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Introduction of a cascaded 
segmentation pipeline 
for parametric T1 mapping 
in cardiovascular magnetic 
resonance to improve 
segmentation performance
Darian Viezzer 1,2,3, Thomas Hadler 1,2,3, Clemens Ammann 1,2,3, Edyta Blaszczyk 1,2,3,  
Maximilian Fenski 1,2,4, Thomas Hiroshi Grandy 1,2,4, Jens Wetzl 5, Steffen Lange 6 & 
Jeanette Schulz‑Menger 1,2,3,4*

The manual and often time‑consuming segmentation of the myocardium in cardiovascular magnetic 
resonance is increasingly automated using convolutional neural networks (CNNs). This study proposes 
a cascaded segmentation (CASEG) approach to improve automatic image segmentation quality. 
First, an object detection algorithm predicts a bounding box (BB) for the left ventricular myocardium 
whose 1.5 times enlargement defines the region of interest (ROI). Then, the ROI image section is fed 
into a U‑Net based segmentation. Two CASEG variants were evaluated: one using the ROI cropped 
image solely (cropU) and the other using a 2‑channel‑image additionally containing the original BB 
image section (crinU). Both were compared to a classical U‑Net segmentation (refU). All networks 
share the same hyperparameters and were tested on basal and midventricular slices of native and 
contrast enhanced (CE) MOLLI T1 maps. Dice Similarity Coefficient improved significantly (p < 0.05) in 
cropU and crinU compared to refU (81.06%, 81.22%, 72.79% for native and 80.70%, 79.18%, 71.41% 
for CE data), while no significant improvement (p < 0.05) was achieved in the mean absolute error of 
the T1 time (11.94 ms, 12.45 ms, 14.22 ms for native and 5.32 ms, 6.07 ms, 5.89 ms for CE data). In 
conclusion, CASEG provides an improved geometric concordance but needs further improvement in 
the quantitative outcome.

Cardiovascular magnetic resonance (CMR) is one of the most important non-invasive imaging modalities for 
risk stratification in cardiovascular  diseases1,2. It enables the characterization of focal and diffuse changes in the 
myocardial tissue by quantitative techniques such as parametric  mapping3, which is considered as one of the most 
meaningful innovations in recent CMR  developments4,5. While T2 mapping is used for the detection of myocar-
dial edemas, T1 mapping is applied across multiple pathophysiological mechanisms and tissue  characteristics4. A 
T1 map can be acquired before, referred as native, or after application of a contrast agent, referred to as contrast 
enhanced (CE)6. The latter is usually integrated in the calculation of an extracellular volume (ECV) map.

For diagnostics, the post-processing involves the segmentation of the myocardium as tissue of interest in order 
to obtain quantitative  values7. This is usually performed in a manual and often time consuming  manner1,7–10. 
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Furthermore, even experienced readers show intra-observer variability that results in considerable quantifica-
tion  uncertainty11. Current developments attempt to overcome both, the time consumption and the repro-
ducibility uncertainty by using convolutional neural networks (CNNs) to automatically segment the tissue of 
interest. One of the most prominent CNN models in medical segmentation tasks is the U-Net1 introduced by 
Ronneberger et al.12. While a standard U-Net already shows an average geometrical overlap above 70% with an 
expert  segmentation8–10,13, which is conventionally assumed as a good  result8, current development focuses on 
technical improvements for even better segmentation quality. At present, many strategies intend to advance the 
CNN models towards more complex framework  structures8,9 or integrating alternative architecture  structures14.

Parametric maps are images with pixel values representing the amplitude of a physical quantity. However, the 
vast majority of pixels contain superfluous background information. Object detection algorithms (ODAs) are 
used to find object regions of interest (ROI) in images by localizing a bounding box (BB) around those objects 
with the help of  CNNs15,16. Consequently, ODAs can help to focus on a ROI in parametric mapping and thus, to 
reduce the amount of background information that is fed into an automatic segmentation network.

Although the detection of left ventricular myocardium by ODAs already exist for CINE images in  CMR16, 
its application on parametric T1 mapping and combination with automatically segmenting CNN procedures 
remains to the best of our knowledge unaddressed. Consequently, the aim of this study is to analyze the impact 
of input data enhancement on the segmentation quality in parametric T1 mapping by introducing an ODA as a 
preliminary processing step before the actual segmentation task. This coarse to fine segmentation procedure is 
named in the following as cascaded segmentation (CASEG).

Materials and methods
Dataset. A heterogeneous dataset of parametric T1 maps with corresponding manual reference segmen-
tation from  published17–19 and on-going  studies20 was used. The inline T1 maps were either generated on a 
1.5 T AvantoFit, a 3 T SkyraFit or a 3 T PrismaFit clinical magnetic resonance imaging scanner (all Siemens 
Healthcare, Erlangen, Germany) and were based on the MOLLI sequence using a 5(3)3 scheme for native and a 
4(1)3(1)2 scheme for CE acquisitions.

Data from N = 403 participants (97 healthy volunteers and 306 patients) were used resulting in a total of 
M = 1438 parametric T1 maps, of which 1080 were native and 358 CE T1 maps. The difference in the quantity of 
native compared to CE T1 maps is due to the absence of CE measurements in some of the original studies. The 
dataset was randomly split per study set into 75% training, 10% validation and 15% test data. Table 1 shows an 
overview of the dataset and the amount for training, validation and testing. While some source studies in the 
dataset contained a full short axis T1 map stack, others only had three (basal, midventricular and apical), two 
(mostly basal and midventricular) or solely one (mostly midventricular) slice. The training and validation were 
done on all assigned T1 maps to assure for an advanced generalization of the segmentation network, whereas, 
the test dataset was restricted to midventricular and basal slices only as recommended by the society for car-
diovascular magnetic  resonance4. The reference segmentation was performed manually by experienced readers 
using the software cvi42 (Circle Cardiovascular Imaging, Calgary, Canada). The data acquisition and manual 
segmentation processing were performed in accordance with relevant guidelines and regulations. This study 
was approved by the local ethics committee of the Charité Universitätsmedizin Berlin (study ID: EA 1 253 21).

ODA. A CNN based ODA was used to detect a  BB15 that tightly fits the left ventricular myocardium in the 
parametric T1 map. During training, the ODA CNN behaved like a conventional segmentation CNN by provid-
ing the target BB data as binary mask. The predicted raw output of the ODA CNN model, in turn, needed a post-
processing in order to represent a binary mask of a BB. First, the output was thresholded at a value of 0.5, then 
the largest connected component (LCC) was identified as the BB ROI. The minimum and maximum indeces of 
the LCC along both image axis defined the BB edges. These edges were finally converted into a BB binary mask.

A magnification factor to enlarge the BB was evaluated in order to securely cover the whole left ventricle 
within the ROI. The maximum occurring factor across the test data is assumed as suitable to guarantee for this. 
This factor was used to compensate uncertainties from the CNN based prediction while keeping the ROI small 
compared to the original image size.

CASEG. The basic idea of CASEG was the subsequent arrangement of two independent CNN models. The 
ODA served as a first coarse prediction of a potential ROI while the second CNN was applied on the focused 
image section in the ROI for the actual segmentation task and returned the final segmentation mask.

Table 1.  Overview of the complete dataset, the (numbers) in brackets denotes the number for midventricular 
and basal slices only that are used as test dataset in this study.

Training Validation Testing Total

Subjects (N) 313 35 55 (55) 403

Native T1 maps 849 91 140 (106) 1080

Contrast enhanced T1 maps 286 27 45 (33) 358

Total T1 maps (M) 1135 118 185 (139) 1438
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Due to the BB enlargement for the ROI definition, two potential CASEG pipelines (cropU and crinU) were 
evaluated as visualized in Fig. 1. In cropU, the input image for the secondary segmentation CNN was the original 
image cropped to the ROI image section. In contrast to that, the crinU worked in a similar manner and also 
considered the cropped image section. However, in crinU, the input image for the secondary segmentation 
CNN was extended by a second channel that comprises the unenlarged BB (shown as green overlay in Fig. 1). 
Considering cropU, an alternative implementation exists as visualized in Supplemental Material S1 by having 
an ODA that directly predicts an enlarged BB without the magnification factor processing step between ODA 
and segmentation network (cropU_A).

All three CASEG pipelines were compared to a reference pipeline (refU) that was equivalent to the secondary 
segmentation model without any preliminary ODA such that the original image was directly fed into the CNN.

Quality assurance. All CNN models including the ODA were implemented as U-Nets. As this study aimed 
to analyze the impact of input data enhancement by using a preliminary ODA, the same hyperparameters were 
used for all CNNs except for the number of input channels. The selected hyperparameters showed the best results 
in the reference refU. The models had 27 layers with 6 skip connections and the input size was 256 × 256 × 2 for 
the secondary segmentation model in crinU and 256 × 256 × 1 for all other U-Net models. A detailed U-Net 
structure overview is shown in the Supplemental Material S2. Consequently, the input images were resized and 
interpolated to the model specific size. The log-cosh-dice loss  function21 with an Adam  optimizer22 having a clip-
norm of 0.001 was used. The batch size was set to 10 and the number of epochs was 1000 but an early stopping 
 scheme23 that ended the training after 50 epochs of no improvement with respect to the dice similarity coefficient 
metric in the validation data was used. The learning rate, which reflected the maximum learning rate value the 
Adam optimizer could capture, of initially 0.001 was halved every 25 epochs of no improvement.

During the training of the individual models, the training dataset was randomly  augmented24 with brightness 
adjustments, contrast adjustments, blurring, Gaussian random noise, salt and pepper noise, rotation, mirroring, 
axis downsampling and, for the refU and ODA only, a cropping of the image. Additionally, during training of the 
secondary segmentation CNN models in cropU and crinU, the detected BB was randomly shifted and resized 
by up to 5 pixels, whereas in 5% the optimal BB was used instead of the predicted one and in another 5% a failed 
BB detection was assumed in order to reflect potential detection uncertainties.

In case of a BB prediction failure, the ODA returned a binary image with only zero values reflecting no found 
BB. In such a case, cropU behaved similar to refU and used the original image as input. Further, crinU used the 
original image as first channel as well and kept the second channel zero valued. If the BB enlargement exceeded 
the image boundaries, the ROI was cropped at that boundary such that it never exceeded the original image.

For normalization of the input images, each input image channel was scaled to floating point values between 
zero and one. Further, while the input images were internally resized to the model specific size, the output was 
back transformed to the original input image size. To losslessly apply this and other geometric transformations, 
the segmentation masks were converted from binary pixel masks to vectorized contour objects allowing for 
geometrically precise transformation. The transformed structures were then rasterized back into pixel masks.

Figure 1.  Processing pipelines for refU, cropU and crinU. Convolutional neural networks (CNNs) are used 
for the segmentation of the myocardium as tissue of interest. While refU directly uses the input image, cropU 
and crinU use the region of interest image section that belongs to the 1.5 times enlarged bounding box from 
an object detection algorithm (ODA). In contrast to cropU, crinU uses a two channel image with the second 
channel having the original predicted bounding box mask.
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The primary domain of the output quality measure is of geometric nature. The geometric domain reflects 
the spatial similarity of two individual segmentations. For that reason, the Dice Similarity Coefficient (DSC) 
and the Hausdorff Distance (HD) were used as geometrical quality metrics. Both were supported visually with 
boxplots. As the DSC and HD were not normally distributed, non-parametric Friedman (across all models) and 
Wilcoxon (across refU and either CASEG pipeline) tests were used with a significance level of p < 0.05. Signifi-
cance was assumed if both statistical tests were significant. Additionally, the enlarged BB detection was tested for 
the increment in the ratio of relevant pixels reflecting the foreground information to the total number of pixels 
in the image section compared to the original image. The ratio increment was tested with a Wilcoxon test for 
significance with a significance level of p < 0.05.

As parametric T1 maps provide clinically interpretable quantitative measurements, the quantitative domain 
was tested for the effect of the four segmentation approaches on the estimated average T1 time. The mean error 
(ME), mean absolute error (MAE) and root mean squared error (RMSE) were used in combination with the 
confidence interval (CI) to evaluate the quality in the quantitative domain. The CI were tested for remaining 
within the published equivalence margin derived from an intra-observer variability of native T1 maps, which is 
defined as the clinically acceptable  deviation11. As the four models were evaluated on the same test dataset, the 
CIs were Bonferoni  corrected11. The coefficient of variation (CV) with respect to the quantitative T1 error were 
additionally provided in order to analyze if the CE segmentations would remain in an adequate equivalence 
margin for CE data.

As the ME and MAE are not normally distributed, non-parametric Friedman and Wilcoxon tests were used 
for the comparison of these metrics with a significance level of p < 0.05. A lower RMSE was assumed to indicate 
an improvement.

Additionally, a correlation plot including linear regression, the Pearson Correlation (testing for linearity) and 
Kendall’s Tau (testing for rank-order stability) were provided. While conventionally correlation coefficient values 
are assumed as weak if smaller than 0.35, moderate if up to 0.67, strong if up to 0.90 and very strong if above, 
the coefficient of determination (CoD, squared Pearson correlation coefficient), represents the amount of shared 
variance between two measures and thus may support the interpretation of the  findings25. The correlation plot 
was complemented with a Bland–Altman plot in order to visualize the limits of  agreement26.

As T1 times of native and CE maps are on different scales, all analysis were separately performed on native 
and CE data.

Source code. All programming tasks were implemented in Python (version 3.8, Python Software Founda-
tion, Beaverton, USA). The necessary Python libraries with their specific used version are listed in the Supple-
mental Material S3. The U-Nets were implemented using the  Tensorflow27 library (version 2.7.0) while statistics 
were calculated with the  scipy28 package (version 1.4.1) and plots were created with the  matplotlib29 library (ver-
sion 3.5.2). The software includes a README file with a description for using the software. The user does not 
need to take care about processing between the ODA and the segmentation network as this is done automatically 
in the provided scripts.

Ethical approval. This study was approved by the local ethics committee of the Charité Universitätsmedi-
zin Berlin as retrospective study (study ID: EA 1 253 21). The requirement for written informed consent was 
acquired during the original clinical studies and was therefore waived in this study due to its retrospective design 
as approved by the local ethics committee of the Charité Universitätsmedizin Berlin (study ID: EA 1 253 21).

Results
Numbers in the results are shown as mean ± standard deviation with their specific unit of measure.

ODA. The U-Net based ODA identified a BB of the left ventricle in all cases of the test dataset. Figure 2 shows 
respectively the best and worst cases for the BB prediction in regard of DSC and HD across native and CE test 
data. Throughout the whole test dataset, the predicted BBs resulted in a DSC of 93.09 ± 2.13% and 91.99 ± 2.80% 
and a HD of 3.95 ± 1.07 mm and 4.42 ± 2.40 mm for native and CE T1 maps respectively.

In order to securely cover the whole left ventricle with the BB across the test dataset, a magnification factor 
of at least 1.44 was necessary. Hence, cropU and crinU were set up with a rounded-up magnification factor of 
1.50. In the Supplemental Material S4 the impact of the magnification factor on the average DSC results in the 
test dataset for cropU and crinU is shown. For magnification factors between 1.3 and 2.5, the results reached a 
performance plateau with minor fluctuations due to model training uncertainties.

Comparing the ratio of relevant foreground pixels to the total number of pixels, the ratio increased signifi-
cantly (p < 0.05) to10.38 ± 3.27% and 10.76 ± 4.22% in the test dataset for native and CE maps as compared to 
0.71 ± 0.35% and 0.62 ± 0.21% when using the ROI image section instead of the original image. Assuming an 
unenlarged perfectly fitting BB, the maximum reachable ratio would be 20.12 ± 6.67% and 19.78 ± 6.00% for 
native and CE test data respectively. In the training and validation dataset, the increment was similar. Detailed 
boxplots of the ratio of relevant pixels are provided in the Supplemental Material S5 separately for native and 
CE data in the training, validation and test datasets.

CASEG. Exemplary segmentation results for refU, cropU, crinU and cropU_A are shown in Fig. 3 with a 
good case across all four pipelines, a case improving in CASEG compared to refU and a rather poor case across 
all four pipelines respectively for native and CE T1 maps. In Table 2 detailed results of geometric and quantita-
tive metrics are provided.
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Figure 2.  Example results of the object detection algorithm showing bounding boxes for the left ventricular 
myocardium. The upper block corresponds to native and the lower block to contrast enhanced data; respectively 
in each block the first row corresponds with respect to the Dice Similarity Coefficient (DSC) and the second 
row corresponds with respect to the Hausdorff Distance (HD) while the first column shows the best and the 
second column the worst case. Green denotes true positive, blue false negative and red false positive segmented 
bounding box pixels.
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Figure 3.  Example results of the automated segmentation in refU, cropU, crinU and cropU_A. The first column 
shows the original image, the second column the refU segmentation, the third column the cropU segmentation, 
the fourth column the crinU and the fifth column the cropU_A segmentation. The upper block corresponds 
to native and the lower block to contrast enhanced data; respectively in each block the first row shows a fairly 
good case across all four pipelines, the second row shows a case that is improved in cropU and crinU compared 
to refU and the third row shows a poor case across all four pipelines. Green denotes true positive, blue false 
negative and red false positive segmented pixels.
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The geometric quality improved significantly for all CASEG pipelines in comparison to the refU across the 
native and CE test datasets. The DSC improved significantly (p < 0.05) from around 72% towards 80% while the 
HDs were minimized significantly (p < 0.05) from above 3.70 mm to around 3.00 mm in all CASEG pipelines 
with the exception of a significant (p < 0.05) reduction to only 3.35 mm and 3.27 mm for CE data in crinU and 
cropU_A respectively. The corresponding boxplots in Fig. 4 illustrate these results and show that in some cases 
even a DSC of more than 90% was achieved in all three CASEG and across native and CE data, while refU reached 
a maximum DSC of 86.38% in native and 83.56% in CE data only. On the other hand, given 70% as threshold 
conventionally assumed as a good  DSC8, there were still cases left in cropU, crinU and cropU_A below that 
margin. The HD showed a minimization in the CASEG but remained with an average distance of 2.95 mm to 
3.35 mm within the range of two to three pixels deviation.

Numerically ME, MAE and RMSE were consistently reduced in cropU, crinU and cropU_A compared to refU 
in the native as well as CE test data except for MAE in crinU for CE test data as shown in Table 2. Neither ME 
nor MAE showed a significant (p < 0.05) improvement compared to refU except for ME in crinU and cropU_A 
for native data. The CI of all pipelines stayed within the equivalence margin of 24.5  ms11. A visual support of 
this result is shown in the Supplemental Material S6. The CV of the CE test data stayed below the CV of the 
corresponding native test data in all pipelines. As a consequence, the CE results were assumed to remain in an 
adequate equivalence range based on CE data only.

Furthermore, all four pipelines showed a very strong linear correlation in native and CE test data, a strong 
monotonic correlation in the native test data and a very strong monotonic correlation in the CE data as shown 
in Table 2. The CoD was at least 94.09% such that the majority of the variation in the predicted average T1 time 
was explained by the variation of the targeted average left ventricular myocardial T1 time. Figure 5 shows the 
quantitative results as correlation- and Bland–Altman-plots in refU, cropU, crinU and cropU_A separately for 
native and CE test data. The plots indicate 20 native cases in refU, 11 native cases in cropU, 12 native cases in 
crinU, 11 native cases in cropU_A and 1 CE case in all pipelines that exceeded the limits of equivalence.

The Bland–Altman plots show that the limits of agreement differ only slightly between refU, cropU, crinU 
and cropU_A across the native as well as the CE test data. Further, the majority of those cases that exceeded the 

Table 2.  Overview of the geometric and quantitative results for refU, cropU, crinU and cropU_A in the T1 
map test dataset separated for native and contrast enhanced T1 maps. DSC dice similarity coefficient, HD 
Hausdorff distance, ME mean error, MAE mean absolute error, RMSE root-mean-squared error, CI confidence 
interval, CV coefficient of variation, r Pearson’s correlation coefficient, CoD coefficient of determination, τ 
Kendall’s Tau coefficient; values are given as mean ± standard deviation. *Denotes statistical significance with a 
significance level of p < 0.05.

Metric refU cropU crinU cropU_A

Native

 Geometric

  DSC (%) 72.79 ± 8.08 81.06 ± 5.57* 81.22 ± 5.52* 81.13 ± 5.83*

  HD (mm) 3.74 ± 1.37 2.95 ± 1.06* 3.01 ± 1.20* 2.98 ± 1.16*

 Quantitative

  ME (ms) − 7.22 ± 17.19 − 6.00 ± 14.67 − 5.24 ± 16.40* − 3.88 ± 16.10*

  MAE (ms) 14.22 ± 12.06 11.94 ± 10.43 12.45 ± 11.89 12.45 ± 11.89

  RMSE (ms) 18.64 15.85 17.22 16.56

  CI (ms) − 11.38 / − 3.05 − 9.56 / − 2.44 − 9.22 / − 1.26 − 7.79 / 0.02

  CV (%) 2.38 2.45 3.13 4.15

  r (Pearson) 0.97* 0.97* 0.97* 0.97*

  CoD (%) 94.09 94.09 94.09 94.09

  τ (Kendall) 0.80* 0.83* 0.82* 0.83*

Contrast enhanced

 Geometric

  DSC (%) 71.41 ± 8.54 80.70 ± 10.31* 79.18 ± 10.20* 80.15 ± 10.21*

  HD (mm) 3.83 ± 1.44 3.08 ± 1.72* 3.35 ± 1.90* 3.27 ± 2.05*

 Quantitative

  ME (ms) 5.23 ± 8.14 4.45 ± 8.39 5.17 ± 7.27 4.57 ± 7.85

  MAE (ms) 5.89 ± 7.67 5.32 ± 7.87 6.07 ± 6.54 5.07 ± 7.53

  RMSE (ms) 9.67 9.50 8.92 9.08

  CI (ms) 1.70 / 8.77 0.81 / 8.10 2.01 / 8.34 1.15 / 7.98

  CV (%) 1.56 1.89 1.41 1.72

  r (Pearson) 0.98* 0.98* 0.98* 0.98*

  CoD (%) 96.04 96.04 96.04 96.04

  τ (Kendall) 0.91* 0.91* 0.92* 0.94*
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equivalence margin were underestimating the expected average T1 time. This was confirmed in the histograms 
of disjoint pixel values as shown in Fig. 6. The histograms show that false negative segmented pixels in the native 
test dataset tend towards higher T1 values whereas in the CE test dataset towards lower T1 values independent 
of any of the three pipelines. Individual outliers in the native histograms are outside of the plotted range, but 
occur rarely on values above 2000 ms.

Finally, the coherence analysis in Fig. 6 shows the relationship between the DSC and the absolute T1 error. 
While in the native test data refU showed a weak and all CASEG showed a moderate linear correlation, the lin-
ear correlation in the CE test data was moderate in refU and strong in all CASEG. In contrast to that, the rank 
order stability was only weak across all test data and pipelines except for a moderate stability in the CE test data 
for crinU and cropU_A. Facing the maximum Pearson correlation coefficient of 0.81, the maximum CoD only 
reached a value of 65.61% implicating that more than a third of the variation is not explained. Nonetheless, except 
for the rank order stability correlation in CE data for refU, both correlation indices are significant (p < 0.05) in 
any pipeline. Further, it shows that most cases in CASEG and almost half of the cases in refU that exceeded the 
24.5 ms equivalence margin had a DSC above 70% which is assumed with a good geometric  result8.

Figure 4.  Geometric results of the automated segmentation. The first column shows the geometric results for 
refU, the second column for cropU, the third column for crinU and the fourth column for cropU_A. The upper 
block corresponds to native and the lower block to contrast enhanced data; respectively in each block the first 
row shows the boxplots of the Dice Similarity Coefficient (DSC) and the second row shows the boxplots of the 
Hausdorff Distance (HD).



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2103  | https://doi.org/10.1038/s41598-023-28975-5

www.nature.com/scientificreports/

Discussion
In CMR, the development of automated segmentation methods based on CNNs aims to substitute the neces-
sity of an expert  segmentation30. More complex network structures showed an improvement in segmentation 
 quality8,9,14 while it is also known that the segmentation quality highly depends on the input data  quality31–33. 
Hence, this study explored the impact of an upstream object detection as a quality enhancement of input data on 
the segmentation quality of parametric T1 maps. Our main findings show a significantly improved segmentation 
in the geometric domain when using an ODA as a pre-processing step in a CASEG pipeline with a U-Net based 
segmentation CNN while in the quantitative domain a consistent but statistically not significant improvement 
in the estimation of the average T1 times was observed.

Dataset. The test dataset consisted of midventricular and basal slices only as those are recommended as 
stable slice location for a T1 map  acquisition4. This differs from datasets described in the literature on automated 
segmentation methods for parametric T1 maps because either mid-ventricular slices  only9 or the whole short 
axis stack were  used8,10. Apart from this, a comparison of our models with those of the literature is restricted 

Figure 5.  Quantitative results of the automated segmentation. The first column shows the quantitative results 
for refU, the second column for cropU, the third column for crinU and the fourth column for cropU_A. The 
upper block corresponds to native and the lower block to contrast enhanced data; respectively in each block 
the first row shows the correlation plot including the linear regression and the equivalence margin whereas the 
second row shows Bland–Altman-plots including the limits of agreement. Blue dots represent cases within the 
equivalence margin while red dots represent cases exceeding the equivalence margin.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2103  | https://doi.org/10.1038/s41598-023-28975-5

www.nature.com/scientificreports/

due to the lack of a common data basis in general. Furthermore, the ShMOLLI sequence as used in the literature 
gives different T1 mapping results than the used MOLLI  sequence34. Therefore, a plausible comparison in the 
quantitative domain is limited.

ODA. Object detection is used for the semantic understanding and localisation of objects in  images15. While 
the classical use-cases of ODAs are the detection of multiple objects from numerous possible categories in a 
single image leading to highly complex network  structures15, the ODA in the proposed CASEG pipelines had to 
find exactly one object from only one possible object class in an image. Hence, the use of a simple U-Net as ODA 
showed sufficiently good results for native and CE T1 maps in line with the results of Niu et al. who showed a 
DSC of 92.4 ± 3.6% in native CINE images for the left ventricular myocardial  detection16. Our DSC results for the 
ODA were considerably above the 70% margin conventionally assumed as a good  result8.

The ODA was used as the first step in a CASEG pipeline to increase the ratio of relevant pixels by cropping 
the image to a ROI representing an enlarged BB section. The applied magnification factor of 1.50 corresponds 

Figure 6.  Coherence analysis of the automated segmentation. The first column shows the coherence analysis for 
refU, the second column for cropU, the third column for crinU and the fourth column for cropU_A. The upper 
block corresponds to native and the lower block to contrast enhanced data; respectively in each block the first 
row shows histograms of disjoint segmented pixel values of the expert ground truth and the pipeline model and 
the second row shows the correlation plot between Dice Similarity Coefficient (DSC) and the absolute T1 error 
including the linear regression. Blue dots represent cases within the equivalence margin while red dots represent 
cases exceeding the equivalence margin.
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specifically to the used MOLLI T1 map short axis test dataset with our U-Net based ODA. As this factor is a 
freely adjustable hyperparameter in CASEG, an adaption is potentially necessary in other scenarios like dif-
ferent datasets or ODA networks. While the ODA network has a direct impact on the necessary magnification 
factor according to its prediction performance, two-dimensional quantitative data can be acquired in different 
orientations to meet the specific anatomy. Therefore, the optimal magnification factor is expected to be differ-
ent in long axis views. Nonetheless, the stable DSC results across the magnification factor range of 1.30 to 2.50 
for cropU and crinU showed similar performances even in out-of-optimum values for the magnification factor.

Although the ratio of relevant pixels was significantly (p < 0.05) increased in the ROI section compared to 
the original image, the result shows, that the majority of the pixels still belonged to background information. 
However, assuming a perfectly matched BB, this ratio could only be maximized to about twice the value gained, 
so that four out of five pixels would still belong to background information. The major reasons for this were 
the rather circular shape of the myocardium compared to the rectangular BB and the classification of the blood 
pool inside the myocardium as background information. The substantial variance in the ratio of relevant pixels 
within the 1.5 times enlarged BB as shown in the Supplemental Material S5 depended on the BB quality on the 
one hand and on the wall thickness of the myocardium on the other hand.

CASEG. Although a complex network structure, analogous to the DoubleU-Net by Jha et al.35, could be used 
to integrate a whole CASEG pipeline into one network, the main idea of this work was to have a separated pre-
processing step. Consequently, the ODA and the segmentation CNN in a CASEG pipeline are potentially inter-
changeable with other network structures. An alternative cropU structure with direct prediction of an enlarged 
BB omits the necessity of a magnification factor enlargement step at an equivalent outcome. Considering uncer-
tainties during model training, cropU and cropU_A can be regarded as equivalent.

Our results emphasize that the upstream object detection improves the geometric segmentation quality in 
U-Net based automatic segmentation. Although the U-Net12 is a common CNN for medical image segmenta-
tion, one could expect that novel CNN architectures enable potential further performance  gains8,9,14. The clas-
sical U-Net, as our refU pipeline, has been used in prior studies as a benchmark CNN as well. While the basic 
structure of those U-Nets is similar, implementation details such as hyperparameter settings potentially differs 
from the original and definitely from our refU  network8–10 such that the performance comparability is limited. 
While Farrag et al. reached a DSC of 82.7% in native and 74.1% in CE T1  maps10, Puyol-Antón et al. showed 
a DSC of 78%9 and Hann et al. a DSC of 83.13%8 in U-Net based segmentation of native T1 maps. While the 
refU is inferior to the classical U-Nets in those studies for the native dataset, both CASEG pipelines, cropU and 
crinU, were able to align with those results. For the CE dataset, refU performance was inferior to the results of 
Farrag et al. while cropU and crinU were outperforming it. However, none of the pipelines could reach geometric 
results of 84% as in the probabilistic hierarchical segmentation  network9 by Puyol-Antón et al. or 85% as in the 
quality control driven  framework8 by Hann et al. potentially due to their more complex segmentation network 
structure. With respect to an intra-observer performance of 72% DSC and 15.61 mm HD in native data and 
83% DSC and 9.03 mm HD in CE data the CASEG pipelines showed a robust geometric outcome compared to a 
human  reader13. However, errors made by the automated segmentation are prone to be atypical as compared to a 
human  reader30 such that the human segmentation is not necessarily substitutable by a completely unsupervised 
CASEG pipeline at the current stage.

Facing the quantitative domain of actual T1 values, no significant improvement in cropU and crinU compared 
to refU could be observed. This is at first glance counter-intuitive as a higher geometric accordance is assumed to 
coincide with a lower quantitative deviation. This was also shown in the coherence plot of Fig. 6 with a maximum 
CoD of 62.41% between DSC and the absolute T1 error underlining that an improved geometric result does not 
necessarily yield an improved quantitative result.

Taking into account, that the majority of the cases exceeding the equivalence margin in native T1 maps were 
underestimating the expert segmentation, the false negative segmented pixels belong to tissue that is assumed 
to contain blood. This agrees with the histograms in Fig. 6 and holds for the CE test data as well, as in CE blood 
has lower T1 values. Consequently, the border pixels are crucial as the impact of these disjoint pixels may be 
sufficient to impair improvements in the quantitative domain comparable to the significantly improved segmen-
tation from a geometric point of view.

Comparing the quantitative results with literature values, the ME for the native dataset in refU, cropU and 
crinU lie in the published range of 4.6  ms8, 8  ms10 and 12.4  ms9 while the ME for the CE test data were worse than 
the 2 ms in the proposed segmentation method by Farrag et al. but much better than the ME in their compara-
tive U-Net model with 37  ms10. However, the MAEs in the native dataset were slightly exceeding in all pipelines 
the result of 11.3 ms by Hann et al.8. Nonetheless, the CI of the quantitative results stayed in all cases within the 
intra-observer equivalence  margin11.

As the segmentation quality depends on the input data  quality31–33, we were able to show that the ODA in a 
CASEG enhancing the input data quality results in geometric improvements. However, partial volume effects 
along the endocardial contour may have an important negative impact on the quantitative outcome. In contrast 
to this study, the software cvi42 internally provides the possibility to use a kind of safety margin by moving the 
contours towards the middle of the myocardium by a predefined amount in order to compensate to a certain 
degree false positive segmented pixels at both borders. However, this procedure is not a standard option in all 
commercially available postprocessing solutions.

Finally, the CASEG as well as all other automated segmentation models found in the literature work with 
loss functions solely based on geometric  agreement8–10 and neglect the quantitative domain. Therefore, the pun-
ishment for false positive segmented pixel during training of the models are equally independent of the actual 
T1 value. In conclusion it was shown in our study that an improved geometric congruence does not result in 
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a significant minimization of T1 value deviation. Nonetheless, a significant (p < 0.05) but mainly only weak to 
moderate correlation between geometric congruence and quantitative deviation were shown. Additionally, the 
proposed network by Hann et al. shows the highest geometric congruence at lowest T1 deviation which sug-
gests a DSC cutoff margin somewhere between 80 and 85% where the influence of the disjoint segmented pixels 
attenuate due to the high geometric overlap.

Conclusion
The upstream object detection enables a significantly improved performance in the automated segmentation of 
parametric T1 maps from a geometric point of view compared to a standalone CNN. However, the quantitative 
measure could not be improved accordingly. Most likely the border pixels comprising partial volume effects 
between myocardium and blood play a key role in the discrepancy between geometric and quantitative results. 
As the quantitative domain is not represented in the training of the CNNs, segmentation of quantitative data like 
parametric T1 mapping may suffer from its absence. All in all, CASEG is well applicable for the improvement of 
segmentation tasks and this general approach may provide a viable extension to novel segmentation frameworks.

Outlook. While this study showed the potential of an ODA in an automated segmentation pipeline, a future 
step could be the exchange of the U-Net based segmentation CNN in the CASEG with a higher performing 
 architecture8,9 or more recent model  adaptions14. This may provide an additional performance gain by the com-
plex network structure in conjunction with the enhanced input data. Furthermore, it is worth investigating the 
combination of two CASEG pipelines for the segmentation of the myocardium by having one CASEG pipeline 
segmenting the blood pool area, which belongs to the endocardial contour, while the other CASEG pipeline seg-
ments the joined area of blood pool and myocardium, which represents the epicardial contour. The difference 
of both would return the myocardial segmentation and due to the hole-free segmentation masks, the ratio of 
relevant pixels may vastly increase. The latter enables the possibility of a better border definition.

Finally, one of the most crucial aspects in our study as well as in others is the definition of a loss function 
purely depending on the geometric concordance. A loss function taking both, the geometric as well as the 
quantitative deviation, into account would be preferable. As the domains are based on different physical units, 
the definition of such a loss function requires further investigation.

Limitation. The used dataset is composed of available segmented parametric T1 maps coming from differ-
ent studies and scanners. A prior selection in order to have equipartition in specific characteristics of the used 
dataset was omitted. Consequently, the dataset consisted of fewer CE images than native images. Furthermore, 
the results are limited to midventricular and basal slices only in the test dataset.

The hyperparameter setup of the U-Nets was chosen as the best performing one across multiple tested 
scenarios. However, this setup might be optimized for our specific dataset and not generalize well to others. 
Additionally, not all possible hyperparameter setups were tested due to its endless combination possibilities.

The magnification factor of the ODA predicted BB was based on and optimized for our test dataset. An 
adapted evaluation of the factor is potentially necessary when using different datasets or CNN structures. This 
work used U-Net based CNN models as case study of CASEG. However, reachable performance gains might be 
different in other network structures such as  TransUNet14. The applied equivalence margin is the strictest one as 
it is based on an intra-observer variability. As the equivalence margin was defined on native T1 map data only, 
its application on CE T1 maps is questionable. Consequently, an adequate equivalence margin for CE T1 maps 
or in its usage in a ECV map is currently missing and were substituted in this study by the analysis of the CV.

Data availability
The trained models and used dataset are available on request in an anonymized manner by contacting the first 
(DV: darian-steven.viezzer@charite.de) or last (JSM: jeanette.schulz-menger@charite.de) author. The source 
code can be accessed via GitHub under the URL: https:// github. com/ DSV- CUB/ CASEG or in the Supplemental 
Material S7.
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