 
moving median of the data shown in (b) with different window sizes. Lines in different shades of blue represent 
aggregations of window sizes ranging from 100 to 1000. Red dashed lines indicate the tolerance interval (e) The 
moving median of the data shown in (c) with different window sizes. Lines in different shades of blue represent 
aggregations of window sizes ranging from 100 to 1000. Red dashed lines indicate the tolerance interval. The box 
with black borders indicates the area of drift. (f) Zoom in to the area of (e) containing the drift. The exclamation 
mark notes a potential alarm that could be issued by the system. Abbreviations: LV SV, left ventricular stroke 
volume; MM, moving median; * shows the alert of window 250; ** shows the alert for window size 750.
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age. We attributed this increase to the overall aging population. The weight curves as well as BMI showed the 
expected differences between the sexes, but were free from drifts.

The time-dependent charts of left ventricle parameters in relation to the control limits are shown in Fig. 6. It 
indicates several alerts and major drifts pointing to unwanted changes in the measurement process. The detailed 
analysis revealed different degrees of change of the analyzed parameters. The LV EF values stay well within the 
defined control limits, for both windows sizes 250 & 750 (Fig. 6e). The LV SV values (Fig. 6d) show a major 
drift from higher values in 2011, values most of the times within the control limits in 2012 and subsequent years 
with a general tendency to lower values. There are some short-term alerts where the mean values are below the 
lower control limit, e.g., mid 2018. These alerts occur using both window sizes, but as expected, less so using the 
window of size 750. Like LV SV, in the LV EDV (Fig. 6b) a large drift can be seen as well as the signal leaving the 
upper control limit in the early years, but less pronounced. In the later years, the signals stay within the limits, 
especially for the window of size 750, where from 2013 on, there were no fast changes or systematic drifts. We 
observe that the LV ESV curve follows a similar pattern as the LV EDV but displays different peak magnitudes. 
There is one peak, reaching outside of the tolerance boundaries, which lies entirely inside a gray shaded area 
(Fig. 6a). This indicates that the change happens at the same time as new staff changed into CMR rotation. The 
effect does not seem to be permanent throughout the 1-year duration of the rotation. Instead, the LV ESV values 
go back to baseline and remain there. The LVM (Fig. 6c) shows no large drift in the beginning, but short-term 
alerts especially in 2018 and again, less pronounced for the window of size 750. There is a general drift from 
higher values in the early years towards lower values in the later years albeit staying within the control limits. 
Table 2 show the counts of all these alerts for all parameters, separated between 2012 and 2013. The indexed LV 
ESV, LV EDV, LV SV and LVM are given in the Supplementary Information. Their curve progression is similar to 
the non-indexed respective curves. However, the magnitude is smaller and the drifts also seem less pronounced.

As a next step, we attempted to connect the identified potential confounding factors to the alerts. Those 
included one relocation of the scanner, a scanner upgrade, change of formulas in the analyzing software and the 
change of the physician team every 6 months. However, none of the drifts or alerts could be safely pinpointed 
to these factors.

Special attention was given to the LV EDV and LV SV curve progressions as they are similar in shape whereas 
the LVEF stays within the tolerance interval. As the LVEF is calculated with

LVEF =

LVSV

LVEDV
=

LVEDV − LVESV

LVEDV

Figure 5.  Moving median (MM) time series plots of age, weight, body-mass-index (BMI) and body-surface-
area (BSA) (split by men and women) using windows of sizes 750 and 250. Gray and white background indicates 
time frames of staff rotation. The blue lines in every subplot represent the male population and the orange lines 
the female population. The faded lines represent a window size of 250 and the fully colored lines a window size 
of 750.
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it seems that the changes are cancelling each other out such that the LV EF stays within the limits. That led 
to the hypothesis that the formulas to calculate the LV EDV and LV ESV within the applied commercial analysis 
software were changed in a similar fashion. However, despite intensive investigation, it was not possible to offer 
a definite answer on this hypothesis in our retrospective setting.

In general, the window size of 750 suppresses fast statistical changes more than the 250 window and therefore 
produces fewer alerts (Table 2).

Discussion
In this study, we were able to transfer established methods of systematic quality assurance from in-vitro diagnos-
tics to routine imaging lab settings for the first time. Time series smoothing with moving medians and established 
tolerance ranges as control limits enabled the detection of alerts pointing to potential quality issues. They were 
found in different parameters whereas their number and extent depended on the chosen window size of the 
rolling median. In the last 6.5 years there were only 4% alerts per year and no major drifts visually identified. 
Within the first 2.5 years of the analyzed timeframe there were 44% alerts per year and 4 major drifts. Potentially, 

Figure 6.  Time-dependent analysis of key parameters in relation to tolerance intervals. Tolerance intervals 
are marked as black dashed lines for each LV function parameter. Gray and white background indicates time 
frames of staff rotation. The orange line represents a window size of 250 and the green line a window size of 750. 
Abbreviations: MM, moving median; LV EF, left ventricular ejection fraction; LV ESV, left ventricular end-
systolic volume (computed using LV EDV and LV SV); LV EDV, left ventricular end-diastolic volume; LV SV, 
left ventricular stroke volume; LVM, left ventricular mass.

Table 2.  Mean percentage of MRI examinations per year of an LV parameter crossing the limits defined by 
tolerance interval. LV, left ventricle; ESV*, end-systolic volume (computed using LV EDV and LV SV); EDV, 
end-diastolic volume; LVM, left ventricular mass; EF, ejection fraction; SV, stroke volume.

LV parameter Alert/Year in % Before 2013
Alert/Year in % After 
2013

Window size 250 750 250 750

ESV (computed) 25 16 0 0

EDV 32 30 4 0

LVM 14 0 4 0

EF 0 0 0 0

SV 37 44 14 4
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improved image quality due to technical developments produced more artifact-free images. In our retrospective 
study we are more interested in detecting the long-lasting confounding factors in general, rather than detecting 
them quickly after they occurred. As such, the window of size 750 seems to be more appropriate, because the 
noise is suppressed more compared to the window of size 250, hence avoiding false alerts. The longer delay time 
this choice implies is negligible due to the retrospective character of the study.

In general, the size of window needs to be chosen carefully and should reflect the individual intention of 
the quality assurance process. Short delay times would mandate smaller window sizes but will cause more false 
positives alerts, larger window sizes are to be preferred if delay times are less important than stable alerts. A 
computational approach for computing an optimized window size could be attempted using bias detection 
 simulation31. In other quality control applications, the window sizes are computed from the maximum number 
of false  positives24. We deviated from this conventional method for exploratory purposes here.

The LV EF curve never left the tolerance interval, despite both LV EDV and LV ESV showing drifts. Never-
theless, LV EF seems to have a greater resilience for large changes in LV EDV than LV SV when looking at the 
asymptotic behavior of the functions.

The LV ESV, based on calculated numbers, leaves the tolerance boundaries which constitutes an alert. The 
LV EDV and LV ESV deviations may have been caused by formula updates in different post-processing software 
versions. However, since we cannot access the exact formulas used for the LV parameters over separate software 
versions, this hypothesis remains elusive. Nonetheless, the deviations were not clinically relevant, as most of the 
clinical decisions are based on LV EF.

Having said that, this underlines the importance of conducting the described quality assurance in a prospec-
tive way as it would allow to immediately analyze the deviations when they occur, hence ruling out any potential 
clinically relevant impacts.

Consequently, these alerts triggered investigations as to the causes (confounding factors) of the measurements 
leaving the control limits. As typical reasons for quality impairment in a laboratory setting do not apply in an 
imaging setting, we analyzed imaging specific hypotheses of confounding factors. Specifically, we analyzed a 
relocation of the scanner, a scanner upgrade, change of formulas in the analyzing software and the change of the 
physician team every 6 months. Despite comprehensive analysis, only one potential confounding factor could be 
aligned to the alerts given in this study. Finding and removing the cause of perturbation is the main goal of any 
quality assurance. All steps within an imaging chain may influence the results (Fig. 3). It starts with the specific 
scanner and changes in sequences including applied parameters. After image acquisition, postprocessing software 
is used to extract clinical parameters which are then stored in a hospital information system. Application of differ-
ent software and promoting different readers influence quantitative  results11,13, but so do internal software change 
based on using different formulas and potential changes within product sequences or commercial software which 
are out of in-depth control. In our retrospective analysis the cause of the alerts remained unknown. Potentially, 
a mathematical model could be developed in the near future but is not available today.

In a prospective study, a more precise evaluation of further potential confounders could become feasible. 
Nevertheless, this study highlighted the existence of both undetected and unwanted changes in the measure-
ment chain.

The reason for the difficulties in finding the root causes of deviations is presumably the fact that the effects are 
years in the past. As the principal potential of the method to alert to quality problems has been shown, several 
improvements are planned. A refinement of the alert criteria seems to be indicated, i.e., by using control limits 
related to the clinical relevance of the parameters, rather than the intra-observer-based control limits. Most 
importantly, the method will be used in a prospective way, so that the root causes can be analyzed without time 
delay and therefore can be detected with a higher probability and subsequently be mitigated.

Conclusion
In this paper, we could show that the statistical quality control method is suitable to assess the quality of quantita-
tive parameters derived from images. It could therefore be used as part of the aforementioned quality assurance 
process as it alerts to problems and may enable effective countermeasures.

Limitation
In this single center analysis of 26,902 CMR scans, the data was analyzed retrospectively. This limited the poten-
tial to identify the root causes of the confounding factors which were correlated to the alerts given in this study. 
Nevertheless, it highlighted the existence of undetected and unwanted changes in the measurement chain which 
is valuable per se.

The lack of confounders highlights the need for documentation in general hospital information systems to 
include relevant information inside the database such as details on scanner- and software upgrades. This reflects 
the retrospective nature of the data. Nevertheless, translating quality control mechanisms from different settings 
into imaging labs could be shown to be feasible.

The window sizes pose a tradeoff between finding error sources (true positives) and the evading false positive 
alerts. Therefore, no specific recommendation on a fixed window size can be given.

Data availability
The data that supports the findings in this study is/was available in cooperation with Helios hospital Berlin-Buch 
but restrictions apply to its current availability; for this study it was used under a license and is not publicly avail-
able. However, data is available from the authors upon reasonable request and with the permission of Helios 
hospital Berlin-Buch.
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