
Article
An integrate-and-fire approach to Ca2D signaling.
Part I: Renewal model
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ABSTRACT In computational neuroscience integrate-and-fire models capture the spike generation by a subthreshold dy-
namics supplemented by a simple fire-and-reset rule; they allow for a numerically efficient and analytically tractable description
of stochastic single cell as well as network dynamics. Stochastic spiking is also a prominent feature of Ca2þ signaling which
suggests to adopt the integrate-and-fire approach for this fundamental biophysical process. The model introduced here consists
of two components describing 1) activity of clusters of inositol-trisphosphate receptor channels and 2) dynamics of the global
Ca2þ concentrations in the cytosol. The cluster dynamics is given in terms of a cyclic Markov chain, capturing the puff, i.e.,
the punctuated release of Ca2þ from intracellular stores. The cytosolic Ca2þ concentration is described by an integrate-and-
fire dynamics driven by the puff current. For the cyclic Markov chain we derive expressions for the statistics of the interpuff
interval, the single-puff strength and the puff current assuming constant cytosolic Ca2þ. The latter condition is often well approx-
imated because cytosolic Ca2þ varies much slower than the cluster activity does. Furthermore, because the detailed two-
component model is numerically expensive to simulate and difficult to treat analytically, we develop an analytical framework
to approximate the driving puff current of the stochastic cytosolic Ca2þ dynamics by a temporally uncorrelated Gaussian noise.
This approximation reduces our two-component system to an integrate-and-fire model with a nonlinear drift function and a mul-
tiplicative Gaussian white noise, a model that is known to generate a renewal spike train, i.e., a point process with statistically
independent interspike intervals. Themodel allows for fast numerical simulations, permits to derive analytical expressions for the
rate of Ca2þ spiking and the coefficient of variation of the interspike interval, and to approximate the interspike interval density
and the spike train power spectrum. Comparison of these statistics to experimental data is discussed.
SIGNIFICANCE The concentration of intracellular Ca2þ controls many cellular processes and exhibits prominent
pulses (spikes). The timing of these spikes is rather irregular due to an interplay of the intracellular Ca2þ dynamics with
the random opening and closing of Ca2þ channel clusters in the membrane of the endoplasmic reticulum. Here, we
propose a mathematical model for the random (stochastic) spike generation that incorporates these two components.
Since cluster activity is often very fast compared with the change in Ca2þ concentration, we can further reduce our
two-component model resulting in a simplified stochastic model that can be rapidly simulated. Moreover, the simpler
model allows for analytical approximations of the statistics of interest, which can be compared with those of
experimental data.
INTRODUCTION

Calcium (Ca2þ) is a ubiquitous intracellular messenger
that regulates many cellular processes, ranging from
muscle contraction and relaxation over neurotransmitter
secretion in synapses to fertilization and apoptosis
(1–5). To utilize Ca2þ signaling effectively, cells maintain
a extraordinary low resting cytosolic Ca2þ concentration
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([Ca2þ]i < 100 nM) much smaller than the extracellular
Ca2þ concentration ([Ca2þ]ex z 1 nM) (6). The associ-
ated large gradient is maintained by a number of pumps
that transport Ca2þ from the cytosol into the extracellular
medium but also into the endoplasmic reticulum (ER)
serving as an intracellular Ca2þ store with a lumenal
concentration three to four orders of magnitude larger
than the cytosolic resting concentration. Release of
Ca2þ from the ER through the designated inositol tri-
sphosphate receptor (IP3R) channel and controlled by
the second messenger inositol trisphosphate (IP3) causes
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short pulse-like deflections of the cytosolic Ca2þ concen-
tration called spikes.

Ca2þ spiking is a stochastic process (7–17). The sequence
of spike times is strongly affected by randomness due to the
finite-size noise of the involved molecules as well as coopera-
tivity of the ion channels (see below). Theoretical understand-
ing of Ca2þ signaling requires stochastic models that take
these fluctuations into account. Such models exist (9,18–22)
but so far do not focus on the spike statistics as a point process.
In computational neuroscience an important model class for
the description of a stochastic point process, associated with
the spiking in the membrane voltage of neurons, is the inte-
grate-and-fire (IF) neuron (23–26). Here, we attempt to adopt
this successful framework to the problem of Ca2þ spiking; for
a recent discussion of the similarities and differences between
calcium and neural spiking (see, e.g., (27)).

The defining idea of an IF approach is to model the dy-
namics of the spiking variable (in computational neuroscience
the membrane voltage) only up to its spike-triggering
threshold, and to replace the stereotypical spike by a fire-
and-reset rule. The most important output of such a model is
the sequence of spike times ti or, equivalently, the spike train:

zðtÞ ¼
X
i

dðt � tiÞ; (1)

a sum of Dirac delta functions dð $Þ at the spike times. IF
models are successful in reproducing and predicting the

spike times of detailed neuron models (26) and real neurons
(28,29) alike and are analytically tractable in many situa-
tions (see, e.g., (30–35)).

Crucial for the applicability of IF models is a reliable
spike generation once the threshold is crossed. This in
turn is implemented by a positive feedback mechanism,
based on voltage-gated ion channels that are selective for
Naþ ions. Superthreshold depolarization of the voltage
opens Naþ channels triggering a Naþ-flux into the cell,
that leads to a further depolarization of the voltage and ac-
tivates even more Naþ channels and so on. Ca2þ-induced
Ca2þ release, a process in which Ca2þ itself promotes the
release of Ca2þ from the ER, constitutes such a positive
feedback mechanism in the context of Ca2þ spiking.

The model we propose here consists of two components.
The first describes the dynamics of the intracellular Ca2þ

concentration by means of an IF model. The second captures
the release of Ca2þ from the ER by the stochastic opening of
clusters of IP3Rs (modeling channel activity by Markovian
models has a long tradition, for an overview see (21)). These
local releases are called puffs and form the elementary
events of global spikes. We describe them by a cyclic Mar-
kov chain modeling the number of open channels in a given
cluster. The Ca2þ puff current through these channels results
from the concentration gradient between ER and cytosol.
We calculate statistics of the puff strength and interpuff in-
terval (IPI) as well as the noise intensity of the puff current
from the Markov chain.
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The model for the global intracellular Ca2þ concentration
is hard to treat analytically because the driving puff current
depends on the cytosolic Ca2þ concentration itself and pos-
sesses complicated statistics. However, because the opening
and closing of IP3R clusters is often fast, we exploit the
timescale separation between the fast IP3-dependent puff
current and the remaining slow IP3-independent Ca

2þ cur-
rents. This allows for a diffusion approximation of the
puff current and reduces the two-component model to a
one-component IF model with nonlinear drift and Gaussian
white noise. This reduced model generates a renewal point
process, i.e., all interspike intervals (ISIs) are mutually sta-
tistically independent; this is also true to a very good
approximation for the original two-component model. The
reduced one-component model is analytically tractable
and allows to calculate statistics such as the stationary prob-
ability density of the subthreshold Ca2þ concentration, the
firing rate, and the coefficient of variation (CV) of the ISI.
We find, that for our model the ISI density is well approxi-
mated by an inverse Gaussian distribution which for the
generated renewal point process provides a complete
description of the spike statistics and allows for an instance
to calculate the spike-train power spectrum. We show that
the model can reproduce quantitatively statistics of stimu-
lated HEK cells that have been shown to generate renewal
spike trains (36).

The paper is organized as follows. We first introduce the
two-component model for Ca2þ spiking starting with the IF
model that governs the dynamics of the subthreshold cytosolic
Ca2þ concentration. In the following section we introduce the
cyclicMarkov chain that models the cooperative opening and
closing of IP3R clusters andgives rise to a stochasticCa2þ cur-
rent that feeds into the cytosolic Ca2þ concentration. Before
discussing the full two-component model we study the Mar-
kov chain for a fixed cytosolicCa2þ concentration and provide
exact analytical results for statistics of the puff strength and
IPI as well as the mean and noise intensity of the puff current.
In the subsequent section we approximate the stochastic puff
current by a deterministic mean and Gaussian white noise,
based on a timescale separation between the Ca2þ currents.
This gives rise to a one-component nonlinear Langevin equa-
tion with a spike-and-reset rule, that can be treated analyti-
cally by means of the associated Fokker-Planck equation
(FPE). Finally, we compare statistics of the full two-compo-
nent model to those of the one-component Langevin approx-
imation and also to stimulated HEK cells. For an overview of
the introduced variables and parameters see Table 1.
Two-component model for cytosolic Ca2D and
stochastic IP3R cluster dynamics

Cytosolic Ca2þ: IF model

We introduce an IF modeling approach to the repetitive
spiking of [Ca2þ]i. In such a framework the dynamics of



TABLE 1 Variables and parameters

Symbol Meaning

ciðtÞ cytosolic Ca2þ concentration

c0, cR, cT resting, reset, threshold values of ci
t time constant of ci dynamics

jpuffðciÞ puff current

p permeability-like parameter

Dcer concentration difference between cytosol and endoplasmic

reticulum

xkðtÞ number of open channels in the kth cluster

K number of cluster

N number of channels per cluster

M number of refractory states per cluster

lcls, lopn, lref rates of the Markov chain

a, b Hill coefficient of opening rate

s stimulation amplitude of IP3
ti spike times

zðtÞ spike train

Ti interspike intervals

Ai puff strength

Ii interpuff interval

An IF approach to Ca2+ signaling
[Ca2þ]i is modeled only over a small part of its physiolog-
ical range, i.e., up to a certain threshold that is much smaller
than the peak concentration during a spike. We assume that
over this range the change of the (nondimensional) cytosolic
Ca2þ concentration ci (see below Eq. 7) can be described by
two currents. The first current jlin ¼ ðc0 � ciÞ=t gives rise
to a stable resting concentration c0 in the absence of a stim-
ulation and perturbations decay toward this value with a
time constant t. It subsumes all passive and active currents
that are independent of IP3 including leak currents through
the ER and cellular membranes as well as ATP-fueled
Ca2þ pumps (SERCA activity). The second current jpuff ,
the IP3-dependent puff current, describes the release of
Ca2þ from the ER by clustered IP3Rs and also mediates
the positive feedback mechanism known as Ca2þ-induced
Ca2þ release. In line with these assumptions, the Parker
lab (37,38) has recently shown that the main share of
Ca2þ released into the cell during the rising phase of a
Ca2þ spike is due to a punctuated release of Ca2þ from
clustered IP3Rs, corresponding to jpuff in our model.
Furthermore they found that after a spike, when puffs
are absent, the return to the resting concentration is well
described by an exponential decay with a single time con-
stant t, corresponding to jlin in our model. The IF model
reads:

_ci ¼ �ðci � c0Þ
�
t þ jpuffðciÞ

if ciðtÞ ¼ cT/ti ¼ t and ciðtÞ ¼ cR
(2)

where ciðtÞ, c0, cR and cT represent the cytosolic, resting,
reset and threshold Ca2þ concentrations, respectively. The

first term on the r.h.s. is the deterministic linear current
with timescale t that determines how quickly the resting
concentration c0 is reached in the absence of puffs. The sec-
ond term is the stochastic puff current resulting from the
release of Ca2þ from the ER by the stochastic opening
and closing of clustered IP3Rs. We describe jpuff as:

jpuffðciÞ ¼ pDcer
XK
k ¼ 1

xkðtÞ; (3)

where p is a permeability-like parameter, Dcer is the concen-
tration gradient between ER and cytosol, and xkðtÞ refers to

the number of open channels in the kth of a total of K clus-
ters. The kinetics of xkðtÞ are detailed in the following sec-
tion. Since the Ca2þ concentration in the ER is much larger
than in the cytosol (5,21), we assume Dcer to be independent
of ci and constant in time. New aspects arising from a dy-
namic lumenal concentration will be explored in a subse-
quent publication.

The IF model is completed by a fire-and-reset rule:
at each time ti ¼ t when ciðtÞ reaches the threshold cT ,
a spike is assumed to occur and ci is reset to cR. If we
want to include a finite width of the Ca2þ spike we could
(similarly to what is done in neuroscience) clamp the
Ca2þ concentration to cR for an absolute refractory period
tabs. For simplicity we chose in this paper tabs ¼ 0 and
cR ¼ c0.

The so far described IF component of our model is illus-
trated in Fig. 1 B. The experimental data shown in Fig. 1 A
can be mimicked by the model if the parameters are chosen
accordingly such that the model shows similar values for the
stationary mean and CV of the ISI Ti (in the following for
stationary statistics of the ISI we will omit the index i);
this is further discussed below.

IP3R clusters: Cyclic Markov model

The number of open channels in each cluster, xðtÞ (omit-
ting the cluster index k), is modeled by a cyclic Markov
chain that is shown in Fig. 2 (top left). The model is based
on experimentally accessible statistics of the puff strength
and IPI. There exists of course a large variety of detailed
single IP3R models upon which a cluster model could be
build (39), for instance, the classic De Young-Keizer
model (40) or the more recent data-driven models by
Gin et al. (41) and Siekmann et al. (42), to name just a
few. However, because channels within a cluster are high-
ly cooperative, indicating strong coupling, cluster models
derived from single-channel-state schemes are very com-
plex (43,44). Since these complex dynamics result in
rather simple waiting time distributions for closed and
open cluster states (43,45–47), we follow here a different
approach.

For our model each cluster is described by a continuous-
time Markov chain uðtÞ with state space U ¼
½N;.; 1; 0M;.; 01� that consists of two subsets
UN ¼ ½N;.; 1� and UM ¼ ½0M;.; 01� where the cluster
is considered open and closed, respectively (see Fig. 2).
The states are labeled according to the number of open
channels they represent and we refer to the probability
Biophysical Journal 122, 713–736, February 21, 2023 715
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FIGURE 1 An integrate-and-fire approach to Ca2þ spiking. (A–C) Show

experimental data (as described in (10,14)), the renewal model (subject of

this paper), and the model with cumulative refractoriness (subject of a forth-

coming paper), respectively. (A1) Shows the time series of the fluorescence

signal DF proportional to the free cytosolic Ca2þ concentration obtained

from stimulated HEK cells (a step stimulus with onset at t ¼ 0). For

each time series, the time of up-crossing a certain threshold (dotted line) de-

fines a series of spike time t1, t2, t3, .. (A2) Shows the corresponding

sequence of ISIs Ti ¼ tiþ 1 � ti over the index i that exhibits a long tran-

sient fitted by an exponential function TN � ðTN � T0Þexpð� i =ntrÞ
(black line). The initial ISI T0 and stationary ISI TN according to this fit

are shown by dotted lines. The characteristic number ntr is indicated by

the gray area. (B1 and B2) Show traces of the (nondimensional) cytosolic

Ca2þ concentration ci (here i stands for intracellular) and the corresponding

sequence of ISIs Ti obtained from stochastic simulations of the two-compo-

nent model Eq. 2 presented in this paper. The model reproduces the station-

ary mean and CV of the experimental data but does not account for the

transient in the ISI sequence. In a follow-up paper we introduce an exten-

sion of this model that captures the transient behavior by taking into ac-

count the depletion of intracellular Ca2þ stores. (C1 and C2) Show again

traces of the cytosolic Ca2þ concentration ci and the corresponding

sequence of ISIs obtained from the extended model that reproduces not

only the stationary mean and CV but also the characteristic number ntr
and cumulative refractory period TN � T0 of the experimental ISI

sequence. To see this figure in color, go online.
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that a state u is occupied by pðu; tÞ or equivalently by the
uth component of a probability vector pðtÞ. The master
equation is given by:

d

dt
pðtÞ ¼ W$pðtÞ; (4)
716 Biophysical Journal 122, 713–736, February 21, 2023
with the transition rate matrix W:

(5)

where each blank entry corresponds to a zero, and the prob-
ability vector pðtÞ:

ð pðN; tÞ . pð1; tÞ pð0M; tÞ . pð01; tÞ ÞT (6)

Furthermore, we assign to every state u a natural number
as follows:

xðuÞ ¼
�
n; for u˛UN;
0; for u˛UM:

Here, n is the number of channels that are currently
open and corresponds to the label of the state, for instance,
xðu ¼ 3Þ ¼ 3. The corresponding random process xðtÞ
hence represents the number of open channels at time t and
enters the Ca2þ dynamics according to Eq. 3. The transition
rate matrix W consists of four submatrices that arise due to
the classification of the state space into sets of open and
closed states. The shapes of the submatrices and their bio-
physical rationales are described in the following, starting
with the top right submatrix and continuing counterclock-
wise. The first three submatrices determine statistics of the
puff (see Fig. 2 A), in particular the puff strength A, defined
as the integrated Ca2þ current during a single puff, while
the fourth submatrix determines statistics of the time between
two successive puffs, the IPI I (see Fig. 2 B).

The top-right N �M submatrix captures transitions from
the closed state u ¼ 01 to the open states and thus the
opening of the cluster. Biophysically the firing of a puff
is a highly cooperative event triggered by the opening of
a single channel which greatly increases the local Ca2þ

concentration. This in turn increases the open probability
(48) of the remaining channels in the same cluster and
causes a certain, uniformly distributed number of them to
respond, i.e., to open as well (49,50). In our model we
consider this response to be instantaneous so that the pas-
sage from u ¼ 01 (closed) to any number of open chan-
nels u ¼ n0 (open) is described by single transition. The
total escape rate from 01, lopn, depends linearly on the
cluster size N, which has been confirmed experimentally
(51) and reflects the idea that the opening of any channel
can serve as a puff trigger (see Eq. 7). Furthermore, in
line with experimental findings (50), we assume that the
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FIGURE 2 Kinetic model of an IP3R cluster for fixed cytosolic Ca2þ and its key statistics. The upper left panel illustrates the cyclic Markov chain that

describes the dynamics of a cluster with N open andM closed states. The states are labeled to indicate the number of open channels, captured by the process

xðtÞ˛ ½N;.0� that enters the dynamics of the cytosolic Ca2þ concentration according to Eqs. 2 and 3. In our model, a puff is initiated whenever there is a

transition from the closed state u ¼ 01 to any open state, and ends when the last open state u ¼ 1 is exited. The IPI is the time between two puffs and

corresponds to the time from entering the first closed state u ¼ 0M to leaving the last closed state u ¼ 01. Model parameters are shown in the upper right

table. (A) Shows statistics of the puff strength A, i.e., the integrated Ca2þ current during a single puff. (B) Shows statistics of the IPI I. In (A1) two exemplary

puffs with strength Ai and Aiþ 1 are shown. (A2 and A3) Show the distributions of number of responding channels pðn0Þ and puff strength pðAÞ. The former is

uniformly distributed by construction. The resulting mean puff strength is a quadratic function of the number of channels N as shown in (A4). The variability

of the puff strength quantified by the (squared) coefficient of variation CV2
A is bound between 1 and 0.8 as shown in (A5). This strong variability stems from

the stochasticity of the number of responding channels. Gray lines indicate the contribution of hVarðAjn0Þi=hAi2 (dotted) and VarðhAjn0iÞ=hAi2 (dashed) to
the total CV2

A. In (B1) an exemplary sequence of IPIs is shown. The IPI distributions at the resting and threshold Ca2þ concentrations are shown in (B2 and B3),

respectively. In each case the distribution possesses a small refractory period determined by the number of refractory statesM � 1 and the ci-dependent ratio

lopn=lref . The inverse of the mean IPI as a function of the cluster size N is shown in (B4). For small Ca2þ concentrations, close to the resting concentration c0,
the mean IPI is mainly determined by the opening rate that in turn depends linearly on N (Eq. 7), so that hIi� 1fN. In contrast, for larger concentrations close

to the threshold cT we observe a somewhat nonlinear shape. The CV2
I shown in (B5) decreases with N and saturates at 1=ðM � 1Þ. How quickly this limit is

approached depends again on lopn=lref and hence on ci. To see this figure in color, go online.

An IF approach to Ca2+ signaling
corresponding efflux of probability splits equally between
all open states, so that the transition rate to a particular
open state is lopn=N. Indeed, as seen in Fig. 2 A2, the
probability for the initial number of open channels in a
puff, referred to as the number of responding channels n0
in the following, is uniformly distributed over the N states.

Once a puff is initiated, the channels close successively
according to the top-left N � N (and bottom-left M� N)
Biophysical Journal 122, 713–736, February 21, 2023 717
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submatrix. Intuitively, one could assume that the channels in
a cluster close independently and that the closing rate of the
cluster therefore depends linearly on the number of channels
n that are currently open. However, Wiltgen et al. (52) have
shown that the mean dwell time, the inverse of the closing
rate, is largely independent of n indicating that channels
do not close independently, but the details of this process
are poorly understood. Accordingly, in our model we
describe the transition from u ¼ n to u ¼ n � 1 by a
fixed closing rate lcls that is independent of n; an example
of the corresponding staircase-like shape of the puff is
shown Fig. 2 A1. The bottom-leftM � N submatrix, contain-
ing only a single entry, describes the closing of the last chan-
nel, i.e., transitions from u ¼ 1 to u ¼ 0M.

The bottom-right M �M submatrix determines statistics
of the IPI. Experimentally, it is known that IPIs are highly
stochastic but display a (small) refractory period (45,51).
The latter can be understood by a negative feedback
emerging during the opening of the channel: the local
Ca2þ concentration in channel proximity attains very large
values within microseconds upon channel opening (53)
and, after closing of the channel, reduces the probability
of immediate reopening for a relative refractory period
(48,54). While this feedback is a subject of ongoing discus-
sion, even studies which consider such feedback unlikely
come to the conclusion that the IP3R has more than one
closed state (55). IPIs can thus not be modeled by a single
transition that would result in an exponential IPI distribu-
tion. We introduce a number of refractory states which
have to be traversed after a puff was fired before a new
puff can be initiated. In detail, the first M � 1 closed states
have to be traversed with transition rates lref before the clus-
ter can open again with the respective opening rate lopn. At
this point, upon reaching the state u ¼ 01, the cycle starts
anew with the opening of the cluster captured by the top-
right submatrix.

Finally, to complete the model, we state our assumption
about the Ca2þ and IP3 dependence of the rates. Unfortu-
nately, an extraction of these rates from experimental data
is, to the best of our knowledge, not feasible—a quantitative
study that relates puff activity to [Ca2þ]i ismissing. For a lack
of direct measurements, we choose the open rate’s lopn Ca

2þ

dependence in analogy to the biphasic Ca2þ dependence of
an individual channel’s open probability, usually described
by a combination of Hill equations (48,56,57). Since we uti-
lize an IF modeling approach, we are only interested in clus-
ter activity during the rising phase of the Ca2þ spike and do
not include a term that captures the decrease of the rates at
high concentrations. We choose:

lopnðciÞ ¼ Nblopn cai
1 þ cai

sb

1 þ sb
; (7)
where ci ¼ ½Ca2þ�i=Kact and s ¼ ½IP3�=Kstim refer to
the cytosolic Ca2þ and IP3 concentration relative to their
718 Biophysical Journal 122, 713–736, February 21, 2023
dissociation constants Kact and Kstim at which the rates attain
half of their maximal value.

The remaining rates of our model lref , lcls do not
depend on Ca2þ nor on IP3. The rationale for this choice
is a follows: the time for a single channel to be open
was shown to be largely independent of Ca2þ (56),
hence it is plausible that the rate lcls is unaffected.
Furthermore, as discussed above, the local Ca2þ concen-
tration after a puff, i.e., during passage of the refractory
states, bears little relation to the global Ca2þ concentra-
tion and thus the rates in the refractory states lref may
be assumed to be independent of Ca2þ. In conclusion
we simply assume:

lref ¼ constant;
lcls ¼ constant:

(8)

The resulting open probability of a single cluster is
given by:

popnðciÞ ¼ topn
ttotðciÞ ¼ topn

topn þ tclsðciÞ

¼
N þ 1

2lcls
N þ 1

2lcls
þ M � 1

lref
þ 1

lopnðciÞ
;

(9)

where topn ¼ PN
n0 ¼ 1n0=ðNlclsÞ and tcls ¼ ðM � 1Þ=

l þ 1=l are the mean residence times in the open
ref opn

and closed states, respectively, and ttot ¼ topn þ tcls is
the total mean period of the cyclic Markov chain. We note
that, tcls corresponds to the mean IPI and topn is the mean
puff duration. The resulting open probability and the mean
times are shown in Fig. 3 as functions of ci. We indicate
by the gray area the ci range that is inaccessible in our IF
framework, which does not capture the spike generation it-
self but only the signal- and noise-dependent subthreshold
dynamics. To make a connection to works that cover the
full range, we also show a modified open probability with
the full biphasic ci dependence obtained by multiplying
the opening rate in Eq. 7 by a factor ka=ðka þ cai Þ with
k ¼ Kinh=Kact. It becomes apparent, that there is no effect
of this inhibitory term for the subthreshold ci relevant in
our model.

Equation 2 for the IF component and Eq. 4 for the K clus-
ters of IP3R channels constitute the complete model that can
be simulated by the typical integration schemes for differen-
tial and master equations.
RESULTS

Statistics of a single IP3R cluster for fixed Ca2D:
Analytical results

Here, we calculate statistics of the puff strength A and IPI I.
Because the Ca2þ concentration usually changes very
slowly compared with the cluster activity, we assume that
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FIGURE 3 Open probability and dwell times of an IP3R cluster for fixed

cytosolic Ca2þ. (A) Shows the open probability popn of a single cluster over
the relative Ca2þ concentration ci for a weak ðs ¼ 0:1Þ, intermediate ðs ¼
1:0Þ, and strong ðs ¼ 10Þ stimulation. The threshold of Ca2þ spiking is

indicated by a gray line and separates sub-from suprathreshold concentra-

tions (gray area indicating ci values that are not modeled). Theoretical pre-

dictions of popn according to Eq. 9 (solid red lines) are confirmed by

simulation results (blue circles). (B) Shows the mean dwell times in the

open states that is independent of ci because the involved rate lcls is inde-

pendent of ci. (C) Shows the mean dwell time in the closed states ðtclsÞ that
depends on ci through lopn. Hence, the increase of popn with ci (see (A))

stems from a decrease of tcls. To make a relation to the existing literature,

we show the open probability (and mean dwell times) with a true biphasic ci
dependence of the opening rate lopn by a dotted line. To this end we

multiply the opening rate as given in Eq. 7 by an additional term ka=
ðka þ cai Þ that inhibits cluster activity at high concentrations ci > cT . The

parameter k ¼ Kinh= Kact represents the ratio between the dissociation con-

stants of activation and inhibition Ca2þ and was set to k ¼ 10. The addi-

tional term affects the cluster dynamic only at high Ca2þ concentrations

that are of no interest in an IF framework. Parameters are chosen according

to Fig. 2. To see this figure in color, go online.

An IF approach to Ca2+ signaling
ci is fixed. In this case and I are fully independent and can be
calculated separately.

We start with the puff strength A, i.e., the integrated Ca2þ

current during a single puff or, in biophysical terms, a quan-
tity proportional to the amount of Ca2þ released per puff. As
stated previously, the closing rate is independent of the num-
ber of open channels. As wewill see, a consequence of this is
that the mean puff strength hAi is a quadratic function of the
number of IP3Rs in a clusterN as demonstrated in Fig. 2A4. In
contrast to that, the CVof the puff strength, CVA, is largely
independent of N, see Fig. 2 A5. Both findings can be under-
stood within our analytical framework presented in the
following.

To calculate the mean hAi, variance VarðAÞ and CV2
A ¼

VarðAÞ=hAi2, it is helpful to first determine the conditional
means hAjn0i and variances VarðAjn0Þ, given a certain num-
ber of responding channels n0, and subsequently to use the
law of total mean and variance (58) to relate both to each
other:

hAi ¼ hhAjn0iAin0 ; (10a)

VarðAÞ ¼ �
VarðAjn0Þ

� þ VarðhAjn0i Þ : (10b)
A n0 A n0

Here, we have explicitly emphasized over which quantity
the average was formed but, in the following, will omit the
indices for the ease of notation. We can consider the condi-
tional puff strength ðAjn0Þ to be the sum of n0 random
numbers, namely the area under each ‘‘step’’ of the puff de-
noted by ðajnÞ:

ðAjn0Þ ¼
Xn0
n ¼ 1

ðajnÞ: (11)

For instance, for the first puff shown in Fig. 2 A1 the num-
ber of responding channels is n0 ¼ 4 and the area under the
puff Ai can be consider to be the sum of four independent
random numbers. For the nth step the area ðajnÞ ¼ ntn is
the product of the (stochastic) dwell time tn and the
(deterministic) number of open channels n. Because tn is
exponentially distributed, so is ðajnÞ with a rescaled rate
ln ¼ lcls=n.

Since we deal with independent random variables their
means and variances sum up and we find:

hAjn0i ¼
Xn0
n ¼ 1

hajni ¼
Xn0
n ¼ 1

n

lcls

¼ 1

2lcls
n0ðn0 þ 1Þ;

(12a)

Xn0 Xn0 n2

VarðAjn0Þ ¼

n ¼ 1

VarðajnÞ ¼
n ¼ 1 l

2
cls

¼ 1

6l2cls
n0ðn0 þ 1Þð2n0 þ 1Þ:

(12b)

The unconditional mean is readily obtained using Eqs.
10a and 12a as well as the fact that n0 is uniformly distrib-
uted over N:

hAi ¼ hhAjn0ii ¼ 1

N

XN
n0 ¼ 1

1

2lcls
n0ðn0 þ 1Þ

¼ 1

6lcls
ðN þ 1ÞðN þ 2Þ:

(13)

It can be seen that the average puff strength is indeed a
quadratic function of the number of channels N as pointed
out above. The total variance can be calculated according
to Eq. 10b using the conditional mean and variance in
Eqs. 12a and 12b:

hVarðAjn0Þi ¼ 1

12l2cls
ðN þ 1Þ2ðN þ 2Þ; (14a)
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1 �
2

�

VarðhAjn0iÞ ¼

60l2cls
ðN þ 1ÞðN þ 2Þ 3N þ 6N þ 1

� 1

36l2cls
ðN þ 1Þ2ðN þ 2Þ2:

(14b)

and adding the two together. This yields an expression that is
cumbersome at first glance. However, it turns out that the CV:
CV2
A ¼ hVarðAjn0Þi þ VarðhAjn0iÞ

hAi2

¼ 4N2 þ 18N þ 8

5N2 þ 15N þ 10
;

(15)

is a monotonically decreasing function for N˛N> 0, bound
between 1 and 0.8 as shown in Fig. 2 A5. The upper bound

corresponds to a single channel ðN ¼ 1Þ where the puff is
made of a single step with puff strength drawn from an expo-
nential distribution, accordingly CV2

A ¼ 1. In this case only
the first term on the r.h.s. of Eq. 10b contributes to the total
variance, because there is no variability in the number of re-
sponding channels. The lower bound is obtained for infinite
cluster sizes N/N: In this case the second term on the
r.h.s. of Eq. 10b determines the total variance and we obtain

lim
N/N

CV2
A ¼ lim

N/N

VarðhAjn0iÞ
hAi2 ¼ 4

5
: (16)

Hence, even for large clusters consisting of many IP3R
channels the variability of the number of responding chan-
nels ensures the strong variability of the puff strength.
Fig. 2 A5 shows the contributions of hVarðAjn0Þi=hAi2
(dotted line) and VarðhAjn0iÞ=hAi2 (dashed line) to the total
(squared) CV as a function of the cluster size.

We now turn to the IPI I, that is the time between two sub-
sequent puffs (excluding the duration of the puff itself), see
Fig. 2 B1. In contrast to the puff strength, the IPI statistics
depends heavily on the chosen Ca2þ concentration ci; below
we numerically illustrate our results for the resting and
threshold Ca2þ concentrations.

The mean and variance of the IPI are readily obtained if
the IPI is considered to be the sum of the exponentially
distributed dwell times:

I ¼
XM
m ¼ 1

t0m (17)

where t0m are independent random times spend in the states
u ¼ 0m. It follows that:
hIi ¼
XM
m ¼ 1

ht0mi ¼ M � 1

lref
þ 1

lopn
; (18a)

XM M � 1 1

VarðIÞ ¼

m ¼ 1

Varðt0mÞ ¼
l2ref

þ
l2opn

; (18b)
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CV2

I ¼ VarðIÞ hIi2 ¼ 1 þ ðM � 1Þ lopn lref�
1 þ ðM � 1Þlopn

�
lref
�2

¼ 1 � ðM � 1Þ 2l ref

�
l opn þ M � 2�

l ref

�
l opn þ M � 1

�2 :
(18c)
We first discuss the obvious dependence on the number of
closed states M. Trivially, the mean IPI increases with M
because the system has to traverse more states. In contrast,
the variability decreases monotonically with the number
of closed states, starting with a CVI ¼ 1 forM ¼ 1 (corre-
sponding to a Poisson process) and vanishes for large
as CVIf1=

ffiffiffiffiffi
M

p
.

Another interesting question is how the statistics of the
IPI depends on the cluster size N which affects the mo-
ments only through the opening rate lopnfN, see Eq. 7.
The inverse mean hIi� 1 is shown in Fig. 2 B4 and
displays a close to linear shape when the Ca2þ concentra-
tion is at rest ci ¼ c0 (solid line in Fig. 2 B4). This is
reasonable given that in the considered parameter regime
in Eq. 18a the first term (independent of N) is much
smaller than the second term (proportional to 1=N), hence
the inverse mean IPI is approximately proportional to N.
For higher Ca2þ concentrations, for instance, at the
threshold ci ¼ cT , the rate lopn is larger and the
dependence of hIi on N is more nonlinear (dashed line
in Fig. 2 B4).

The irregularity of the IPI is quantified by the CVI and
also depends on the cluster size through lopn. Specifically,
for small clusters the IPI is mainly determined by the
dwell time in the state u ¼ 01 and, consequently, almost
exponentially distributed with a CVI close to one. For
larger clusters, however, the state u ¼ 01 is left quickly,
and the IPI is primarily determined by the concatenation
of the refractory states which yields more regular inter-
vals. However, at the resting Ca2þ concentration, there
is little variation of the CVI over a moderate range of clus-
ter sizes N because the mean dwell time t01 ¼ 1=lopn still
dominates the IPI for all N (solid line in Fig. 2 B5). A ten-
dency toward lower values of the CVI can indeed be
observed for higher Ca2þ concentrations close to the
threshold of Ca2þ spiking (dashed line in Fig. 2 B5). For
much larger opening rates lopn, encountered at large clus-
ter sizes, the CVI saturates at CVI ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � 1

p
for M> 1.

The full IPI probability density function pIPIðtÞ is
obtained as a convolution of M � 1 exponential
densities with a rate lref and one exponential density
with rate lopn; this is so because the IPI is the sum of
the statistically independent dwell times in the closed
states. The result of the convolution integral can be ex-
pressed by the lower incomplete gamma function gða;
tÞ ¼ R t

0
dt0 t0a� 1e� t0 :
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pIPIðtÞ ¼ lopnp01ðtÞ

¼ lopn

	
lref

lref � lopn


M� 1

� g
�
M � 1;

�
lref � lopn

�
t
�

ðM � 2Þ! e� lopnt;

(19)

a simple result confirmed for two different Ca2þ concentra-
tions in Fig. 2, B2 and B3.

Most importantly, for the Langevin approximation
derived below, we can calculate the mean mx and noise in-
tensity Dx of a single cluster xðtÞ by means of algebraic
equations. One ingredient needed in following is the station-
ary probability vector of the states, determined by the sta-
tionary master equation and the normalization condition:

0 ¼ W$p0; and
X
i˛U

p0ðiÞ ¼ 1; (20)

where 0 is the zero vector. The solution of Eq. 20 reads for
our specific model:
p0ðiÞ ¼

8>>>>>>>><>>>>>>>>:

N þ 1 � i

N

1

ttotlcls
; if i˛ ½N;.; 1�

1

ttotlref
; if i˛ ½0M;.; 02�

1

ttotlopn
; if i ¼ 01

(21)

This allows to calculate the mean of the puff current:

mx ¼
X
i˛U

xðiÞ $ p0ðiÞ

¼ 1

6lcls

ðN þ 1ÞðN þ 2Þ
1

lopn
þ M � 1

lref
þ N þ 1

2lcls

¼ hAi
ttot

:

(22)

While the determination of the stationary probabilities
and the mean follows standard procedures (59,60), the
calculation of the noise intensity for the process xðtÞ is
more advanced.

First of all, the noise intensity is defined by

Dx ¼
Z N

0

dt CxxðtÞ: (23)

From this equation it is not so obvious to see that the noise
intensity is determined by an algebraic equation. After
all the correlation function, CxxðtÞ ¼ hxðtÞxðt þ tÞi �
hxi2, requires the time-dependent solution pðtÞ of the master
equation. However, we can use the fact that we only need
the integral of the correlation function to avoid solving the
time-dependent problem; a similar trick has been applied
to calculate the correlation time (61) and the diffusion coef-
ficient (62,63) of systems described by a FPE. To that end
we express the correlation function in terms of transition
and stationary probabilities:
Dx ¼
Z N

0

dt CxxðtÞ

¼
Z N

0

dt hxðt þ tÞxðtÞi � hxi2

¼
Z N

0

dt
X
i;j

½xðiÞxðjÞpði; t þ tjj; tÞp0ðjÞ

� xðiÞxðjÞp0ðiÞp0ðjÞ�
¼
X
i;j

xðiÞxðjÞ
Z N

0

dt ½pði; t þ tjj; tÞ � p0ðiÞ�p0ðjÞ

¼
X
i;j

xðiÞxðjÞf ði; jÞp0ðjÞ:

(24)

Note that the sums run again over all possible states of a
cluster. Formally, we still have to find the time-dependent
transition probabilities pði; t0jj; tÞ, however, it turns out that
the auxiliary function f ði; jÞ, that contains integrals of prob-
ability functions, is much simpler to calculate. In particular,
the functions f ði; jÞ can be determined as the solution of
an algebraic instead of a differential equation which sim-
plifies the evaluation considerably. To make this clear
consider the lth row of the master equation Eq. 4 with the
additional condition that the state at time t is known, i.e.,
pðl; tÞ ¼ dl;j:

_pðl; t þ tjj; tÞ ¼
X
i

wl;ipði; t þ tjj; tÞ
ZN
0

dt _pðl; t þ tjj; tÞ ¼
ZN
0

dt
X
i

wl;i½pði; t þ tjj; tÞ � p0ðiÞ�

p0ðlÞ � dl;j ¼
X
i

wl;if ði; jÞ

(25)

to get from the first to the second line we have subtracted the
stationary probability 0 ¼ _p ðlÞ ¼ P

wl;ip0ðiÞ on the r.h.s.
0 i

and integrated both sides. This yields a set of algebraic
equations:

p0 � ej ¼ W$f j (26)

with f j ¼ ðf ð1; jÞ; f ð2; jÞ;/ÞT and ej is the unit vector in
the jth direction. As in the case of the stationary probability,

Eq. 26 alone does not determine f j unambiguously but re-
quires an additional condition that can be found by the
following consideration:

X
i

f ði; jÞ ¼
Z N

0

dt
X
i

½pði; t þ tjj; tÞ � p0ðiÞ
�

¼
Z N

0

dt ½1 � 1� ¼ 0:

(27)

In conclusion, we can determine the auxiliary functions
f ði; jÞ using Eq. 26 and the additional condition Eq. 27.
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Together with the stationary probabilities these determine
the noise intensity by:

Dx ¼
X
i

X
j

xðiÞxðjÞf ði; jÞp0ðjÞ: (28)

Reduction of the two-component model to a
stochastic IF model: Diffusion approximation of
the puff current

An essential property of Ca2þ signaling is its hierarchical
organization into blips, puffs, and spikes. In the previous
section, we looked at puff statistics determined by the ki-
netic model of an IP3R cluster. These puffs give rise to a
stochastic Ca2þ current, the puff current, that feeds into
the dynamics of the cytosolic Ca2þ concentration and in-
fluences associated statistics, for instance, statistics of the
ISIs Ti ¼ tiþ 1 � ti that is the time between two subse-
quent Ca2þ spikes. Calculating ISI statistics from Eq. 2
is difficult because the noise originating from the puff
current is a complicated stochastic process, i.e., it does
not correspond in general to the simple white Gaussian
noise that permits an analytical treatment via the FPE.
However, the timescale separation between the puff cur-
rent and ci leak current allows for a diffusion approxima-
tion in which the stochastic puff current jpuff is
substituted by a deterministic mean and Gaussian white
noise. The resulting Langevin equation can be efficiently
numerically integrated and key statistics of ci and the ISI
can be calculated analytically by means of the associated
FPE. Discrete-time Markov chains have already been
approximated by Langevin equations in the past. To
this end, it is usually assumed that the fraction of chan-
nels (or clusters in our case) in each state of the Markov
chain can be considered as a continuous random
variable (see, for instance, (64)). The disadvantage of
this method is that the number of channels/clusters
must be large compared with the number of states—a
condition that cannot be tested experimentally. In
contrast, our method relies solely on the observed time-
scale separation.

To derive the approximate Langevin equation, we first
consider Eq. 2 integrated over a short time bin (time
window):

ciðt þ DtÞ ¼ ciðtÞ �
Z tþDt

t

dt0ðciðt0Þ � c0Þ=t

þ
Z tþDt

t

dt0 pDcer
XK
k ¼ 1

xkðt0Þ
(29)

and define: Z

Yðt;DtÞ ¼ 1

Dt

tþDt

t

dt0
XK
k ¼ 1

xkðt0Þ: (30)
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Here, Yðt;DtÞ can be regarded as a box-filtered version or
moving average of the cluster activity

P
kxkðtÞ and we have

explicitly highlighted its parametric dependence on the inte-
gration window Dt. As a result of the filtering, Yðt;DtÞ is
continuous random process with piecewise continuous de-
rivative. The goal is to find a time bin Dt so that the
following two conditions are met. First, Dt must be chosen
large enough for

P
kxk to experience many transitions. This

will ensure that, according to the central limit theorem,
Yðt;DtÞ is Gaussian distributed with mean mY and variance
s2Y (calculate in the appendix).

Secondly, Dt has to be chosen small enough so that ciðtÞ
does not change considerably over this time bin. If these two
constraint can be met simultaneously, Eq. 29 can be approx-
imated by:

ciðt þ DtÞz ciðtÞ � ðciðtÞ � c0ÞDt=t þ pDcerYðt;DtÞDt;
¼ ciðtÞ � ðciðtÞ � c0ÞDt=t þ pDcermYDt

þ pDcersYðDtÞnðtÞDt;
(31)

with the zero mean and unit variance Gaussian random
numbers nðtÞ.
Note that the mean mYðciÞ and more importantly the vari-
ance s2YðciÞ are ci dependent due to the ci dependence of the
opening rate. Eq. 31 has strong similarities to an Euler inte-
gration scheme of a Langevin equation. An important differ-
ence is that the Gaussian random numbers nðtÞ in Eq. 31 are
not uncorrelated, corresponding to a nonvanishing correla-
tion time tY of the process Yðt;DtÞ; the correlation time is
shown in Fig. 4 D. If, however, this correlation time is short
compared with the timescale of the ci leak current, we may
assume the Gaussian random numbers to be uncorrelated. In
the same limit one can show (see appendix) that the standard
deviation sYðDtÞf1=

ffiffiffiffiffi
Dt

p
, resulting in the correct scaling of

the noise term in the discretized Langevin equation (65) and
we obtain for the puff current

jpuff zmpuffðciÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DpuffðciÞ

q
xðtÞ; (32)

so that Eq. 31 approximately corresponds toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

_ci ¼ � ðci � c0Þ = t þ mpuffðciÞ þ 2DpuffðciÞxðtÞ;

if ciðtÞ ¼ cT / ti ¼ t and ciðtÞ ¼ cR: (33)

Here, mpuff ¼ pDcermY is the mean puff current, xðtÞ is
a zero mean Gaussian white noise with hxðtÞxðt0Þi ¼ dðt �
t0Þ, and Dpuff ¼ ðpDcerÞ2s2YðDtÞDt=2 is the noise intensity.

To summarize, we have first approximated the discontinuous
cluster activity

P
kxkðtÞ by a coarse-grained continuous

random process YðtÞ that is assumed to be Gaussian distrib-
uted. In a second step this random process is approximated
by a Gaussian white noise, hence assumed to be uncorrelated
on the relevant timescale of the ci dynamics. The resulting
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FIGURE 4 Diffusion approximation of the puff current. For the puff current to be well approximated by a Gaussian white noise, there has to be a time bin

Dt, so that Yðt;DtÞ is 1) Gaussian distributed and 2) shortly correlated compared with every other timescale present in the system. (A and B) Show exemplary

time series of the random process Yðt;DtÞ together with the probability distribution PðYÞ (histogram) for two different values of the Ca2þ concentration ci
(ci ¼ cR in (A) and ci ¼ cT in (B). We also show the effect of different time bins Dt over which the cluster activity

P
xk was averaged according to Eq. 30:

Dt ¼ 0:1 (A1, B1) and Dt ¼ (A2, B2). The probability distribution PðYÞ resembles more strongly the desired Gaussian distribution (solid red line) when Dt

and ci are larger because then a larger number of transitions in the considered time bin occur. In (C), the deviation of PðYÞ from a Gaussian distribution is

quantified by the skewness gY ¼ hðY � hYiÞ3i=hðY � hYiÞ2i3=2 of PðYÞ, which decreases with increasing Dt. (D) Illustrates the timescale separation be-

tween the mean ISI hTi, the timescale of the ci leak current t, and the correlation time tY of the random process YðtÞ. The latter approaches tY ¼ Dt for large
values of Dt (dotted line). Parameters are chosen according to Fig. 2 and K ¼ 10. To see this figure in color, go online.
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stochastic differential equation with a ci-dependent noise in-
tensity is an equation with multiplicative noise. Such an equa-
tion requires an interpretation (66) the most popular of which
are the ones by Ito, by Stratonovich, and byKlimontovich and
H€anggi (67), and it is not immediately clear which one of
them, if any, should be used for our model. However, it is
known that according to Wong and Zakai (68), a Langevin
equation should be interpreted in the Stratonovich sense if
the multiplicative noise is an approximation of a continuous
random process that has a piecewise continuous derivative,
as it is the case for YðtÞ. The corresponding FPE for the Stra-
tonovich-interpreted Eq. 33 is given by:

vtpðci; tÞ ¼ vci

h
ðci � c0Þ

�
t � mpuffðciÞ � D0

puffðciÞ
�
2

þ vciDpuffðciÞ
�
pðci; tÞ þ r0dðci � cRÞ:

(34)
where D0
puffðciÞ=2 is the Stratonovich drift and the prime de-

notes the derivative with respect to c . The unusual source
i

term r0dðci � cRÞ accounts for the influx of probability due
to the reset of the trajectories that reach the threshold (for
the analytical treatment, see the literature from computational
neuroscience (32,69–71)). Eq. 34 is completed by the natural
boundary condition limci/�Npðci; tÞ ¼ 0, the absorbing
boundary condition at the threshold pðcT ; tÞ ¼ 0, and the

normalization condition
R
dci pðci; tÞ ¼ 1. Even though
we opted above for the Stratonovich interpretation, it is
nevertheless interesting to explore the consequence of the
interpretation for the ISI statistics which is done below (see
Fig. 6 and surrounding discussion). In brief, the choice of
the interpretation has only a minor effect on the ISI statistics
in the biophysically relevant parameter range.

Regarding the spike train produced by the IF model Eq. 33,
we note that irrespective of the specific form of the Ca2þ-
dependent drift and noise terms, the model always generates
a renewal process (72), i.e., a point process with statistically
independent intervals between adjacent spikes. This is so
because the reset of the Ca2þ variable ci to a fixed value cR
at the end of one interval erases any memory about this inter-
val and the uncorrelated noise process xðtÞ, by definition,
cannot carry any memory from one ISI to the next either.
Statistics of the subthreshold cytosolic Ca2D and
the spike train

In the previous section we have introduced a one-dimen-
sional Langevin approximation of the two-component
model and stated the associated FPE. In particular the latter
equation permits the analytical calculation of statistics of in-
terest of the subtreshold Ca2þ concentration and of the ISIs
(see appendix). Here, we compare these analytical results to
numerical simulations of the two-component model Eq. 2.
We will also give an overview how the spike statistics
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depends on the system parameters, specifically the timescale
of the leak current t, the permeability-like parameter p, and
the number of clusters K, i.e., the parameters that are pre-
sumably most prone to cell-to-cell variability.

By means of the Langevin approximation of the two-
component model two firing regimes can be distinguished.
In the mean-driven regime the model crosses the spiking
threshold even in the absence of fluctuations and spiking
is typically more regular. In the excitable (fluctuation-
driven) regime, on the contrary, the threshold is crossed
only due to noise and spiking is more variable. The two re-
gimes can be distinguished by the deterministic drift term
in the Langevin equation, f ðciÞ ¼ � ðci � c0Þ=t þ
mpuffðciÞ, which in the mean-driven regime is positive for
all subthreshold Ca2þ concentration, ci <cT , but has a
zero for some c�i < cT in the excitable case. The regimes
are separated by the condition that the zero of f is equal
to the threshold, f ðcTÞ ¼ 0, which implies ðcT � c0Þ=
t ¼ mpuffðcTÞ, The fact that the mean puff current depends
linearly on the permeability-like parameter mpuffðcTÞ ¼
pDcerKmx (with mx defined in Eq. 22) leads to a simple con-
dition for the critical values of t and p:

tp ¼ cT � c0
DcerKmx

: (35)

The behavior of the two-component model in the mean-
driven and excitable regime is shown in Fig. 5, A and B,
respectively. In Fig. 5, A1 and B1we show typical time series
of the Ca2þ concentration and puff current and additionally
indicate the corresponding ISI sequences. It can be easily
seen that spiking is more regular in the mean-driven regime
than in the excitable regime.

In Fig. 5, A2 and B2 the corresponding stationary probabil-
ity densities p0ðciÞ, obtained from stochastic simulation of
the two-component model (histograms), are compared with
the theoretical predictions (red line) according to Eq. 61
and demonstrate excellent agreement. In the mean-driven
regime the probability is close to uniform (Fig. 5 A2) due to
the little variation shown by the drift (cf. inset Fig. 5 A2). In
the excitable regime the deterministic drift has a zero, see
inset Fig. 5 B2. The system spends more time around the
zero, which is reflected in a pronounced maximum of the
probability density (Fig. 5 B2). The maximum is not exactly
at the zero but at a somewhat smaller concentration due to the
interplay between the multiplicative noise and the nonlinear
drift term.

In Fig. 5, A3 and B3 we show the resulting ISI
density obtained from simulations of the two-component
model by histograms. In the mean-driven regime the distri-
bution of the ISIs is strongly peaked (Fig. 5 A3): the
sequence of ISIs is rather regular with a moderate CV of
CVT ¼ ffiffiffiffiffiffiffiffiffiffiffiffihDT2ip

=hTi ¼ 0:2. The probability density of
the ISI is well described by both an inverse Gaussian and
gamma distribution:
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pIGðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hTi
2pCV2

TT
3

s
exp

 
� ðT � hTiÞ2

2hTiCV2
TT

!
; (36)
	 
1=CV2
T

pGammaðTÞ ¼ 1

G
�
1
�
CV2

T

�
T

T

hTiCV2
T

exp

	
� T

hTiCV2
T


 (37)
where GðaÞ ¼
0

dt0t0a� 1e� t is the gamma function. This
densities are fully determined by the mean and CV of the
RN 0

ISI. We use two versions of the formulas: one where we
determine hTi and CVT from stochastic simulations of the
two-component model (dashed line) and another one where
we calculate hTi and CVT analytically using Eq. 62 and
Eq. 68 from the Langevin approximation. It turns out that
in the mean-driven regime both densities and versions agree
very well, the latter indicates that the Langevin equation
provides a good approximation.

In the excitable case, the ISI sequence is much more var-
iable with a CVT ¼ 0:8 and its probability density
(Fig. 5 B3) displays a pronounced skewness. Surprisingly,
even in this case the inverse Gaussian Eq. 36 provides a
good description when we use the mean and CV obtained
from simulation of the two-component model, whereas the
mean and CV calculated from Eq. 62 and Eq. 68 leads to
a somewhat more peaked distribution. Here, the Langevin
approximation does not work so well anymore because in
the excitable regime the timescales of the leak and the
puff currents are no longer strongly separated.

Going beyond the two specific sets of parameters in-
spected so far, we show in Fig. 6, A and B the mean and
CV of the ISIs obtained from stochastic simulations of the
two-component model at values of the timescale t and
permeability-like parameter p varied over two orders of
magnitude. Plausibly, the mean ISI (Fig. 6 A) drops system-
atically with growing p (which increases the mean and noise
intensity of the puff current) and growing t (which de-
creases the leak current). We also show the boundary be-
tween excitable and mean-driven regimes according to
Eq. 35 (dashed red line). Because we consider only noise
originating from the IP3R clusters as the sole source of fluc-
tuations, there is also a large chunk of the parameter space at
small values of p and t where no spiking is observed (white
area) and the excitable regime attains only a small portion
below the bifurcation line. The CV (Fig. 6 B) displays a
more complicated dependence on the parameters. It is usu-
ally high, close to one, in the excitable regime (73) and
drops drastically as soon as we cross the bifurcation line
by increasing p or t. In the limit of large t, i.e., when the
leak current becomes negligible, the CV saturates. In
contrast, for large p the CV keeps increasing. This is pre-
sumably due to the increasing noise intensity combined
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FIGURE 5 Two-component model in the mean-driven and excitable regime. (A and B) The model is in the mean-driven and excitable regime, respectively.

(A1 and B1) Show the subthreshold dynamics of ci and the puff current jpuff . Already with the naked eye it can be seen that the corresponding ISI sequence

marked by black arrows is more regular in (A1) than in (B2). (A2 and B2) We compare the corresponding subthreshold probability densities p0ðciÞ obtained
from stochastic simulations of the two-component model (histograms) to the theoretical prediction according to Eq. 61 (red lines). The insets in (A2) and (B2)

shows the drift f ðciÞ that is always positive in the mean-driven regime (A2) but exhibits a zero at c
�
i in the excitable regime (B2). (A3 and B3) The ISI densities

determined from numerical simulations (histograms) are compared with inverse Gaussian and gamma distributions (red lines) as indicated by the red text.

Both distributions are uniquely determined by the mean hTi and CV CVT that have been taken either directly from stochastic simulations of the two-compo-

nent model (dashed red lines) or calculated according to Eq. 62 and Eq. 69 (dotted red lines). In the mean-driven regime all four variants are in excellent

agreement with the ISI density obtained from the two-component model. In the excitable regime the inverse Gaussian provides a better estimate than

the gamma distribution to the ISI density obtained from stochastic simulations of the two-component model. In addition, mean and CV obtained from

the two-component model and the Langevin approximation begin to differ so that the distributions (dashed and dotted red lines) disagree. Parameters:

K ¼ 10, (A): t ¼ 5, p ¼ 1:5� 10� 2, (B): t ¼ 1, p ¼ 6� 10� 2. To see this figure in color, go online.

An IF approach to Ca2+ signaling
with the fact that the leak current becomes less important for
p/N.

We can repeat the same simulations using the Langevin
Eq. 33 to obtain the mean and CV, and we can do this not
only for the Stratonovich interpretation of this equation,
on which our analytical calculations are based, but also
for the other two popular interpretations. In Fig. 6, C1–C3

and D1–D3 we show the relative differences between
mean and CV obtained from stochastic simulation of the
two-component model and the Langevin equation in the
three interpretations as discussed around Eq. 34. We find
that in the biophysically relevant parameter range the three
interpretations yield similar results and thus the interpreta-
tion of the stochastic differential equation is not a vital issue
for our model.

Returning to the two specific sets of parameters, in Fig. 7
we show essential ISI statistics of the model. In Fig. 7, A1

and B1 we plot the firing rate r0 ¼ 1=hTi as a function of
the stimulus amplitude, the relative IP3 concentration s
(the arrow indicates the value of s that was used so far
and is used in the remaining panels of this figure). Each cir-
cle corresponds to a stochastic simulation of the two-
component model and is color-coded according to the
corresponding CVT obtained from the same simulation.
The theoretical prediction of the firing rate according to
Eq. 62 shows excellent agreement with the simulation re-
sults in the mean-driven regime (Fig. 7 A1) and displays
small deviations in the excitable regime (Fig. 7 B1). We
note the similarity of these rate-versus-stimulus curves to
the f -I curves (frequency versus input current) used in
computational neuroscience (see, e.g., (26,74)).

Next we consider the spike count, the integral of the spike
train zðtÞ ¼ P

i

dðt � tiÞ:

NðtÞ ¼
Z t

0

dt0 zðt0Þ; (38)

and plot in Fig. 7, A2 and B2 an important statistical measure
characterizing count variability, namely the Fano factor:
FðtÞ ¼
�
DNðtÞ2�
hNðtÞi : (39)

This measure compares the variance to the mean of the
spike count as a function of the counting window t. For
time windows t much smaller than the mean ISI, finding
a spike in that window is essentially a Poisson process
so that limt/0FðtÞ ¼ 1 (75). At intermediate times, the
Fano factor decreases linearly (not very apparent due to
the used logarithmic scale) up to a characteristic time
which is roughly the mean ISI. For large values of t and
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FIGURE 6 Meta statistics of the two-component model and stochastic interpretation of the Langevin equation. (A and B) Show the mean and CVof the ISI

obtained from simulations of the two-component model for a large range of the leak current’s time constant t and permeability-like parameter p. In both

panels the red dashed line shows the bifurcation according to Eq. 35. Above the bifurcation line, in the mean-driven regime, the ISIs are typically regular

with small CVs and spiking is observed for all parameters. Below the bifurcation line the ISIs are highly irregular with large CVand spiking is observed only

for a small range of parameters. In (C1–C3) and (D1–D3) we compare the mean and CVobtained from simulations of the Langevin approximations (h~Ti andfCVT) in the three most common interpretations to the same statistics obtained from the simulations of the two-component model. Relative deviations are

color coded so that blue corresponds to an underestimation and red corresponds to an overestimation of the shown statistics. In any case the relative deviations

are small so that the interpretation of the Langevin equation with multiplicative noise is not a major issue here. Parameters: K ¼ 10. To see this figure in

color, go online.

Ramlow et al.
assuming that the spike train is renewal, as we have
argued previously, the Fano factor saturates at the squared

CV limt/NFðtÞ ¼ CV2
T (72), which is confirmed in the

figure as well.
Finally, we turn to the power spectrum of the spike train

zðtÞ, defined by:

Sðf Þ ¼ lim
T/N

�j~zðf Þj2�
T

; (40a)

Z T
~zðf Þ ¼
0

dt zðtÞei2pft; (40b)

where is the Fourier transform. In the renewal case the spike
train is fully determined by the ISI density and the power

spectrum can be related to its Fourier transform ~pISIðf Þ as
follows (76):
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Srenewðf Þ ¼ 1

hTi
1 � j~pISIðf Þj2
j1 � ~pISIðf Þj2

; (41a)

Z N
~pISIðf Þ ¼
0

dt pISIðtÞei2pft: (41b)

The Fourier transformed of the inverse Gaussian distribu-
tion Eq. 36 is given by:

~pIGðf Þ ¼ exp

0@1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4pif hTiCV2

T

q
CV2

T

1A (42)

In Fig. 7, A3 and B3 we show the power spectrum directly
calculate from the spike train of the two-component model
according to Eq. 40 (blue lines) and compare it to the power
spectrum of an inverse Gaussian ISI density according
to Eq. 41 and Eq. 42. The more regular spiking in the
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FIGURE 7 Spike-train statistics in the mean-driven and excitable regime. (A and B) The model is in the mean-driven and excitable regime, respectively.

(A1 and B1) Show the firing rate r0 ¼ 1=hTi obtained from simulations of the two-component model (circles) and theoretical prediction according to

Eq. 62 (red line) both as a function of the relative IP3 concentration s. The dots are colored coded according to the CVT . Arrows indicate the value of

s that has been used in the previous figures and is used for the remaining plots. (A2 and B2) Show the Fano factor that compares the variance to the

mean of the spike count. Horizontal dotted lines indicate the long-time limit Fðt/NÞ ¼ CV2
T that is approached if the spike train is renewal. Vertical

lines indicate the mean ISI hTi that defines a characteristic time up to which the Fano factor decreases almost linearly (difficult to see in the lin-log pre-

sentation of the plot). (A3 and B3) Depict the power spectrum directly computed from the simulated spike train (blue lines) and from Eq. 41 using an

inverse Gaussian distribution according to Eq. 42 (dashed red line). Horizontal lines indicate the low frequency limit of a renewal spike train

Sðf ¼ 0Þ ¼ r0CV
2
T and high frequency limit Sðf /NÞ ¼ r0. Parameters: K ¼ 10, (A): t ¼ 5, p ¼ 1:5� 10� 2, (B): t ¼ 1, p ¼ 6� 10� 2. To

see this figure in color, go online.

An IF approach to Ca2+ signaling
mean-driven regime becomes apparent by a pronounced
peak of the power spectrum at the firing rate f ¼ r0. In
the excitable case, the spectrum is rather flat close to the po-
wer spectrum of a Poisson process (which would be
perfectly flat). In both cases the spike-train power spectrum,
as known from point process theory, saturates at the firing
rate for f/N and attains the value r0CV

2
T for f/ 0; these

limits are also confirmed in the plot.
Spike train statistics of stimulated HEK cells

Here, we compare ISI statistics measured from HEK cells
under constant stimulation, as described in (10,14), to
those of an appropriately fitted two-component model.
Regarding the experimental data, because long traces of
Ca2þ signals are notoriously hard to measure, it is difficult
to achieve ISI sample sizes that suffice to meaningfully
determine the ISI density, Fano factor and power spec-
trum. To overcome this problem we pursue a similar strat-
egy as suggested by (77) and rescale the time for each
spike train. Specifically, we normalize and pool the corre-
sponding ISI sequences, similar to the one shown in Fig. 1
A, from 29 different HEK cells as follows. In a first step
we select from the available data only the ISI sequences
that become stationary according to visual inspection
(29/36 sequences). In a second step we perform for the
selected sequences a fit of the ISIs Ti by an exponential
function, TN � ðTN � T0Þexpð� i =ntrÞ, and truncate
the sequences by the first 1:5ntr ISIs (rounded up,
yielding on average 6 transient out of 20 total intervals).
In a third step we normalize the sequences by
dividing each interval by the sequence’s mean. Finally,
we concatenate the normalized sequences to obtain a
single long sequence of ISIs that does not distinguish
between different cells anymore and from which
we calculate the statistics of interest. It should be
clear that both the mean of this ISI sequence and the
firing rate of the corresponding spike train are equal
to one.

To find the parameter set for the two-component model
we require that the model’s ISI sequence should have the
same mean value hTexpiz160 s and CVT;expz0:15 as the
experimental data before and after rescaling, respectively.
As our model has many parameters, we fix cluster param-
eters according to the table in Fig. 2 and use K ¼ 10. The
remaining parameters t and p are given by the intersection
of the contour lines for hTi ¼ hTexpi from Fig. 5 A and for
CVT ¼ CVT;exp from Fig. 5 B. As illustrated in Fig. 8 A
(where we also show again the color-coded CV for com-
parison), there seems to be just one such intersection,
hence t and p are uniquely determined by the given
mean and CV (for a related problem, see (78)). Interest-
ingly, the intersection point is very close to the bifurcation
line but within the mean-driven regime. Simulated spike
trains of the two-component model at the found parameter
set (t ¼ 1:44� 101, p ¼ 4:77� 10� 3) are then rescaled
by the mean ISI to make them comparable to the experi-
mental data.
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FIGURE 8 Comparison of spike-train statistics

from stimulated HEK cells and two-component

model. Spike trains from 29 stimulated HEK cells

have been rescaled and concatenated as described

in the main text to obtain a long sequence with an

average ISI hTexpiz160 s (before rescaling) and

CV CVT;expz0:15 (after rescaling). (A) Shows the

contour lines for hTi ¼ hTexpi (black line) and

CVT ¼ CVT;exp (red line). The intersection of these

lines lies in the mean-driven regime close to the

bifurcation and uniquely defines the model parame-

ters (t ¼ 1:44� 101, p ¼ 4:77� 10� 3) used to

generate a simulated spike train that reproduces the

experimental mean and CV. (B) Compares the re-

scaled ISI densities obtained from stimulated HEK

cells and from the two-component model. (C) Dis-

plays the corresponding Fano factors FðtÞ of the

associated spike counts. Both factors saturate at

CV2
T for t/N (dotted horizontal line) suggesting

that not only the simulated but also the experimental

spike train is renewal. (D) We compare the power

spectra Sðf Þ of the two sequences. The low fre-

quency limit Sðf ¼ 0Þ ¼ r0CV
2
T again suggesting

that the experimental spike train is renewal. To see

this figure in color, go online.

Ramlow et al.
In Fig. 8 B the ISI distribution of the rescaled and
concatenated spike train obtained from stimulated HEK
cells (red histogram) is compared with the rescaled ISI dis-
tribution obtained from stochastic simulations of the two-
component model (black line). Given the limited amount
and temporal accuracy of the experimental data, the two
probability densities agree well with each other. The
Fano factors for the experimental (red line) and simulated
(black line) spike trains are show in Fig. 8 C and display
excellent agreement. In particular, the Fano factor calcu-
lated from the experimental data is more similar to the
Fano factor of our model in the mean-driven than in the
excitable regime (cf. Fig. 7). Finally, in Fig. 8 D we present
the power spectrum of the experimental spike train (red
line) and compare it to the spectrum of the model (black
line). Again, the two spectra show excellent agreement in
terms of the low frequency limit, height of the peak at
f ¼ 1=hTi as well as the high-frequency limit. The latter
is not surprising because for f/N the power spectrum al-
ways saturates at the firing rate limf/NSðf Þ ¼ r0. The
low-frequency limit of the power spectrum is informative
because it is related to the firing rate and CV in a simple

manner Sðf ¼ 0Þ ¼ r0CV
2
T if the spike train is renewal.

The fact that the power spectrum indeed saturates at this
limit thus indicates that the spike train is renewal and
that the ISIs are uncorrelated. This is somewhat unexpected
because the experimental sequences of ISIs often show
long transients corresponding to a strong cumulative refrac-
toriness that builds up over many intervals as seen in Fig. 1
A. Naively, one would expect that such transients go along
with a slow process that leads to correlations between inter-
vals, that in turn affect the low-frequency limit of the po-
wer spectrum as follows (79):
728 Biophysical Journal 122, 713–736, February 21, 2023
Snonrenewðf ¼ 0Þ ¼ r0CV
2
T

 
1 þ 2

X
k

rk

!
: (43)

Here, rk ¼ CovarðTi; Tiþ kÞ =VarðTiÞ are the serial corre-
lation coefficients that quantify correlations between ISIs
lagged by an integer value k. Indeed, it was shown previ-
ously by (36) that stimulated HEK cells exhibit no statisti-
cally significant interval correlations. We address and
resolve this apparent contradiction of a strong cumulative
refractory period without significant interval correlations
in a follow-up paper, where we extend the renewal model
discussed here by an equation describing the depletion
and slow refilling of the ER.
Dependence of the statistics on cluster number
and cluster dynamics

So far, we have fixed the parameters of the clusters, i.e., their
number, the rates etc. Here, we consider the effects of the
mean and variance of the IPI and the number of clusters K
on the mean and CV of the ISI.

The mean and variability of the IPIs in the cluster model
are largely controlled by lref, the transition rate between the
refractory states. Increasing this parameter makes the IPIs
shorter on average because the dwell time in the refractory
states is shortened. The IPI for larger lref will also be less
regular because it is then dominated by the single exponen-
tially distributed transition that corresponds to the opening
of the cluster. What is the effect of an increase of lref on
the mean and CV of the ISI? In Fig. 9, A and B the mean
ISI and CV both display a systematic decrease with the re-
fractory rate. Hence, paradoxically, a more regular IPI leads
to a more irregular ISI.
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FIGURE 9 Spike-train statistics as functions of the refractory rate. (A and

B) Show hTi and CVT obtained from simulations of the two-component

(circle) and Langevin model (lines), as functions of the refractory rate

(the value lref ¼ 20 s� 1 used so far is indicated by a cross). The refractory

rate can be used to transition between the mean-driven and excitable regime

(gray area). The mean ISI shows a systematic decrease as lref increases

while CVT appears to saturate if the refractory rate is chosen sufficiently

far away from the excitable regime. (C and D) Show the mean mpuff and

noise intensity Dpuff of the puff current for three different values of the re-

fractory rate. Note that both increase by a similar factor as lref is increased

and saturate for lref/N (black line). Hence, the decrease of the mean ISI

as lref increases stems from an increase of the mean and noise intensity of

the puff current. Likewise the transition to the excitable regime stems from

a decrease of the mean puff current. The saturation of the CV in (B) is

reasonable if the model operates far from the bifurcation in the mean-driven

regime and both the drift and noise intensity are scaled by similar factor as

we argue in the main text. Parameters: t ¼ 5, p ¼ 1:5� 10� 2, K ¼ 10.

To see this figure in color, go online.
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FIGURE 10 Spike-train statistics as functions of the number of clusters. In

(A) wevary the number of clustersK and show hTi (A1) andCVT (A2) obtained

from simulations of the two-component (circle) and Langevin model (lines).

The valueK ¼ 10 used so far is indicated by a cross. Themean ISI decreases

as the number of clusters increases while the CV saturates. Similar as for the

CVin Fig. 9, this is plausible if themodel operates in the stronglymean-driven

regime given that both the mean and noise intensity of the puff current depend

linearly onK. In (B) we vary the number of clustersK but adjust p so that their

product is fixed, pK ¼ const: This results in a fixed mean puff current and

decreasing noise intensity as K increases. Consequently, the mean hTi (B1)

is largely unaffected by the variation of K while the CV CVT (B2)

scales as 1=
ffiffiffiffi
K

p
. Parameters: t ¼ 5 (A): p ¼ 1:5� 10� 2, (B) pðKÞ ¼

1:5� 10� 1=K. To see this figure in color, go online.

An IF approach to Ca2+ signaling
An explanation for the observed behavior can be given in
terms of the mean puff current (Fig. 9, A2 and C) and the
noise intensity (Fig. 9, B2 and D) with respect to different
values of the refractory rate lref . Let us first consider the
case of a decreasing refractory rate corresponding to a
more regular IPI. This leads to an overall decrease of both
the mean puff current and noise intensity and also to a sup-
pression of the Ca2þ feedback. This is so because for small
refractory rates we face a system of clusters that spend most
time in the Ca2þ insensitive refractory states. In this case the
IF dynamics is dominated by the leak current and we may
even enter the excitable regime (gray area in Fig. 9, B1

and B) where spiking is rare and more irregular. Thus, the
fact that the ISIs become more irregular when the IPIs
become more regular is primarily due to the reduction of
the mean puff current mpuff .

In the opposite case of an increasing refractory rate, and
hence stronger and more variable drive of the IF dynamics,
the effect of this on the CV is less clear. In terms of the ISI
variability a stronger drive results in more regular spiking,
i.e., a smaller CVof the ISI. However, the simultaneous in-
crease of the noise intensity has the opposite effect on the
ISI variability, and, hence, it is not clear which of the two
will win. However, we can resort to a simpler case to
develop an intuition. If both the drift and the diffusion coef-
ficient would not depend on ci and would be scaled by the
same factor (as is roughly the case [cf. Fig. 9, C and D],
the CV would not change at all—this is the case of the so-
called perfect IF model in neuroscience [see Eq. 20 in
(78)] and further references therein). Indeed, if we start
from our standard value at lref ¼ 20 s� 1 (indicated by the
cross in Fig. 9, A and B) and increase the refractory rate
further, the CV does not change much in accordance to
this reasoning. In conclusion, the more regular the IPI (the
smaller lref ) the less regular the ISI.

Another dependence of interest concerns the number of
clusters K, which may differ from cell to cell. A simple ef-
fect of increasing K is that the mean puff current and also
the noise intensity increases in proportion to K, which is a
consequence of the assumed statistical independence of the
clusters. Both these increases will lead to shorter ISIs, as
seen in Fig. 10 A1. Again (comparable to the increase in
lref discussed above) the effect on the variability of the
ISI is less clear because the increase in the mean and the
increase in the noise intensity have opposing effects on
the CV, at least in the mean-driven regime. Inline with
the above argument, in Fig. 10 A2 we see only small
changes in the CV for a growing number of cluster. We
note that for the parameters used here, we do not reach
the excitable regime (again indicated by the gray area in
Biophysical Journal 122, 713–736, February 21, 2023 729



Ramlow et al.
Fig. 10, A1 and A2) without entirely suppressing spiking. If
we would reach the excitable regime (by changing other
parameters), we would encounter much stronger increases
in the CV comparable to what we have seen in Fig. 9 B1

for small values of lref .
Finally, we turn to a situation in which the cluster density

is preserved while we increase K (Fig. 10, B1 and B2). This
roughly corresponds to an increase in cell size which in-
creases the number of clusters but decreases the change of
the Ca2þ concentration such that the mean puff current is
conserved. Accordingly, we study now a scaling in which
pK ¼ const:; the ISI statistics for this case are shown in
Fig. 10, B1 and B2. Since the mean puff current does not
change by construction, we see only very little change in
the mean ISI in this case (Fig. 10 B1). The dominating
change in this scaling is a reduction of the noise intensity
by 1=K. This, however, has also only little effect on the
CV (Fig. 10 B2) because the relative change of the noise in-
tensity remains small in the considered range of K. Because
the system operates in the strongly mean-driven regime,
again the scaling argument for the CV of an IF model with
constant drift and constant diffusion (78) is meaningful;
indeed the observed curve can be perfectly fitted by
CVTf1=

ffiffiffiffi
K

p
(not shown).
Extension of the model by an additional fast Ca2D

buffer: Effects on the spiking train statistics

An important element in Ca2þ signaling that we have not
taken into account so far, are buffer proteins that may
bind up to 99% of the free Ca2þ both in the cytosol and
ER (80,81). Here, we extend our model by an additional
Ca2þ buffer and discuss how the mean and CV of the ISI
are affected. The reaction scheme for the buffer B reads:

Ca2 þ B#
k �

k þ
CaB; (44)

where k þ and k � are rate constants (often assumed to be
large corresponding to a fast buffer) and the dissociation

constant is given by K� ¼ k �=k þ. The differential equa-
tions for the cytosolic Ca2þand the fast buffer concentration
can be formulated as follows:

_ci ¼ �ðci � c0Þ
�
t þ jpuffðciÞ � k þciðbT � cbÞ þ k �cb

_cb ¼ k þciðbT � cbÞ � k �cb
if ciðtÞ ¼ cT/ti ¼ t and ciðtÞ ¼ cR; cbðtÞ ¼ c0bðcRÞ

(45)

where bT ¼ b þ cb is the total buffer concentration given
by the sum of the free and Ca2þ-bound buffer concentration

b and cb, respectively; we assume bT to be constant in time.
In an IF framework a fast buffer, that is always in equilib-
rium with the cytosolic Ca2þ concentration, requires an
additional reset rule for the bound buffer concentration cb.
This condition is given in the last line of Eq. 45 and states
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that cb is reset to the equilibrium value, c0bðciÞ ¼
cibT=ðK� þ ciÞ, taken at the reset ci ¼ cR. This reset
rule ensures that cb remains in equilibrium even after the
infinitely fast reset of ci. According to (82) a fast buffer
can be eliminated and affects the dynamics of ci only
through a (ci dependent) factor b:

dci
dt

¼ b
�� ðci � c0Þ

�
t þ jpuffðciÞ

�
;

b ¼ �
1 þ K�bT

�ðK� þ ciÞ2
�� 1

:

(46)

Assuming that the ci dependence of b is weak ðK� [ ciÞ
one could wrongly conclude that adding a fast Ca2þ buffer
simply leads to a rescaling of the time, hence affects the
mean but not the CV of the ISIs. However, this is not true.
To make this clear consider the Langevin approximation
of Eq. 46 and substitute t ¼ bt=b. Considering the dynamics
with respect to this new time leads to a deterministic drift
that is independent of b but a noise intensity that is not:

dci

dbt ¼ f ðciÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bDpuffðciÞ

q
xðbtÞ; (47)
due to the scaling properties of the white noise bxðbtÞ ¼b b

ffiffiffip

xðt =bÞ. (Rescaling the time t ¼ t=b of a white noise
process affects its intensity because the autocorrelation
function should be preserved, i.e., 2Ddðt � t0Þ ¼
2D�dðbt � bt 0Þ. Using the scaling property of the Dirac delta
function dððbt �bt 0Þ =bÞ ¼ jbjdðbt �bt 0Þ allows to relate the

two intensities D� ¼ bD so that one finds
ffiffiffi
b

p
xðbtÞ ¼

xðbt =bÞ.)
In the mean-driven regime the average ISI depends

strongly on the drift but only weakly on the noise intensity.
Because in the rescaled time the drift does not depend on b,
this implies that average ISI in the rescaled dynamics is also
independent of b. Going back to the original time, intervals
scale linearly with 1=b as time itself:

hTiz hT0i = bzhT0ið1 þ bT =K
�Þ (48)
where hT0i refers to the mean ISI measured in units of bt or,
equivalently, to the mean ISI measured in units of t but

without a buffer, bT ¼ 0. If we further assume that
bT=K

� [ 1, Eq. 48 implies an approximately linear rela-
tionship between hTi and the total buffer concentration bT .
In Fig. 11 A1 we demonstrate this linear relation, Eq. 48
(red line), by means of stochastic simulations of the two-
component model with an additional buffer according to
Eq. 45 (circles). We also compare this to the Langevin
approximation of the same model version, i.e., Eq. 45 where
the puff current is substituted according to Eq. 32 (blue
line). The two stochastic simulation results agree well
with each other; however, they display a slightly slower
but still linear increase compared with the simple estimate
Eq. 48.



A1

B1

A2

B2

FIGURE 11 Spike-train statistics as functions of the total buffer concen-

tration. (A and B) The model is in the mean-driven and excitable regime,

respectively. (A1 and B1) Show hTi while (A2 and B2) show CVT, both ob-

tained from simulations of the two-component (circle) and Langevin model

(lines) with an additional fast buffer according to Eq. 45 as a function of the

total buffer concentration bT . In the mean-driven regime the mean ISI (A1)

is linear in bT according to Eq. 48 and the CV (A2) depends on bT as given in

Eq. 50. In the excitable regime the mean ISI (B1) that depends superlinearly

on bT deviating somewhat from the theoretical prediction (red line) and the

Langevin simulation (blue line). The CV (B2) in the excitable regime is

robust over a large range of buffer concentrations. Parameters: K ¼ 10,

k þ ¼ 10, k � ¼ 50, (A): t ¼ 5, p ¼ 2:5� 10� 2, (B): t ¼ 1, p ¼
6:4� 10� 2. To see this figure in color, go online.

An IF approach to Ca2+ signaling
The effect of a fast buffer on the CV is more complicated.
However, when the system is in the mean-driven regime and
the noise intensity is not too strong, the influence of the
buffer concentration on the variance of the ISIs can be esti-
mated according to (83):�

DT2
� ¼ 2b

Z cT

c0

dci DpuffðciÞ
�
f ðciÞ3; (49)

where we have again assumed that b is independent of ci.
The CV is then given by:
CVT z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
DT2

0

��
b

q
hT0i=b z

CVT;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 þ bT=K�Þp ; (50)

where CVT;0 refers to the CV without a buffer. The CV thus
exhibits a simple square-root relation with respect to the to-

tal buffer concentration that is confirmed in Fig. 11 A2.

In Fig. 11, B1 and B2we consider a scenario where spiking
is fluctuation driven (excitable regime) and the mean interval
therefore depends more strongly on the noise intensity and in
turn buffer concentration. In particular, the mean interval ob-
tained from stochastic simulations of the two-component
model with a buffer grows faster than linear (cf. circles in
Fig. 11 B1). This is so because in the excitable regime the
passage to the threshold is facilitated by noise—in addition
to diminishing the drift we now also diminish the intensity
of the noise by increasing bT , which leads to a superlinear
increase of the mean interval with bT . Interestingly, for the
Langevin approximation this superlinear growth is less pro-
nounced,which is in linewith the fact that this approximation
works less well in the excitable regime. The variability of the
ISIs also drops with bT ; apparently we are here far from the
weak-noise limit where the CV can decrease upon a reduc-
tion of the noise intensity (we are on the r.h.s. of the coher-
ence-resonance minimum, see (73)).
SUMMARY AND DISCUSSION

This study exploited the similarities between stochastic spike
generation in neural dynamics and in Ca2þ dynamics to
develop a phenomenological but biophysically grounded
model of Ca2þ spiking and used established methods from
computational neuroscience to calculate spike train statistics
analytically. The main source of variability is the Ca2þ noise
generated by the stochastic opening of clusters of IP3R chan-
nels in the ER membrane leading to stochastic sequence of
Ca2þ release puffs. This cluster noise is similar to the ion
channel noise in the membrane potential dynamics of neu-
rons and can be treated mathematically in a similar way,
i.e., by a diffusion approximation. Furthermore, for a simpli-
fied description of intracellular Ca2þ spiking, we have adop-
ted the IF framework of computational neuroscience. Our
resulting two-component model captures the punctuated
release of Ca2þ from IP3Rs on the one hand and the dynamics
of the cytosolic Ca2þ on the other hand. It can reproduce the
spike statistics of HEK cells, ranging from Fano factors to
spike train power spectra quantitatively (see Fig. 8).

Specifically, we suggested a phenomenological puff
model which meets a variety of experimentally observed
puff characteristics. Five observations have been used to
design the model: 1) puffs occur randomly (see Yao et al.
(84)); 2) the amplitude is uniformly distributed over the
number of channels in the cluster (see Dickinson and Parker
(50)); 3) dwell times in a cluster state with a given number
of open channels are rather independent of that number (see
Wiltgen et al. (52)); 4) IPIs may exhibit a refractory period
(see Thurley et al. (45)), and 5) the approximate values of
the IPI’s mean and refractory period (see Thurley et al.
(45)). For the resulting Markov model of the cluster activity
we provide expressions for the mean (Eq. 18a) and CV (Eq.
18c) of the IPI as well as the mean (Eq. 13) and CV (Eq. 15)
of the puff strength. The CV of the IPI at the resting Ca2þ

concentration resulting from this model is close to 1 with
parameters chosen according to Fig. 2, and in agreement
with low stimulation results for HEK cells (45), which is
our standard example here. SHSY-5Y cells exhibit a CV
of 0.68 at low and of 0.42 at high stimulation (45), which
can also be modeled by adjusting the cluster parameters
accordingly (Eq. 18c admits arbitrarily low CVs if we add
a sufficient number of refractory states; it holds specifically
that limM/NCVI ¼ 0), cf. Eq. 18c).
Biophysical Journal 122, 713–736, February 21, 2023 731



Ramlow et al.
Puff activity is one of the currents contributing to the
global Ca2þ dynamics. Here, we have shown that because
of the timescale separation between the puff dynamics and
the cytosolic Ca2þ dynamics the puff current can be well
approximated by a white Gaussian noise with a Ca2þ-depen-
dent mean and Ca2þ-dependent noise intensity, functions,
which can be calculated from the transition rate matrix ac-
cording to Eq. 22 and Eq. 28, respectively. This diffusion
approximation provides a simple method to determine the
Langevin equation corresponding to a given channel cluster
model. That might also find applications to models of cardi-
omyocytes and their Ca2þ release units.

The derived Langevin approximation for the dynamics of
the cytosolic Ca2þ concentration permits stochastic simula-
tions that are by orders of magnitude faster than the simula-
tion of the full two-component model. It furthermore allows
to distinguish in a simple manner the mean-driven and the
excitable regimes. Moreover, in this approximation,
different ISI statistics can be calculated analytically, i.e.,
we can find quadrature expressions for the mean and vari-
ance of the ISI and, at least in the mean-driven regime,
also simple estimates for the ISI density and spike-train po-
wer spectrum. We have also shown that the interpretation of
the stochastic differential equation with multiplicative noise
(Ito-Stratonovich dilemma (60,67)) is not a major issue for
the biophysically relevant parameter range.

Beside validating our approximation we also explored the
dependence of the ISI statistics on the biophysical parame-
ters of the cell (the time constant of the leak current t and
permeability-like parameter p) and the clusters (their num-
ber K and refractory rate lref ). We have shown that the
model in either the mean-driven or excitable regimes can
reproduce experimentally measured CV values which range
from 0.2 in Vasporessin-stimulated Hepatocytes to 1.0 in
spontaneously spiking Astrocytes (10,14,85–87). As already
mentioned above, we demonstrated that our model can
generate spike trains with statistics highly similar to those
of stimulated HEK cells.

Finally, motivated by the experimental results by Skupin
et al. (10) we also investigated the effect of incorporating
a fast Ca2þ buffer in our model. Here, we find an
approximately linear scaling of the mean ISI with the total
buffer concentration and in particular the scaling hTif
1 þ bT=K

� in the mean-driven regime, i.e., the model re-
produces the experimentally observed increase of the
mean ISI with increasing buffer concentration (10). Note
that the total buffer concentration bT takes into account
Ca2þ binding proteins that are naturally present in the cell
and hence does not directly corresponds to the concentration
of the added buffer. Another remarkable experimental
finding by Skupin and Falcke (88) was that the CV is largely
independent of the concentration of the added buffer. This
feature is consistent with our model if it operates in the
excitable regime close to the bifurcation Fig. 11 B2 and
we include an offset in the buffer concentration.
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As an outlook we note that the CVof experimental spike
trains exhibits robustness against cell-to-cell variability. Pa-
rameters describing cell variability are the number of clusters
and variability of the strength of cluster-to-cluster coupling
due to the variable geometry of the cluster array. We have
shown that, at least in a scenario with fixed cluster density,
our model’s CV is largely independent of the number of clus-
ters. Additional robustness of the CV is likely to arise from a
slow recovery from negative feedback which terminated the
previous spike, i.e., spike generation happens in a transient
(20,89). This transient is assumed to provide the CV robust-
ness properties. We expect that adding such a transient to
the Langevin formulation would entail the observed robust-
ness properties. This is studied in a follow-up paper to the
study presented here.
Appendix

Mean and variance of the surrogate random process YðtÞ
Here, we relate the mean mY and variance s2Y of the coarse-
grained random process YðtÞ defined by Eq. 30 to the mean
mx and noise intensity Dx of the single cluster xðtÞ under the
assumption that ci changes slowly. The means can be readily
related to one another using that the mean of a sum of random
numbers is the sum of their means. This yields the expression:

mY ¼ hYðt;DtÞi ¼ 1

Dt

Z tþDt

t

dt1

*XK
k

xkðt1Þ
+

¼ 1

Dt

Z tþDt

t

dt1 Khxðt1Þi
¼ Kmx;

(51)

that holds irrespective of any timescale separation.
Relating the variance to the noise intensity of a single
cluster is more complicated because it requires that the cor-
relation function of a single cluster decays sufficiently fast.
The variance of YðtÞ is given by:

s2
Y ¼ �

DYðt;DtÞ2�
¼ 1

Dt2

ZZ tþDt

t

dt1dt2
XK
k1 ¼ 1

XK
k2 ¼ 1

hDxk1ðt1ÞDxk2ðt2Þi;

¼ 1

Dt2

ZZ tþDt

t

dt1dt2

" XK
k1 ¼ 1

hDxk1ðt1ÞDxk1ðt2Þi

þ
XK
k1sk2

hDxk1ðt1ÞDxk2ðt2Þi
#
;

¼ K

Dt2

ZZ tþDt

t

dt1dt2 Cxxðt2 � t1Þ:
(52)
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To get from the second to the third line we have 1) used
that the clusters are independent of one another so that the
covariance hDxk1ðt1ÞDxk2ðt2Þi vanishes and 2) introduced
the autocorrelation function Cxxðt2 � t1Þ ¼ hDxðt2ÞDxðt1Þi
with Dx ¼ x � hxi. This expression can be further
simplified (very similar to the derivation of the Kubo
relation (90)) using that the autocorrelation only
depends on the difference t ¼ t2 � t1 and is symmetric
CxxðtÞ ¼ Cxxð� tÞ:

s2
Y ¼ K

Dt2

ZZ tþDt

t

dt1dt2 Cxxðt2 � t1Þ

¼ 2K

Dt

Z Dt

0

dt CxxðtÞð1 � t=DtÞ:
(53)

Hence, the autocorrelation function of xðtÞ determines
the variance of the surrogate random process YðtÞ. This
expression can be related to the noise intensity of the puff
current through a single cluster:

Dx ¼
Z N

0

dt CxxðtÞ (54)

if, in line with our initial assumption, the correlation time tY
is assumed to be small compared with the time-window Dt.

In this case the term t=Dt in Eq. 53 can be neglected so that
we find:

s2
Y ¼ 2KDx

Dt
: (55)

Stationary probability density and firing rate

The derived Langevin equation Eq. 33 can be used to
calculate the stationary probability density function
p0ðciÞ and the firing rate r0 ¼ 1=hTi. To this end, we
need to establish the associated FPE (32,69–71) that was
already given in the main part and is repeated here for
convenience:

vtpðci; tÞ ¼ vci ½ � f ðciÞ � D0ðciÞ=2 þ vciDðciÞ�pðci; tÞ
þ r0dðci � cRÞ;

(56)

with the drift term f ðciÞ ¼ � ðci � c0Þ=t þ mpuffðciÞ
and the noise-induced Stratonovich drift D0ðciÞ=2. The

FPE is completed by the natural boundary condition
pðci / � N; tÞ ¼ 0, absorbing boundary condition
pðcT ; tÞ ¼ 0 and normalization

R
dci pðci; tÞ ¼ 1. We first

calculate the stationary firing rate r0 by means of the station-
ary probability density function p0ðciÞ of Eq. 56:

0 ¼ ½ � f ðciÞ � D0ðciÞ=2 þ vciDðciÞ�p0ðciÞ
þ r0Qðci � cRÞ; (57)

where we have dropped the time derivative because we
are interested in the stationary case and integrated once
with respect to ci. To solve this equation we introduce
two auxiliary functions LðciÞ ¼ DðciÞp0ðciÞ and define
gðciÞ ¼ f ðciÞ þ D0ðciÞ=2 and obtain:

vciLðciÞ ¼ gðciÞ
DðciÞ LðciÞ � r0Qðci � cRÞ; (58)

the homogeneous solution LhðciÞ to this equation is readily
obtained:
LhðciÞfexp

	Z ci

cR

dy
gðyÞ
DðyÞ



: (59)

The method of variation of parameters yields the full
solution:

LðciÞ ¼ r0e
hðciÞ
Z cT

ci

dx e� hðxÞQðx � cRÞ;

hðxÞ ¼
Z x

cR

dy
gðyÞ
DðyÞ :

(60)

Finally, we substitute the probability density p0ðciÞ again
and find:

P0ðciÞ ¼ r0
ehðciÞ

DðciÞ
Z cT

ci

dx e� hðxÞQðx � cRÞ (61)

Note that the desired firing rate r0 can be obtained by
means of the normalization condition, put differently we
can integrate over ci from �N to and obtain:

r0 ¼
	Z cT

cR

dci e
� hðciÞ

Z ci

�N

dx
ehðxÞ

DðxÞ

� 1

(62)

For this expression we have used that the boundaries of
the integral can be interchanged as follows:Z xT

�N

dx1

Z xT

x1

dx2 f ðx1; x2Þqðx2 � xRÞ

¼
Z xT

xR

dx2

Z x2

�N

dx1 f ðx1; x2Þ:
(63)

Coefficient of variation

The CV CV2
T ¼ hDT2i=hTi2 can be calculated by consid-

ering the ISI T as a first-passage time (FPT). Put differ-
ently, we consider a ‘‘particle’’ governed by Eq. 33 with
ciðT ¼ 0Þ ¼ c0 and ask what the distribution of times is
at which it will first cross the threshold cT . This is the
so-called FPT density pFPðTÞ that itself is usually not
analytical accessible but its moments hTni are (59). To
calculate the moments, we establish the respective FPE
(see, e.g., (91)):

vTpðci; TÞ ¼ vci ½ � f ðciÞ � D0ðciÞ=2 þ vciDðciÞ�pðci; TÞ
¼ � vci jðci; TÞ

(64)
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with the probability current jðci;TÞ. The boundary and initial
conditions are given by:

pð�N; TÞ ¼ pðcT ; TÞ ¼ 0; pðci; 0Þ ¼ dðci � c0Þ:
(65)

Note that in contrast to Eq. 56 this FPE does not posses
any source terms that correspond to the reset rule of
Eq. 33. This is so because for the first-passage time, tra-
jectories that have crossed the threshold are not reset
but absorbed. An important insight is that the FPT density
is given by the probability current evaluated at the
threshold:

pFPðTÞ ¼ jðcT ; TÞ: (66)

Calculating the moments of FPT density is, in the one-
component case, a standard problem in the theory of
stochastic processes (59). Here, we do not present the full
derivation but refer to (91) and specifically to the hierarchy
of differential equations that determines the moments:

� nJn� 1ðciÞ ¼ � gðciÞJ0nðciÞ þ vciDðciÞJ0nðciÞ; n > 0:

(67)

Here, JnðcTÞ ¼ hTni are exactly the moments of the FPT
density and J0ðciÞ ¼ Qðci � c0Þ. The generalization to the
case of multiplicative noise is straightforward. The solution
to the second moment is given by:�

T2
� ¼ 2

Z cT

cR

dx4 e
� hðx4Þ

Z x4

�N

dx3
ehðx3Þ

Dðx3Þ
�
Z cT

x3

dx2 e
� hðx2Þ

Z x2

�N

dx1
ehðx1Þ

Dðx1Þ
(68)

with hðxÞ as in Eq. 60. The evaluation of these four nested
integrals is challenging, even numerically. Luckily, in case

of the variance the expression can be simplified greatly to
contain only two nested integrals (cf. (70)):

�
DT2

� ¼ 2

Z cT

�N

dx3 e
� hðx3Þ

	Z x3

�N

dx2
ehðx2Þ

Dðx2Þ

2

�
Z cT

x3

dx1 e
� hðx1ÞQðx1 � cRÞ:

(69)
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