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ACUTE MYELOID LEUKEMIA

Cre recombinase expression cooperates with homozygous FLT3
internal tandem duplication knockin mouse model to induce
acute myeloid leukemia
Jasmin Straube 1,2,8, Theresa Eifert3,8, Therese Vu 4,8, Yashaswini Janardhanan1, Rohit Haldar1, Björn von Eyss5, Leanne Cooper1,
Claudia Bruedigam1, Victoria Y. Ling 1,2, Emily Cooper1, Ann-Marie Patch1, Lars Bullinger6, Tina M. Schnoeder3, Megan Bywater1,2,
Florian H. Heidel3,5,8✉ and Steven W. Lane 1,2,7,8✉

© The Author(s) 2023

Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound
mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as
FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology
that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects
need to be taken into consideration. We report on a transgenic murine model of FLT3-ITD induced disease, where Cre recombinase
expression alone, and in the absence of a conditional allele, gives rise to an aggressive leukemia phenotype. Here, expression of
various Cre recombinases leads to polyclonal expansion of FLT3ITD/ITD progenitor cells, induction of a differentiation block and
activation of Myc-dependent gene expression programs. Our report is intended to alert the scientific community of potential risks
associated with using this specific mouse model and of unexpected effects of Cre expression when investigating cooperative
oncogenic mutations in murine models of cancer.
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INTRODUCTION
Mutations in FMS-like tyrosine kinase 3 (FLT3) are among the most
common in myeloid blood cancers. Specifically, FLT3 internal
tandem duplications (FLT3ITD) are found in 30–40% of all patients
with acute myeloid leukemia (AML) and are associated with poor
clinical prognosis due to relapse after chemotherapy [1]. Inhibitors
of FLT3 combine with chemotherapy to improve overall survival in
AML [2], however many patients may become resistant to these
targeted inhibitors [3]. Constitutive murine models of FLT3ITD have
been developed that express FLT3ITD from the endogenous locus
[4, 5], however these mice only develop AML when crossed with
another oncogenic stimulus [6–11]. These combinatorial models of
leukemogenesis support a hypothesis where an oncogene driving
proliferation (such as a constitutively active tyrosine kinase) can
cooperate with an oncogene that blocks differentiation (e.g. the
loss of function in a hematopoietic transcription factor) to drive
overt AML. In light of recent discussions on the significance of
FLT3ITD levels on AML prognosis [12, 13], we have crossed mice
heterozygous and homozygous for the FLT3ITD allele with Cre

recombinase expressing strains. To our surprise, we found that
homozygous FLT3ITD mice, when crossed with strains expressing
Cre alone, had excessive and early mortality. Here we describe an
unexpected but important phenomenon where Cre expression
alone is able to drive AML in the context of FLT3ITD/ITD, but not in
the Cre:FLT3WT/WT or Cre:FLT3ITD/WT state. This process is driven by
a block in myeloid differentiation and mediated by aberrant Myc-
driven transcription.

MATERIAL AND METHODS
Mouse models
FLT3ITD/ITD mice were obtained from Dr D. Gary Gilliland (Harvard Medical
School, Boston, MA, USA) [5]. SclCreERT/+ (Scl-CreERT) mice were obtained
under a materials transfer agreement from Dr Joachim Göthert (University
of Essen, Germany) [14]. Mx1-Cre (Strain 03556), LysM-Cre (Strain 04781),
R26-LSL-Confetti (ConfettiLSL, Strain 013731) and R26-CreER (Strain 004847)
mice were obtained from Jackson Laboratories. C57BL/6J mice (6–8 weeks
old) were purchased from the Animal Resources Centre (Western Australia,
Australia) or from Janvier Labs (Le Genest-Saint-Isle, France) and housed in
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a pathogen-free animal facility. All experiments were conducted after
approval by the QIMR Berghofer Animal Ethics Committee (A11605M), the
Landesverwaltungsamt Sachsen-Anhalt (42502-2-1052 UniMD) and the TLV
Thüringen (02-035/16). For transplantation, mice were irradiated as
indicated and transplanted via tail intravenous (IV) injection with 1 × 105

to 106 bone marrow (BM) or spleen as indicated. Mice were culled at a
defined time-point or when mice were showing significant clinical signs of
disease. Disease burden was assessed by blood counts, flow cytometry
(GFP+) of peripheral blood (PB), BM and spleen cells or histopathological
stains.

Cre activation. To activate Cre in the Scl-CreERT and R26-CreER models,
tamoxifen feed purchased from Specialty Feeds (Western Australia) at
400mg/kg in base Mouse FG 66305 formulation was used. To activate Mx1-
Cre in vivo, poly(I):poly(C) (pIpC) (Cytiva, Marlborough, MA) was injected
two times every second day intraperitoneally. Injections were halted if mice
showed signs of illness prior to completion of treatment. Spontaneous Mx1-
Cre activation was noted as previously described consistent with
spontaneous activation of Mx1-Cre in an inflammatory milieu [15].

In vivo treatment with JQ1. Scl-CreERT:FLT3ITD/ITD or age-matched FLT3ITD/ITD

mice were administered tamoxifen feed (Specialty Feeds Australia) for
4 weeks, then blood was sampled and analysed on a Hemavet 950
(Drew Scientific) to confirm leukocytosis. Tamoxifen feed was withdrawn for
4 days prior to JQ1 treatment. JQ1 was formulated by dissolving 100mg/mL
in DMSO (1 part) and diluting by dropwise addition of 10% hydoxypropyl
beta-cyclodextrin (Sigma Aldrich, 332593) (9 parts), followed by sonication
for 15min in a water bath sonicator at 37 °C. Mice were injected
intraperitoneally at 50mg/kg of JQ1 or vehicle, for 2 weeks (5 days per
week). Mouse tissue samples were harvested after day 12 of JQ1 treatment
and immunophenotyped using the LSRII Fortessa analyzer (BD). For
samples used for RNA-sequencing, lethally irradiated (1100 cGy) Ptprca
mice were transplanted with Scl-CreERT:FLT3ITD/ITD leukemic splenocytes
(5 × 106) mixed with C57BL/6 BM (5 × 105). AML was confirmed after
4 weeks and mice were treated with one dose of JQ1 (50 mg/kg) or vehicle
(200 uL of 10% cyclodextrin/DMSO). After 4 h, spleens were harvested
sorted for Kit+CD45.2+ CD45.1- cells and RNA was extracted using the
PicoPure RNA Isolation kit (Thermo Fisher).
Sample sizes for animal experiments were calculated to detect 25%

difference in disease burden parameters between groups at a power of 80%
with alpha of 0.05. Treatment groups were pre-specified prior to
transplantation and treatment allocation was non-randomized and non-
blinded throughout the experiment. All mice were included in analyses.

Blood analysis and bone marrow cytospins
Blood was collected into EDTA-coated tubes and blood counts assessed
using a Hemavet 950 analyzer (Drew Scientific) or on a BC-5000Vet
(Mindray, China). To analyse cell morphology, 1 × 105 BM cells were
centrifuged onto glass slides. PB smears and BM cytospins were stained
with Wright-Giemsa (BioScientific).

Histological imaging of mouse organs
Spleen, liver and lung were fixed and embedded according to standard
protocols. Slides were automatically processed for hematoxylin and eosin
staining (Leica AutoStainer XL, Leica Biosystems, Wetzlar, Germany).
Images were acquired at 10x magnification on an AxioImager A.2 (Carl
Zeiss Microscopy, Jena, Germany). Images were processed and analysed
using the ZEN software (blue edition, version 2.3, Carl Zeiss Microscopy
GmbH, Jena, Germany).

Flow cytometry
For immunophenotype analysis, PB, BM or spleen cells were resuspended
in PBS/1% FBS after erythrocyte lysis (PharmLyseTM, BD Pharmingen, San
Diego, CA). Unless otherwise stated, the following antibodies were used:
Sorting and analysis of Lineage- Kit+ Sca-1+ (LKS+) cells or Sca-1+ cells
were performed as previously described [16, 17]. Biotinylated antibodies
against Gr-1 (RB6-8C5), B220 (RA3-6B2), CD19 (6D5), CD3 (145-2C11), CD4
(GK1.5), CD8a (53–6.7), TER119 and IL7Ra (A7R34) (all Biolegend, SanDiego,
CA) were used for lineage staining. An APC-Cy7- or BV421-labeled
streptavidin-antibody (BioLegend) was used for secondary staining
together with an APC-anti-cKit (clone 2B8) and a PE-Cy7- or PE-anti-Sca-1
antibody (clone E13-161.7). Full list of antibodies can be found in
Supplementary Table 1. Cells were analysed using an BD-Fortessa, LSRIITM

or FACSCantoIITM (Becton-Dickinson) cytometer. Analysis was performed
using FlowJoTM software (Treestar, Ashland, OR). Cell sorting was
performed on a BD FACSAria™ II (Becton-Dickinson).

Molecular protocols and next-generation sequencing
DNA extraction. Isolation of gDNA from Mx1-Cre:FLT3ITD/ITD AML BM cells or
FLT3WT/WT tail biopsies was performed using the QIAmp DNA Blood Mini Kit
or the QIAmp Fast DNA Tissue Kit (Qiagen, Hilden, Germany), respectively,
according to the manufacturer’s instruction. Genomic DNA was extracted
using QIAGEN QIAquick from Cre+FLT3ITD/ITD tail pre-tamoxifen (control) and
BM post-tamoxifen at clinical signs of significant disease (tumor).

Whole exome sequencing (WES). 100 bp paired end sequencing was
performed on the HiSeq4000 Illumina platform with 30–40x coverage
through Macrogen. Variants were called and annotated using qSNP [18].

Whole Genome sequencing (WGS). Cre+FLT3ITD/ITD tail pre-tamoxifen and
BM post-tamoxifen were sequenced through Macrogen with 150 bp paired
end on the Illumina platform at 22x and 38x coverage, respectively. WGS of
WT tails and BM of Mx1-Cre:FLT3ITD/ITD pre-pIpC were performed by Genewiz
(Leipzig, Germany) on Illumina NovaSeq 150 bp paired end 30x coverage.

Flt3 Neomycin resistance cassette sequence assembly. WGS reads mapping
to intron between Flt3 Exon15 and Exon 16 and reads not mapped to the
mouse genome were extracted from WGS of Cre+FLT3ITD/ITD pre tamoxifen
mice and de novo assembled using velvet v1.2.10. Primers were designed
adjacent to Neo-r-cassette integration site targeting the Flt3 locus: Flt3 I15
F1 5′ GCAATGTCAGAACACGATCACT 3′, Flt3 I15 R2 5′ CAGGAGATGA
AGCTGGGTTATAG. Sanger sequencing was performed with primer pairs
Flt3 neo Seq F1 5′ GAATATGATCGGAATTCCTCG 3′, Flt3 neoSeq R1 5′
CAGGTCGAGCAGTGTGGTT 3′ and Flt3 neo Seq F2 5′ GATCCGAACAAAC
GACCCAAC 3′, Flt3 neoSeq R2 5′ TACGTCCAGCCAAGCTAGC 3′, to confirm
the in silico generated Neo-r-cassette reference sequence and annotated
through blast. WGS reads of tails from WT, pre-taxmoxifen Cre+FLT3ITD/ITD

and BM post-tamoxifen Cre+FLT3ITD/ITD were mapped against the Neo-r-
cassette reference using bwa mem.

RNA extraction, sequencing and analysis. For Scl-CreERT:FLT3ITD/ITD and
age-matched FLT3ITD/ITD control BM, LKS+ at 4 weeks post tamoxifen and
spleen Lineage- Kit+ (LK) at significant clinical signs of disease were sorted
and RNA isolated using Arcturus PicoPure RNA Isolation Kit (Thermo Fisher
Scientific, Waltham, MA). For Mx1-Cre:FLT3ITD/ITD and control BM, 1 × 104 to
2 × 105 LKS+ cells were sorted 10 days after last pIpC treatment into
TRIzol® (Thermo Fisher Scientific, Waltham, MA) and RNA was isolated
according to the manufacturer’s instruction. RNA libraries were prepared
using the NEBnext Ultra RNA Library Prep Kit for Illumina (New England
Biolabs), assessed for size and quantified using the 2100 Bioanalyzer
(Agilent Technologies) and Kapa Library Quantitation Kit (Illumina)
respectively, prior to sequencing on the Illumina NextSeq 500 platform
(75 bp single end). Reads were adapter trimmed (Cutadapt [19] v1.11) and
aligned (STAR [20] v2.5.2a) to the GRCm38 assembly using the gene,
transcript, and exon features of Ensembl (release 70) gene model.
Expected gene counts were estimated with RSEM [21] v1.2.30. Genes with
zero read counts across all samples were removed prior analysis. Reads
were normalisation using edgeR [22] (counts per million, CPM; trimmed
mean of M-values; TMM) and used for gene set enrichment analysis (GSEA)
analysis [23]. Differential expression analysis comparing Cre+FLT3ITD/ITD vs.
FLT3ITD/ITD was performed with edgeR using a negative binomial general-
ised log-linear model paired with genewise likelihood ratio tests.

ATACSeq sample processing and analysis. BM LKS+ from Scl-CreERT:FL-
T3ITD/ITD mice were FACS sorted at Scl-CreERT:FLT3ITD/ITD significant signs of
disease along with aged-matched FLT3ITD/ITD control LKS+. Cells were
washed in ice cold PBS, pelleted and lysed in 50ul of lysis buffer (10mM
Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% (v/v) NP40). The lysate was
centrifuged at 500 g for 10mins. DNA tagmentation and library prep were
performed on the nuclear pellet using the Nextera DNA Library Prep Kit
(Illumina). The nuclei were resuspended in 25ul tagmentation buffer with
22.5uL H20 and 2.5uL transposase and incubated at 37 °C for 30min.
Tagmented chromatin was purified using a MinElute PCR Purification Kit
(Qiagen). Libraries added 2.5uL of both the forward and reverse indexing
primers (25uM) to tagmented DNA and 25uL of KAPA HiFi HotStart
ReadyMix (KAPABiosystems Millenium). Tagmented chromatin was ampli-
fied by PCR for 72 °C 5 min, 98 °C 3 mins, followed by 13 cycles at 98 °C 20 s,
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Fig. 1 Cre recombinase cooperates with FLT3ITD/ITD to induce lethal AML. Genotypes represented in A-F are Scl-CreERT:FLT3WT/WT, FLT3ITD/WT

Scl-CreERT:FLT3ITD/WT, FLT3ITD/ITD and Scl-CreERT:FLT3ITD/ITD. A Peripheral blood white cell count (WBC) 4 weeks after tamoxifen treatment. Each
point represents an individual mouse. B WBC at termination of experiment. C Kaplan-Meyer survival curves of Scl-CreERT:FLT3WT/WT (n= 12),
Scl-CreERT:FLT3ITD/WT (n= 15), FLT3ITD/ITD (n= 9) and Scl-CreERT:FLT3ITD/ITD (n= 20), D Spleen weight E Immunophenotyping of Kit+ spleen cells
F Immunophenotyping of peripheral blood cells by flow cytometry (CD11b+myeloid cells, CD19+ B cells, CD3+ T cells). G-K Genotypes are
Mx1-Cre:FLT3WT/WT, FLT3ITD/WT Mx1-Cre:FLT3ITD/WT, FLT3ITD/ITD and Mx1-Cre:FLT3ITD/ITD. G WBC at 4 weeks and H at termination of experiment.
I Kaplan-Meyer survival curves of Mx1-Cre:FLT3WT/WT (n= 8), FLT3ITD/ITD (n= 61) and Mx1-Cre:FLT3ITD/ITD (n= 25), J Spleen weight
and K morphology of leukocytes in the peripheral blood and bone marrow, demonstrating loss of differentiation in Mx1-Cre:FLT3ITD/ITD

(upper panel). L Histopathology (HE-staining) of organs from Mx1-Cre:FLT3WT/WT, FLT3ITD/ITD and Mx1-Cre:FLT3ITD/ITD mice (lower panel).
Statistics: A-E, G, H, J One-way ANOVA with FDR p-value correction, C, I Pairwise Mantel-Cox test for survival analysis, F two-way ANOVA with
Tukey p-value correction; p-values from comparing myeloid cells displayed.
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65 °C 15 s, 72 °C 60 s, purified using a MiniElute PCR Purification Kit
(Qiagen), eluted in 50uL prior to SPRI based size selection (200–600 bp)
(Beckman Coulter), Qubit flurometric quantitation and sizing and DNA
analysis using a Bioanalyzer (2100 Agilent). Sequencing was performed by
Macroogen with 100 bp paired end on the Illumina platform. Reads were
trimmed for Nextera transposase adapter sequences (Cutadapt v1.11) and
aligned (bwa mem v0.7.15) to mm9 genome. Mapped reads were assessed
for duplication with picard v2.18.15 MarkDuplicates and filtered in addition
to low mapping quality (q < 30) using samtools v1.9. Peaks were called
with MACS2 v2.1 ‘macs2 callpeak -t output.bam --format --gsize mm
--nomodel --nolambda --keep-dup all --call-summits’. Peaks overlapping
blacklisted regions were removed using GenomicRanges v1.48. Peaks were
annotated according to their location with ChIPseeker v1.32. Differential
peak analysis was performed using edgeR as previously described.
Caterpillar plots were generated with genomation R package v1.28.
ATACSeq data of murine HSPC and mature cell populations were
downloaded from GEO with accession number GSE60103.

Statistical Analysis
Kaplan-Meier curves were plotted using GraphPad Prism version 9.0
(GraphPad Software, San Diego, CA) using the log-rank test (Mantel-Cox
test). Statistical analyses were performed using ANOVA with FDR p-value
correction for comparing more than two groups or t-test for comparing
two groups, unless stated otherwise. Significance of p-values in figures are
indicated using the following ranges: * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001. Each dot represents an individual biological replicate.

RESULTS
Expression of Cre recombinase cooperates with FLT3ITD to
induce acute myeloid leukemia (AML) in mice
FLT3ITD is the most common recurrent genetic mutation found in
patients with AML. FLT3ITD/ITD knockin mice have been a valuable
research model for studying the effect of cooperative gene
mutations because they only develop a chronic myeloproliferative
disease. Recently, other groups have described development of
AML in the presence of additional mutations [6]. Scl-CreERT
expression is restricted to hematopoietic stem and progenitor
cells (HSPC) [14]. Scl-CreERT, Scl-CreERT:FLT3ITD/WT, FLT3ITD/ITD and

Scl-CreERT:FLT3ITD/ITD mice were generated and born in expected
Mendelian ratios. At 6–8 weeks after birth, mice were treated with
tamoxifen-supplemented chow to induce the activity of Cre
recombinase. Unexpectedly, Scl-CreERT:FLT3ITD/ITD mice developed
signs of sickness within 4 weeks including marked leukocytosis
(Fig. 1A, B). This progressed to a lethal AML characterised by
splenomegaly and increased Kit+ HSPC in the spleen, progressive
anaemia and marked myeloid skewing in the peripheral blood (PB)
(Fig. 1C-F, Fig. S1A). These findings were not present in the
Scl-CreERT control groups and significantly greater than in the Scl-
CreERT:FLT3ITD/WT or FLT3ITD/ITD control groups. Notably, FLT3ITD/ITD

control groups also showed myeloid skewing and splenomegaly,
consistent with the previous publications [5]. Phenotypically
immature blasts were detectable in PB and BM, consistent with
AML (Fig. S1B). To determine whether this effect was present with
other Cre recombinases, we crossed FLT3WT/WT, FLT3ITD/WT and
FLT3ITD/ITD mice with Mx1-Cre, an interferon inducible Cre recombi-
nase transgene with high expression in hematopoietic cells [24].
Mx1-Cre:FLT3WT/WT, Mx1-Cre:FLT3ITD/WT, and Mx1-Cre:FLT3ITD/ITD

mice were initially treated with pIpC at 4 weeks after birth.
Consistent with our previous findings, Mx1-Cre:FLT3ITD/ITD, devel-
oped leukocytosis and this progressed to a rapidly fatal AML
accompanied by splenomegaly and immature blasts in PB and BM
whereas control mice did not develop AML (Fig. 1G-K). Of note,
disease development was detectable in a subset of mice without
pIpC injection due to low level expression from the Mx1 promoter in
the absence of an ectopic stimulus. Together, these unexpected
findings show that Cre expression alone is sufficient to cooperate
with FLT3ITD/ITD to induce AML in mouse models.

Cre+ FLT3ITD/ITD AML is transplantable and maintained by
transformed HSPC populations
To determine whether Cre+FLT3ITD/ITD AML is fully transformed, we
performed transplantation into lethally irradiated (1100 cGy) C57BL/
6 J recipient mice. Whole BM of Mx1-Cre:FLT3ITD/ITD or Scl-
CreERT:FLT3ITD/ITD but not FLT3ITD/ITD was able to transplant a short
latency, fatal AML into recipient mice (Fig. 2A). Next, we performed
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cells enriched in recipients of spleen Kit+ cells. Each dot represents an individual biological replicate (mouse). Statistics: A Pairwise Mantel-Cox test,
C-E One-way ANOVA with FDR p-value correction.
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fractionation by flow cytometry, isolating putative leukemia initiat-
ing cell populations (LKS+ , GMP) from the BM and spleen (Kit+ ) of
leukemic mice and transplanted these cells along with 2 × 105

wildtype BM cells (“helper BM”) into lethally (1100 cGy) irradiated
mice (Fig. 2B). AML was able to be transplanted in recipient mice
that received 1 × 106 Kit+ cells from AML spleens (Fig. 2C, D).
Additionally, BM LKS+ cells were able to engraft into irradiated
recipient, but did not manifest disease, presumably due to the
limiting cell number used in transplantation (Fig. 2E). However, these
results show that Cre+FLT3ITD/ITD AML can be propagated in
irradiated recipient mice and that the HSPC population contains
AML initiating activity in vivo. We therefore sought to characterise
the effect of Cre recombinase on HSPC populations.

Cre+ FLT3ITD/ITD AML leads to expansion of committed HSPC
populations with leukemia initiating activity
Consistent with the aggressive disease phenotype, AML-bearing Scl-
CreERT:FLT3ITD/ITD mice had the fewest immunophenotypically
defined long-term HSCs, however this was not significantly different
between the Cre+ and Cre- FLT3ITD/ITD controls (Fig. 3A, B). AML mice
from Scl-CreERT:FLT3ITD/ITD showed marked expansion of BM HSPC

populations, particularly in the myeloid progenitor compartment
(Lineage- Kit+ Sca-1-), beyond that observed with FLT3ITD/ITD alone
(Fig. 3C-E). More specifically, AML-bearing Scl-CreERT:FLT3ITD/ITD mice
had expansion of cells expressing markers consistent with granulo-
cyte macrophage progenitors (GMP) (Fig. 3E). As these data suggest
that Cre induction preferentially leads to expansion of a committed
myeloid HSPC population, we examined the effect of Cre expression
within the GMP and committed myeloid progenitor compartment
using LysM-Cre, a constitutive Cre within myeloid cells that has
maximal expression from GMP stage but may be active in a small
number of HSCs [25]. Consistent with the previous findings, LysM-
Cre:FLT3ITD/ITD mice also developed a rapidly fatal AML (Fig. 3F)
characterised by extremely high WBC count, splenomegaly and
circulating blast cells (Fig. 3G-I).

Cre+ FLT3ITD/ITD AML is polyclonal and not associated with
recurrent genetic mutations
We next sought to determine whether Cre recombinase was
driving the leukemia phenotype through the generation of
additional oncogenic mutations. We first tested whether the
leukemic phenotype was associated by a dominant clonal
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population that expanded and gave rise to AML by generating
Scl-CreERT:ConfettiLSL:FLT3ITD/ITD and Scl-CreERT:ConfettiLSL:
FLT3WT/WT mice that would randomly express either GFP, YFP,
CFP or RFP upon the induction of Cre recombinase, allowing us to
trace clonal evolution based on fluorescent marker expression.
After tamoxifen induction of Cre recombinase in HSCs, only Scl-
CreERT:ConfettiLSL:FLT3ITD/ITD mice developed AML (Fig. 4A).
Although there was incomplete expression of each fluorescent
marker, we observed that the ratios of each fluorochrome
were similar between both conditions, demonstrating that
the AML was polyclonal in Scl-CreERT:ConfettiLSL:FLT3ITD/ITD

(Fig. 4B, C). Next, we examined whole exome sequencing (WES)
of Scl-CreERT:FLT3ITD/ITD AML cells after tamoxifen administration
to determine whether recurrent genetic mutations were found in
the AML cells. WES of cells isolated from AML-bearing BM was
compared to tail gDNA prior to Cre induction and mutations
defined as somatic if present in the BM but not in the tail samples.
Somatic mutations were filtered based on high confidence calls
with moderate or high predicted impact on protein function.
Scl-CreERT:FLT3ITD/ITD AML had only two somatic mutations, in the
genes Muc4 and Arcn1, with low variant allele frequency
(VAF 0.075 and 0.155, respectively), whereas FLT3ITD/ITD controls
had a sole mutation in Vmn2r89 (low VAF, 0.039) (Fig. 4D;
Supplementary Table 2). As these mutations were found in a
minority of cells, we concluded that they were unlikely to be
additional driver mutations responsible for the AML phenotype.

FLT3ITD/ITD cells have a retained Neomycin resistance cassette
that is LoxP flanked and excised by Cre recombinase
We next performed whole genome sequencing (WGS) of pre-
tamoxifen Cre+FLT3ITD/ITD tails and post-tamoxifen AML BM cells
and FLT3WT/WT tails and pre-pIpC BM of Mx1-Cre:FLT3ITD/ITD AML
samples. We observed that pre-tamoxifen Cre+FLT3ITD/ITD samples
but not post-tamoxifen AML Cre+FLT3ITD/ITD cells retained an
aberrant neomycin-resistance sequence between exon 15 and 16
of FLT3 flanked by LoxP sites, a residual gene targeting sequence

inserted during generation of this mouse model [5] (Fig. 5A).
Similar findings have been described from another Flt3ITD knockin
mouse model [4]. Consistent with this, RNA-sequencing from both
FLT3ITD/ITD models contained reads mapping to the neomycin-
resistance cassette pre but not post Cre induction (Fig. 5B).
Altogether, these data suggest that Cre recombinase deletes a
retained neomycin-resistance expression cassette, with possible
implications for gene regulation and gene expression.

Cre+ FLT3ITD/ITD AML has aberrant gene expression leading to
differentiation block and Myc activation
To determine whether Cre+FLT3ITD/ITD AML was driven by broad
changes in gene expression that were concordant across different
Cre genotypes, we interrogated RNA-sequencing on Kit+ popula-
tions from Scl-CreERT:FLT3ITD/ITD spleen and BM and Mx1-
Cre:FLT3ITD/ITD BM compared to FLT3ITD/ITD controls. Despite being
isolated from immunophenotypically similar cells, there were
striking gene expression changes in both Cre-positive groups
(Fig. S2A), characterised by a loss of myeloid differentiation and
enrichment for stem cell regulatory pathways (Fig. 6A) with
differential expression of key myeloid transcription factors
(Fig. S2B) compared to FLT3ITD/ITD controls. There was strong
and significant concordance between the gene expression
changes seen with Scl-CreERT:FLT3ITD/ITD AML and Mx1-Cre:FL-
T3ITD/ITD AML (Fig. S2C). FLT3ITD/ITD mice are characterised by an
aberrant inflammatory milieu and disrupted cytokine signalling,
and these changes were lost in both FLT3ITD/ITD Cre-positive
groups (Fig. 6B, Supplementary Table 3).
We therefore considered whether Cre-activity may have an

effect on remodelling chromatin or binding at specific sites of the
genome to regulate these gene expression changes. We therefore
performed genome wide ATACSeq on BM LKS+ cells from
FLT3ITD/ITD samples and Scl-CreERT:FLT3ITD/ITD samples to examine
chromatin conformation in an unbiased manner. Chromatin
accessibility was highly consistent between biological replicates
of genotypes (Fig. S3A) with Scl-CreERT:FLT3ITD/ITD samples overall
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gaining chromatin accessibility (Fig. S3B, Supplementary Table 4).
Interestingly, Scl-CreERT:FLT3ITD/ITD preferentially lost open chro-
matin at the sites accessible during myeloid differentiation with
enrichment for PU.1 (encoded by Sfpi1) motif (Fig. S3C–F). We
reasoned that this was consistent with the block in differentiation

phenotype seen in the BM Scl-CreERT:FLT3ITD/ITD samples overall
and did not suggest specific binding of Cre recombinase to
directly influence gene expression.
We did observe increase in protein FLT3 expression in Mx1-

Cre:FLT3ITD/ITD mice (Fig. S4A–K). Additionally, we see strong and
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consistent findings using RNA-sequencing analysis of Mx1-Cre, Scl-
CreERT in BM and spleen are upregulation of known FLT3 target
gene Socs1 (Fig. S4L) with consequent suppression of cytokine
and inflammatory signaling (Fig. 6D) particular interferon signaling
(Fig. S4L). Socs1 expression is relevant to this as since in a
retroviral model it was shown to significantly accelerate the
FLT3ITD myeloproliferative phenotype or leads to leukemia [26].
In addition, RNA-sequencing data from both Scl-CreERT:FLT3ITD/ITD

AML and Mx1-Cre:FLT3ITD/ITD AML showed marked enrichment for
genes associated with Myc activation (Fig. 6B). To confirm that Myc
activation was driving the development or maintenance of AML, we
assessed response to targeting Myc with the BRD4 inhibitor JQ1 [27].
Cre-negative FLT3ITD/ITD mice did not develop increased WBC count,
splenomegaly or monocyte differentiation block and hence did not
show any response in these parameters after 2 weeks of JQ1
treatment (Fig. 6C,D,G). Scl-CreERT:FLT3ITD/ITDmice showedamarked
accumulation of immature monocytes, elevated WBC and spleno-
megaly compared to Cre-negative controls (Fig. 6C–G). However, Scl-
CreERT:FLT3ITD/ITD mice treated with JQ1 showed a reduction in WBC
counts, decreased splenomegaly and partial reversal of abnormal
myeloid differentiation (Fig. 6C–G). Gene expression studies on JQ1
treated Scl-CreERT:FLT3ITD/ITD AML showed reversal of Myc regulated
gene expression and restoration of TNFα signalling pathways seen
upregulated in Scl-CreERT:FLT3ITD/ITD mice (Fig. 6B). In aggregate,
these findings demonstrate that Cre expression leads to broad gene
expression changes, including abnormal Myc pathway activation
leading to a block in differentiation that drives AML development in
FLT3ITD/ITD cells.

DISCUSSION
Genetically engineered mouse models faithfully recapitulate
many myeloid malignancies and provide important mechanistic
insights that may not be evident from studying human samples
alone. The transgenic FLT3ITD/ITD knockin model has been used
widely to model the effects of cooperative mutations on
leukemogenesis, including NPM1 [9, 10] and DNMT3A [6, 28].
We present the unexpected findings that homozygous FLT3ITD/ITD

mice are primed for AML development and that co-expression of
Cre recombinase is sufficient to give rise to a fully penetrant, yet
polyclonal AML. This AML shows many characteristics of human
cancer including a differentiation block and activation of a
transcriptional Myc signature. Mechanistically, Myc activation
appears to be important for the phenotypic manifestations
of disease, as treatment with the BRD4 inhibitor JQ1 was
able to reverse these gene expression changes and partially
restore differentiation in vivo. This phenotype could not be
attributed to any spurious damage to the genome by Cre
recombinase as we did not find evidence of gene coding
mutations. However, we did identify a retained neomycin
resistance cassette that was incorporated in the Flt3 locus at
the time of gene targeting. This Neo-resistance cassette is
intronic in the Flt3 locus, is flanked by LoxP sites and is predicted
to reduce expression of FLT3 overall [4]. After Cre-induction, this
Neo-resistance cassette is excised, suggesting that retention of
this intronic Neo-resistance construct may be having broader
impact on gene expression.
Importantly, we do not propose this model as a useful

preclinical tool that faithfully mimics the progression of human
disease. Rather, this is a cautionary report that serves to notify and
remind the broader scientific community of the potential caveats
of this particular mouse model in modelling AML, but also has
impact more generally about the potential for off-target effects of
gene targeting as previously emphasized by pioneers of the
Cre-loxP system [29]. This finding may limit the applicability of
data to clinical scenarios. This finding was only detected by the
careful analysis of Cre-positive (and excision positive) controls, as
Cre-negative FLT3ITD/ITD mice never develop AML. Heterozygous

expression of FLT3ITD/WT in the presence of Cre activity did not
give rise to off-target AML in any of our experiments, and we
believe that this model remains suitable and appropriate for the
testing of cooperative event in AML.
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