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SUMMARY

The concept of cell fate relates to the future identity of a cell, and its

daughters, which is obtained via cell differentiation and division.

Understanding, predicting, and manipulating cell fate has been a

long-sought goal of developmental and regenerative biology.

Recent insights obtained from single-cell genomic and integrative

lineage-tracing approaches have further aided to identify molecu-

lar features predictive of cell fate. In this perspective, we discuss

these approaches with a focus on theoretical concepts and future

directions of the field to dissect molecular mechanisms underlying

cell fate.
INTRODUCTION

Cell fate decision-making describes the process by which

cells develop into a particular fate while rejecting possible

alternative fates over the course of cellular differentiation

and division (Soldatov et al., 2019). As such, cell fate is a

fundamental aspect of multi-cellular organismal develop-

ment and its homeostatic maintenance, also in response

to environmental perturbations, which may trigger adap-

tive or regenerative cellular processes. The blueprint that

underlies the development of a human body, consisting

of over 30 trillion cells and organized into a myriad of or-

gan systems each composed of diverse cell types and states,

is orchestrated by information encoded in our genomes

(Zeng, 2022). A complete reconstruction of the molecular

chain of cell-intrinsic and -extrinsic events that underlie

cell fate decision-making would thereby outline the

required steps to effectively engineer and guide cells toward

desired properties, in particular for cell-based (regenerative)

therapies fromdiverse sources of (adult) stem cells or the re-

programming of differentiated cells (Beumer and Clevers,

2020; Liu et al., 2021; Ng et al., 2020; Yu et al., 2021). As

such, substantial advances have been made in this field,

with new experimental technologies, mathematical

concepts, and analytical approaches emerging to identify

the molecular determinants and modulators of cell fate

(Camp et al., 2019; Packer et al., 2019; Wagner and Klein,

2020; Weinreb et al., 2020).

Here, we highlight recent advances in single-cell

omics and lineage tracing and discuss notions related to

cell fate in development and homeostasis, as exemplified
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This is an open access article under the C
in mammalian embryogenesis and blood production

(hematopoiesis), respectively. We discuss theoretical

concepts and possible future directions in light of emerging

multi-omics technologies and their integration with

lineage-tracing approaches that provide powerful means

to experimentally validate predictive features as well as

extend the time length over which course such predictions

may be amenable.

Principles of cell fate

The acquisition of a particular terminal cell fate is the

result of the integration of a cell’s intrinsic molecular

properties and its interaction with its surroundings,

from which the cell derives signals that direct and modu-

late a cell’s inner workings (Beumer and Clevers, 2020). In

biology, the acquisition of such fates has thereby been de-

picted as marbles rolling down a potential hill shaped by

regulatory forces beneath, with the marbles eventually

coming to rest at different lowest points of the hill (basins

of attraction), representing the various terminally differ-

entiated fates that cells may acquire (Buenrostro et al.,

2018; Verd et al., 2014; Waddington, 1957) (Figure 1A).

Along these different paths of the so-called Waddington

landscape, cells may reach genomic barriers that separate

two or multiple distinct cellular fate directions. Under-

standing the molecular mechanisms underlying how

and when cells decide on which path to travel has thereby

been a long-sought goal of biology (Figure 1B). Simplisti-

cally, a particular differentiation outcome may be driven

by individual key factors or determinants of cell fate

(e.g., transcription factors [TFs]) that become activated

upon cell signaling events triggered by environmental sig-

nals (Figure 1C). Antagonists may counteract a determi-

nant and/or drive a cell toward an alternative fate,

whereas a consolidator may reinforce the action of a

determinant (e.g., transcriptional co-factors). TFs are

recognized as key determinants of cell fate, as their loss

of expression can completely ablate the presence of a spe-

cific cell type. Likewise, their over- or ectopic expression

may skew or even reprogram a cell’s identity to an alterna-

tive terminal or back to a progenitor or stem(-like) fate

(Ng et al., 2020; Orkin and Zon, 2008; Spitz and Furlong,

2012; Stadhouders et al., 2019). TFs further shape the

genomic landscape with the aid of co-regulatory factors

(i.e., consolidators such as additional TFs or chromatin
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Figure 1. Waddington’s landscape and cell fates during cellular differentiation
(A) Waddington’s landscape with the marble representing a cell to take on a set of alternative developmental paths, with the three basins
at the base of the hill, representing the alternative differentiated cell fates (left). The shape of the landscape is thereby determined by
interacting gene products that pave the path toward the cell attaining a particular differentiated cell fate (right). Figure from Waddington
(1957).
(B) Schematic depiction of stem cells undergoing cellular differentiation to obtain one of three cell fates, upon which multiple cell fate
decisions may have to be made. The window in which the fate decision is being made and during which the process may be altered or
antagonized may thereby currently not be well defined.
(C) Cell fate determination involves the integration of environmental signals and the current cellular state, upon which fate determinants
may act or also antagonize each other, before executing a particular fate-specific gene regulatory program.
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remodelers) to reconfigure chromatin and rewire the

cellular circuits toward a specific fate (Figure 1C). Here,

we will exemplarily discuss the role of cell fate decisions

in two differentiating systems, the mammalian devel-

oping embryo, and adult hematopoiesis.

Cell fate in embryogenesis

Embryonic development (embryogenesis) starts with

the zygote, which undergoes a remarkably organized

sequence of cell divisions and initiation of differentia-

tion processes through developmental stages that ulti-

mately form all the organ systems and cells within the

human body (Gerri et al., 2020; Shahbazi, 2020) (Fig-

ure 2A). As such, the developing cells appear to undergo

a largely pre-determined sequence of consecutive cell

fate decisions within a self-contained ecosystem fueled

by the placenta. If not perturbed (e.g., due to toxins

or genetic aberrations), the cells collectively create a

self-organizing interdependent environment for every
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(new) cell to make appropriate decisions to enable full

maturation of the embryo. The first cell fate decision

takes place at the 16-cell stage and is a function of the

cells’ (radial) polarity and geometrical position. Cells

on the outside of the so-called morula are thereby fated

to develop the extraembryonic trophectoderm, while

the inner cells are fated to constitute the inner cell

mass (ICM) and, being pluripotent, represent the precur-

sor of the embryo. The ICM cells subsequently localize to

one pole of the forming blastocyst, engendering a topo-

logical asymmetry that orients the further formation of

the embryo (Figure 2A). A multitude of signaling factors,

including morphogens forming concentration gradients

for patterning and transcriptional regulators, have been

identified to orchestrate subsequent oriented cell divi-

sions (Dewey et al., 2015) and cell fate choices (Gerri

et al., 2020; Shahbazi, 2020) with an increasing appreci-

ation of the mechanical forces at play (Valet et al., 2021).



Figure 2. Cell fate in embryogenesis and hematopoiesis
(A) Simplified schematic of early developmental steps, including the formation of the morula and blastocyst with the inner cell mass (ICM),
which subsequently gives rise to the embryo proper and the fully developed organism.
(B) Simplified schematic of hematopoietic differentiation with lineage commitment occurring across a continuum of states (color
gradient) with arrows intimating possible transition paths of differentiation, upon which cells become increasingly fate-restricted.
Adapted from Bao et al. (2019). HSC, hematopoietic stem cell; MPP, multi-potent progenitor; LMPP, lymphoid-primed multi-potent
progenitor; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; GMP, granulocyte-macrophage progenitor; MEP,
megakaryocyte-erythroid progenitor; CD4, CD4+ T cell; CD8, CD8+ T cell; B, B cell; NK, natural killer cell; mDC, myeloid dendritic cell; pDC,
plasmacytoid dendritic cell; mono, monocyte; gran, granulocyte; ery, erythroid; mega, megakaryocyte.
(C) Schematic depiction of lineage-primed HSCs suggesting that fate boundaries may already be present early during differentiation, for
example also within the HSC pool.
(D) Schematic depiction of how clonal- and lineage-tracing methodologies enable identification of clonal families, including mother-
daughter cell state couplings. The capture of early stem and progenitor cell states may thereby aid to identify relevant features of future
cell fate. However, in practice, the capture of such states may be impeded by the rather low frequency of, in particular, the HSC state.
(E) Cells may show high similarity in a lower-dimensional space (left), with the measurement of an additional dimension revealing ‘‘hidden’’
features that were previously not accounted for. Such hidden features are expected to enhance the prediction of cell fates (right).
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The system then rapidly grows in complexity as the

number of cells and extrinsic and intrinsic cellular fea-

tures interacting with each other (to further constitute

the function and fate of each cell) increase exponen-

tially. Within this complexity, cell death (apoptosis)

events are also programmed (Ellis and Horvitz, 1986) to

regulate the right balance of cell types to properly

initiate specific developmental events. The intricate

interplay of signaling, TF activity, and chromatin organi-

zation is thereby well described during developmental

limb (re)generation (Gerber et al., 2018; Petit et al.,

2017). Ultimately, these complex cell fate interaction

networks are tightly regulated, leading to a growing or-

ganism that becomes increasingly refocused on homeo-

statically maintaining the developed organ systems.
Cell fate in hematopoiesis

Hematopoiesis has long served as a paradigm for our

understanding of cellular processes ranging from stem

cell maintenance to multi-lineage differentiation and its

dysregulation in disease (Orkin and Zon, 2008). A pool of

self-renewing hematopoietic stem cells (HSCs) that forms

during development sustains life-long blood production

of a diverse repertoire of cells with distinct functions,

including platelets, erythrocytes, monocytes, granulo-

cytes, natural killer cells, and adaptive Tand B lymphocytes

(Liggett and Sankaran, 2020) (Figure 2B). Analogous to the

Waddington landscape, the acquisition of these cellular

fates was traditionally thought to be the result of a stepwise

decision-making process through defined cellular stages

with increasingly restricted lineage potential as
Stem Cell Reports j Vol. 18 j 13–25 j January 10, 2023 15
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hematopoietic differentiation progressed. In part, this

model was supported by the results of cultures and trans-

plantation experiments of bulk populations of cells with

defined surface marker expression profiles, which were

considered to be characteristic of a homogeneous cellular

stage. Ultimately, the fate of individual cells remained

masked, but the increasing application of single-cell-based

functional and genomic approaches subsequently revealed

an unappreciated genomic and functional heterogeneity

within the hematopoietic stem and progenitor cell pool

(Amann-Zalcenstein et al., 2020; Liggett and Sankaran,

2020; Loeffler and Schroeder, 2019). Today, we recognize

multiple distinct lineage hierarchies, with many early he-

matopoietic progenitor cells displaying advanced priming

or restriction to an individual or a few lineage fates (Car-

relha et al., 2018; Rodriguez-Fraticelli et al., 2018) (Fig-

ure 2C). As such, cell fate may at least in part already be

pre-determined within the stem cell pool ‘‘long’’ before

the respective cellular fate is attained. However, a detailed

molecular understanding of such ‘‘clonal memory’’ (Fen-

nell et al., 2022; Yu et al., 2016), and instructive signals

by the bone marrow microenvironmental niche (Haas

et al., 2018), including in disease contexts, is yet to be

attained.

TFs are themajor orchestrators of cell fate decisions in he-

matopoiesis (Orkin and Zon, 2008), and individual TFs

have been recognized to drive the development of a partic-

ular hematopoietic lineage. For example, the TF GATA1 is

essential to regulate red blood cell development, as alter-

ations of protein levels and function lead to severe forms

of congenital anemia (Khajuria et al., 2018; Ludwig et al.,

2014; Sankaran et al., 2012). How GATA1 drives lineage

choice and at what stage of hematopoiesis, for example,

cross-antagonizing alternative lineage determinants such

as PU.1, have been the subjects of investigation and debate

(Hoppe et al., 2016; Strasser et al., 2018;Wheat et al., 2020).

Its role as a major fate determinant is, however, reinforced

by its ability to convert fibroblasts into an erythroid pro-

genitor cell fate, together with important co-regulatory

TFs such as TAL1 (Capellera-Garcia et al., 2016). Moving

forward, cell-state to -fate couplings will be essential to

further enhance our understanding of gene regulatory

mechanisms that govern hematopoietic cell fate decisions,

as we discuss below (Figures 2D and 2E).

Current approaches in single-cell genomics and cell

fate

Several omic modalities and analytical approaches have

been developed to predict cellular fates. However, we still

lack a detailed appreciation of themolecular events underly-

ing cell fate, and current approaches may suffer from

inherent limitations such as ‘‘missing data’’ that prevent

more reliable predictions (Tritschler et al., 2019; Weinreb
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et al., 2018). Here, we briefly review core concepts in

the field.

Molecular state trajectories of cellular differentiation

Transcriptomics is the most widely used data modality for

defining cell states, as cellular gene expression profiles are

closely associated with their identity and function. A snap-

shot of differentiating cells often includes a range of cells

from different maturation stages. Leveraging this asyn-

chronyof the captured cells’ progression stage, pseudotime,

and trajectory analysis allow defining comprehensivemaps

of accessible transcriptional states and the cell state transi-

tions across the cellular differentiation landscape (Saelens

et al., 2019). These methods are based on cell state adja-

cencies, with the general assumption that some formof dis-

tance (e.g., Euclidean or diffusion distance) is related to the

biological ‘‘travel’’ time between two cell states. Several

studies have aimed for amore complete dynamical descrip-

tion of cell differentiation processes using the Fokker-

Planck, or diffusion-drift, equation, which integrates the

drift (i.e., the directed energy-consuming transition of cells

toward more differentiated states) as well as estimations of

cell birth and death rates with the merely geometrical

(i.e., neighborhoods) information being considered by

pseudotime methods (Cho et al., 2018; Farrell et al., 2018;

Fischer et al., 2019; Lange et al., 2022) (Note S1). Taking

advantage of simultaneous unspliced and spliced mRNA

measurements to infer differentiation dynamics via RNA

velocity (La Manno et al., 2018) has been another impor-

tant step toward describing cell differentiation and fate dy-

namics as a directed diffusion process in which a Langevin

equation (Gillespie, 2000) for velocities’ relationwith noise

and directed force applies (Note S2). However, several tech-

nological and computational challenges remain toward

reliable quantification of cell state velocities that are

actively being refined (Gorin et al., 2022.; Gu et al., 2022;

Marot-Lassauzaie et al., 2022; Qiu et al., 2022). Among ex-

isting challenges, we highlight (1) the unreliable assign-

ment and thus quantification of mRNA reads as unspliced

versus spliced in input data; (2) extensions of cell velocity

inference models for more accurately measurable data

modalities such as simultaneous mRNA and protein mea-

surements; (3) accounting for gene stochasticity in the

inference model as well as the identifiability of its parame-

ters; and (4) inferring the cells’ (average) velocities over

defined time intervals. Once reliable single-cell velocities

are at hand, they can be used to infer every cell state’s pro-

pensity toward different cell fates, for example by chaining

different velocities together along multiple possible differ-

entiation paths as in CellRank (Lange et al., 2022). A full

diffusion-drift model of cell differentiation including all

three components of diffusion, drift, cells’ birth, and death

rates would enable a probabilistic description and simula-

tion of cell differentiation as a function of any given initial



Figure 3. Dynamical models of cellular
differentiation
(A) The dynamics of cell differentiation in
the high-dimensional molecular features
space include diffusion (stochastic), drift
(directed), and cells’ birth/death events.
Cell colors indicate different cell states.
(B and C) Given cell samples from two dis-
tributions, p(t1) and p(t2) from time points
t1 and t2, respectively, (B) pseudotime and
velocity analysis methods infer transition
probabilities among all cell states (color
gradient indicates the overall pseudotime) ,
whereas (C) OT infers transition probabili-
ties from cell states in the first time point to
the cell states in the second time point. For
visual guidance of where arrows (indicating
high-probability transitions) start and end,
the color gradient indicates pseudotime for
each time point separately.
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state and quantify cell state plasticities (captured by the

noise or diffusion term) or differentiation bias (captured

by the drift term) toward specific fates (Figures 3A and

3B). An alternative model for cell differentiation has been

suggested using optimal transport (OT) (Mittnenzweig

et al., 2021; Schiebinger et al., 2019), which tries to infer a

correspondence between the distribution of cells in the

phase space at two different time points, hence inferring

probabilities for each cell in the later time point to be a

descendant of each cell in the first time point (Figure 3C).

There is amathematical correspondence between the diffu-

sion-drift description of a dynamical process and OT, as the

latter can be interpreted as a maximum likelihood solution

of the former, integrating transition probabilities among

cell states over the interval between two observation time

points (Notes S1 and S3). Consequently, unlike the diffu-

sion-drift descriptions, OT does not consider cell state tran-

sitions and pseudotime relations among the cell within

each measurement time point but rather has a conceptual

affinity to uncover ancestral relationships between cells

from two time points, similar to clonal tracking.

Note that several computational concepts and methods

initially developed for application to transcriptomics data

(e.g., pseudotime, OT, etc.) have been (or can be) adapted

for other high-throughput data modalities or combina-

tions thereof. Consequently, researchers tend to incorpo-

rate recent technologies for the multi-modal profiling of

cells into the development of respective computational

methods. For example, Co-Spar combines multi-modal

cell state information (i.e., transcriptome, epigenome)

with clonal information to predict future cell states

(Wang et al., 2022). In Co-Spar, transition probabilities be-

tween cells collected at two time points are calculated based
on a constrained OT scheme on the multi-modal space of

cell states. Additionally, when clonal data is available, Co-

Spar uses it to restrict the transitions to cell pairs that

belong to the same clone across two differentiation time

points, thereby improving transition predictions.

Transcriptional profiles reflect a cell’s gene regulatoryma-

chinery and chromatin/epigenetic state that regulate the

activity of TFs on cis-regulatory elements of DNA,

including promoters and enhancers (Spitz and Furlong,

2012). In single-cell genomics, the assay for transposase

accessible chromatin by sequencing (ATAC-seq) has

emerged as a popular tool to survey the heterogeneity of

accessible chromatin landscapes across differentiating cells

(Lareau et al., 2019; Satpathy et al., 2019). Recently, several

methodologies have enabled the simultaneous measure-

ment of the transcriptome and the epigenome (Cao et al.,

2018; Ma et al., 2020; Zhu et al., 2019) and opened up

new avenues for inferring the regulatory and consecutive

feature relations between the two modalities. For example,

the notion of ‘‘chromatin potential’’ to infer cell fate

choices alludes to the observation of chromatin becoming

accessible before the expression of its corresponding gene,

as illustrated in hair follicle differentiation (Ma et al., 2020).

Combining chromatin accessibility and gene expression

information, chromatin potential thus closely relates to

the concept of cell state velocity as a fluctuating quantity

that depends on the time interval considered in its infer-

ence. Whereas RNA velocity reports cell state velocities at

the relatively short timescale of splicing events (Marot-Las-

sauzaie et al., 2022), ‘‘chromatin potential’’ may refer to a

cell’s more long-term future plans.

Analogously, changes in chromatin organization, DNA

methylation, histone modifications, and the activity of
Stem Cell Reports j Vol. 18 j 13–25 j January 10, 2023 17
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TFs create poised or primed chromatin states that may bias

or instruct downstream lineage choice (Bernstein et al.,

2006; Parry et al., 2020; Stadhouders et al., 2019). While

TF activity can be inferred from single-cell ATAC-seq data,

including across pseudotime differentiation trajectories

(Satpathy et al., 2019), recent advances now enable us to

interrogate the heterogeneity of deposition of TFs and his-

tone modifications on the chromatin of single cells (Barto-

sovic et al., 2021; Grosselin et al., 2019; Rotem et al., 2015;

Wu et al., 2021). As such, a detailed understanding of the

events surrounding chromatin regulation and preceding

the expression of a cell fate determinantmay enable predic-

tions before the determinant is in fact detectable via

transcriptomics.

Integrative single-cell omics-based lineage tracing

Lineage- and clonal-tracing approaches aim to track the

progeny of single cells, for example to reconstruct the

developmental path or the direct ancestral relationships

among cells (Baron and van Oudenaarden, 2019). As

such, they enable the quantitative assessment of which

stem cells give rise to which organ and to what extent

over the course of embryogenesis or enable dissection of

the clonal population structure in cancers or of physiologic

blood production sustained by adult HSCs. Aside from the

direct visual tracking of developmental and differentiation

processes (Loeffler and Schroeder, 2019; Sulston and Hor-

vitz, 1977), the genetic introduction of heritable tags

(e.g., reporter genes, DNA barcodes, transposons, evolving

CRISPR arrays) have enabled the prospective lineage

tracing of a labeled population of cells of interest (Busch

et al., 2015; Chow et al., 2021; Sun et al., 2014). As these ge-

netic engineering-based strategies are prohibitive in hu-

mans, with the rare exception of gene therapy (Scala

et al., 2018), naturally occurring somatic mutations have

been leveraged to retrospectively infer the phylogeny or

clonal relationships among cells (retrospective lineage

tracing) (Lee-Six et al., 2018; Ludwig et al., 2019). Notably,

numerous approaches have now integrated barcoding stra-

tegies with classical single-cell transcriptome profiling

(Fennell et al., 2022; He et al., 2022; Quinn et al., 2021).

These have enabled concomitant cell typingwith (develop-

mental) lineage inference (Spanjaard et al., 2018) or the

direct coupling of the cellular fate of mother-daughter

cell pairs and/or of sister cells with their genomic state rep-

resented via their transcriptome and/or chromatin profile

(Lareau et al., 2021; Tian et al., 2021; Weinreb et al.,

2020). In self-renewing cellular systems such as hematopoi-

esis, the concomitant characterization of the stem cell pool

(mother cells) and its cellular output (daughter cells), these

techniques enable us to relate molecular features of a stem

cell to the downstream fate of its descending daughter cells

(Figure 2D). For example, such strategies identified the TF

TCF15 as an important regulator of HSC quiescence and
18 Stem Cell Reports j Vol. 18 j 13–25 j January 10, 2023
long-term self-renewal (Rodriguez-Fraticelli et al., 2020),

determined Bcor as a negative regulator of emergency den-

dritic cell development (Tian et al., 2021), and revealed two

different pathways of monocyte differentiation with

distinct clonal relationships and gene expression dynamics

(Weinreb et al., 2020). The latter study further revealed sis-

ter cells to be more similar in their fate choice than pairs of

cells with similar transcriptional profiles (Weinreb et al.,

2020). These results strongly suggest that single-cell

transcriptomics alone is limited to reliably predicting

progenitor cells with distinct fate bias and that computa-

tional approaches may misidentify fate decision bound-

aries in the absence of lineage information. Conceivably,

decisive features may also lie substantially ‘‘upstream’’ of

determinants that we currently associate with cell fate deci-

sions, such as the detectable expression of a particular TF,

which may only emerge as differentiation progress. While

in particular lowly expressed but otherwise important

transcripts modulating cell choice may not be readily de-

tected by current single-cell RNA sequencing (scRNA-seq)

profiling methods, the co-detection of additional cellular

properties may provide a more complete means to decode

cell fate decision-making (Figure 2E).

Future directions

Our molecular understanding of cellular fate decisions re-

mains incomplete. While key determinants such as TFs or

gene signatures predictive of cell fate have been recognized,

we remain relatively limited in terms of the distances in the

differentiation landscapes over which such predictions may

be reliably made. As such, we discuss the challenge of

predicting cell fate decisions over longer distances or even

consecutive cell fate decisions, before the activity of key de-

terminants may be even recognizable and what molecular

features we may have to account for, that are currently not

readily amenable to single-cell measurements.

Mathematical models and philosophical frameworks in cell fate

decision-making

In some deterministic dynamical systems, a small change in

the initial state can lead to a vast divergence from the state

the systemacquires later in time, thusmaking long-termpre-

dictions impossible. Chaos theory (Box 1) (Grebogi et al.,

1987; Shinbrot et al., 1992; Thiétart and Forgues, 1995) links

unpredictability to inaccuracy and incompleteness of

measurements. Conceivably, with awareness of the full

dimensionality of features governing the system’s behavior,

the dynamicswould be fully predictable. It basically suggests

that intermingling and crossing dynamical paths in high-

dimensional chaotic systems are an artifact of reducing the

dimensions of the systems from their (inaccessible) full

governingspace to the smallerobservational space (Figure4).

Hematopoiesis is a great example where our understand-

ing of the system has been reshaped from a less predictable



Box 1. Chaos theory

‘‘Chaos’’ explains deterministic dynamical systems in which a small change in the initial state can lead to a vast diver-

gence from the state the system acquires later in time. This implies that in a real world where our measurements inev-

itably contain errors (e.g., position measurements up to the precision of millimeters in a particular experiment), long-

term prediction of a chaotic system’s behavior is not possible, although its dynamical rules of progression are fully

deterministic. Had we been able to exactly characterize the current state, predictions of infinite time would have

been possible. In a non-chaotic system, an error in measurement of the initial state would bear a (e.g., linear or

quadratic) relation with the error in the prediction of the future state. In a chaotic system, however, no such relation

holds, as close-by paths do not stay correlated for long and diverge exponentially over time, producing complex inter-

mingling dynamical paths in the observational space (‘‘topological mixing’’).

Chaotic systems can exist both in low and high dimensions. The motion of a double-rod pendulum is an example of

deterministic, but chaotic, dynamics in low dimensions (Shinbrot et al., 1992; Thiétart and Forgues, 1995). As the

number of dimensions defining the state of a system becomes larger, full characterization of the system’s state becomes

more challenging in the real world, leading to chaotic behavior when only a subset of the full features is measured. A

well-known example of such a high-dimensional chaotic system is the ‘‘butterfly effect’’ (Shen et al., 2018), which im-

plies that a small perturbation such as (metaphorically) a butterfly flapping its wing can affect the weather at a later

time in another place. Consequently, given our lack of awareness of the full feature space, weather predictions remain

valid only for a finite time interval such as a few days.
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(formerly associated with stochasticity in fate decisions) to-

ward a more deterministically resolved view via moving

from bulk measurements to a high-resolution single-cell

description of the feature space and associated cell state-

fate couplings (Rodriguez-Fraticelli et al., 2020; Tian et al.,

2021; Weinreb et al., 2020). As such, the to-date unavail-

ability of full predictive models for most given biological

contexts has been at least partly due to the incompleteness

of our measurements. Recent research on sister cells’ fate

choice as described in the previous section as well as iden-

tical twins’ phenotypic divergence as they age (Martin,

2005) are exemplary phenomena that imply chaos to be a

favorable model for cell fate.

Relying on advancements of measurements, it sounds

increasingly relevant to design and apply deterministic

models such as the aforementioned Co-Spar cell fate

prediction method, the assumptions (i.e., coherence and

sparsity of state transitions) of which also correspond to

non-chaotic settings (i.e., accessibility of a fully descriptive

feature space). Nevertheless, it is important to validate how

well the assumption of non-chaotic behavior holds for a

particular data type for the application of such models. In

a chaotic system, state prediction accuracy drops exponen-

tially with time, whereas in non-chaotic systems, neigh-

boring dynamical paths (thus the possibility of future state

prediction) remain long-term correlated. This provides an

avenue for quantifying the level of chaos for each data

type and the time length over which non-chaotic behavior

can be assumed.Moreover, new computational approaches

and modeling algorithms may be designed to account for

chaotic characteristics of the system, for example by

considering the exponential decay of prediction accuracy

over time.
Whereas chaos theory, diffusion-drift, and OT each

describe aspects of cell differentiation dynamics, we

further require comprehensive mathematical formula-

tions and theories around the highly deterministically

programmed, self-contained unfolding of cell differentia-

tion, for example of how a single cell (zygote) gives rise

to a complex organism consisting of multiple tissues

and cell types. Furthermore, one may confer multi-scale

descriptions to relate molecular observations, which

constitute a large stochastic component, to larger-scale

observations that appear to behave more deterministically

such as homeostasis of cell types at the level of tissues or

organisms via adaptation of frameworks from for example

statistical physics (Rau, 2017).

Navigating the complex high-dimensional features space

The complexity of cell differentiation poses the challenge

of efficiently navigating the high-dimensional space in

which the system is embedded. Several computational

approaches such as non-linear dimension reduction tech-

niques, pseudotime, and OT are based on cell-to-cell dis-

tances. Signals from early determinants of cell fate may,

however, fade when calculating cell-cell distances in a

space where noise from multiple dimensions adds up.

Thus, refining the feature space via prior knowledge of

the potential relevance of critical features as well as the

application of supervised methods may be more powerful

to identify weak, but predictive, signals. As such, the ratio-

nale would be to eliminate the redundancy of multiple

correlated features as opposed to accounting for all measur-

able features at once and in an unsupervised manner. The

application of supervised-learning methods to high-

dimensional data nonetheless requires large data collection

efforts.
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Figure 4. Incomplete measurements in high-dimensional systems introduce chaos
(A and B) (A) Chaotic (seemingly crossing and intermingling) dynamical trajectories in an observational space (here, the two-dimensional
data manifold in orange) are resolved (B) when the same system is measured in its full descriptive space (here, the three-dimensional data
manifold in gray), which disentangles the front (red) and back (yellow) views of the three-dimensional data manifold on which the
dynamics take place.
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Further, we note that the most predictive feature set may

(and does) vary piecewise in time. For example, geometry

and morphogens play an important role in early embryo-

genesis, whereas their role may be rather marginal in fully

structured organ systems, which, however, continue to

integrate environmental signals (Dewey et al., 2015).

Therefore, building local prediction models is necessary

and compatible with short-term predictability if one as-

sumes a chaotic model of cell differentiation and fate

decisions.

Imagine a cell was a simple non-chaotic system consist-

ing of only a dozen ðdÞ of regulatory elements (e.g., TFs)

with correlated and antagonistic regulatory relations

among them. Such a system would have a few attractor ba-

sins corresponding to stable fully differentiated cell types.

Any imaginary cell at a specific position of this dozen-

dimensional phase space would eventually converge to

one of those basins. It would then be rather easy to exper-

imentally position (artificial) cells in different regions of

this Rd space of all possible cell states (considering the

bounds of maximum gene expression levels) and test

how and toward which attractor basin they move. This

would imply that by sampling a representative amount of

initial cell states and observing their future states, we may

attain a satisfactory understanding of the dynamics any-

where within this space. We could then arguably more

confidently infer the regulatory rules underlying the

observed dynamics and simulate the dynamical path

from any initial cell state. To do so, we would assume a

mathematical model (e.g., a model considering up to 3rd-

order feature interactions). If the model is set up in such a

way that the number of features, and thus the number of

parameters to be inferred, ismuch smaller than the number

of sampled cells (and the transition trajectories between
20 Stem Cell Reports j Vol. 18 j 13–25 j January 10, 2023
them as additional ‘‘velocity’’ observations), we have a

good chance to have an ‘‘identifiable’’ mathematical model

(Gábor et al., 2017) for inferring the regulatory mecha-

nisms that have generated the observed data. However,

difficulties arise because a real-world cell is complex and

chaotic when observed at lower dimensions. This is, in

fact, forcing us to talk about ‘‘context-specific’’ and ‘‘cell-

type-specific’’ gene regulatory networks, acknowledging

our inability to sample the huge governing feature space

and the ‘‘universal’’ laws of regulatory interactions and

cells’ dynamics in the observation space. Sampling and

investigating only small neighborhoods around the known

attractors (cell types) in the huge phase space sounds like a

more viable strategy but at the cost of disregarding the

other dimensions and passages that relate the region to

othermore distant cell states. In this view, healthy differen-

tiation paths and natural determinants of cell fate consti-

tute only a small part of many other (not sampled) poten-

tial dynamical paths that could lead to the same cell type

(basin of attraction).

One approach to reducing the complexity of a system is

thus to both (1) restrict it to a group of its most relevant

players (e.g., TFs as core regulators of cell fate at a particular

differentiation stage) aswell as (2) considering the regulato-

ry interactions only in a certain context or neighborhood,

for example specific cell types, as exemplified by two

recent methods for inference of gene regulatory networks,

CellOracle (Kamimoto et al., 2020) and spliceJAC (Bocci

et al., 2022). Considering multiple sets of key players act

throughout differentiation, multiple local or time-resolved

consecutive regulatory networks would emerge. However,

in most instances, our understanding of the events leading

up to the expression of a TF, for instance, and its pleiotropic

downstream consequences and interactions, is limited.
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Meaning that even identifying a set of key players in the

neighborhood of a chosen cell state, which is rather iso-

lated from the rest of the players in the universal regulatory

network, is not straightforward. As such, we may want to

ideally consider the signaling events a stem cell receives,

how it integrates them, understand how they prime the

chromatin for TF transcription, and be aware of all post-

transcriptional and post-translational modulators that

ultimately regulate TF activity off (e.g., before translocation

to the nucleus) and on chromatin to shape cellular identity.

While reduced context-specific regulatory networks are

conceptually intriguing, current methodologies are not

able to adequately capture the complexity of features, leav-

ing us often with chaos.

Advancing the feature set via multi-omics

Single-cellmulti-omicshavebeen evolving rapidly, andmul-

tiple methodologies now capture information from up to

four data modalities (Mimitou et al., 2021; Swanson et al.,

2021). Nevertheless, many features implicated in cell fate

decisions remain not accounted for. Single-cell proteomics

may provide more robust means to infer a determinant’s

activity but currently are less scalable, and TFs that tend to

be present in low copy numbers will remain challenging

to quantify (Derks et al., 2022). Proteogenomics-based

approaches enable signal amplification, but require affinity

reagents (e.g., nanobodies, antibodies) to reliably quantify

theproteinof interest or its activity-modulatingpost-transla-

tionalmodification (Fiskin et al., 2022;Mimitou et al., 2021),

and are still relatively scarce for intracellular signaling or TF

molecules. Increasingly sensitive experimental spatial and

analytical approaches are rapidly enhancing conventional

single-cell omic workflows and will more readily enable in-

ferences about cell-cell communication and interactions

with, for example, a stem cell’s niche that may modulate

its fate (Moffitt et al., 2022; Nitzan et al., 2019). Geometric

position, cell shape, polarity, size/volume,mechanical forces

(Chan et al., 2019; Valet et al., 2021; Yang et al., 2021), and

metabolic activity are further regulatory factors that deter-

mine cell fate (Chakrabarty and Chandel, 2021), with their

relative contribution likely being context dependent.

Moving forward, identifying and accounting for all relevant

features appears heartening toward a non-chaotic under-

standing of cell fate decisions.

In this realm, lineage- and clonal-tracing approaches have

demonstrated their promise to identify predictive features of

cell fates by linking clonal cells together over different inter-

vals over the differentiation trajectory. However, current ap-

proachesmaynot enable inferencesof detailedphylogenetic

trees but rather divide cells into a few clonal subgroups,

hence providing limited power in locating the initial state

where each current cell originated from and where different

subclones diverged fromeachother in the past. For example,

in human hematopoiesis, we are currently able to readily
capture the full diversity of cell types and states for select

datamodalities. However, accounting for the high polyclon-

ality of the system, with tens to hundreds of thousands of

stem cells actively contributing to blood production (Lee-

Six et al., 2018; Mitchell et al., 2022), we will require more

scalablemeasurements to account for this clonal complexity

and do so in conjunctionwith readouts compatible with the

different feature sets implicated in cell fate (Lareau et al.,

2021). Moreover, we must consider that cell fate decisions

are also orchestrated on a systems level, as perturbations

(e.g., infection, blood loss) may require adaptations of the

stem cell pool to meet a specific short-term demand. More

generally we shall account for the interplay among different

cells in a tissue to maintain homeostasis (Jerby-Arnon and

Regev, 2022).

Yet, we do acknowledge the intuition that due to the

complexity of the system (e.g., high-dimensional feature

space, cell-cell communication, cell-environmental interac-

tions, cell migration, etc.) and potentially difficult to over-

come technical limitations, onewill not be able to fully char-

acterize the full phase space (i.e., the complete governing

feature set for an entire range of possible and dynamically

accessible cell states) of cell fatedynamicalpaths. Ifweaccept

this paradigm, the question should therefore bewhich com-

bination of measurable features provides the best predictive

poweronthe future stateof the cell infinite time (rather than

seeking a predictive power into arbitrary long time intervals,

which is as overly ambitious as predicting whether a child

will become amechanic or amusician at birth), and to quan-

tify for a specific set of features, over which time length their

predictions remain reliable.

Summary and conclusions

Cell fate decisions are central to development, homeosta-

sis, and adaptive responses to sustain the cellular integrity

of multi-cellular organisms. A deeper understanding of the

molecular circuits underlying these decisions is thereby of

substantial value for cell and regenerative medicine, where

specific types of cells are required in large amounts and/or

engineered with desired properties. The ability of single-

cell genomic approaches to resolve cellular heterogeneity

and associate molecular features with differentiation out-

comes has already showcased their potential to enhance

our understanding of the molecular underpinnings of

cell fate.

In this perspective, we, therefore, discussed select meth-

odologies and current practices in cell fate research. We

put popular mathematical models of cell differentiation

dynamics (pseudotime, diffusion-drift, cell state velocities,

and OT) into perspective and clarify their relations

with each other. We propose future investigations of

‘‘chaos’’ models for cell differentiation, given the unmeasu-

rably high complexity of the system, analogous to other
Stem Cell Reports j Vol. 18 j 13–25 j January 10, 2023 21
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high-dimensional chaotic problems like weather fore-

casting. Adapting such higher-level general frameworks

could help us refine our expectations and problem sets in

the studies of cell fate. We finally highlight the need to

reduce the complexity of the problem to tractable approx-

imations and models and discuss related contemporary

approaches.

Moving forward, we awaitmulti-omics-based integration

of additionalmolecular features with lineage/clonal tracing

and mathematical modeling with concomitant experi-

mental validations including in vitro systems of human

developmental processes (He et al., 2022; Liu et al., 2021;

Yu et al., 2021) to further catalyze discoveries within this

realm.
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M., Ly, K., Dupré, J.S., Sidow, L., et al. (2022). Lineage recording in

human cerebral organoids. Nat. Methods 19, 90–99.

Hoppe, P.S., Schwarzfischer, M., Loeffler, D., Kokkaliaris, K.D., Hil-

senbeck, O., Moritz, N., Endele, M., Filipczyk, A., Gambardella, A.,

Ahmed, N., et al. (2016). Early myeloid lineage choice is not initi-

ated by random PU.1 to GATA1 protein ratios. Nature 535,

299–302.

Jerby-Arnon, L., and Regev, A. (2022). DIALOGUE maps multicel-

lular programs in tissue from single-cell or spatial transcriptomics

data. Nat. Biotechnol. 40, 1467–1477. https://doi.org/10.1038/

s41587-022-01288-0.

Kamimoto, K., Hoffmann, C.M., and Morris, S.A. (2020). Cel-

lOracle: dissecting cell identity via network inference and

in silico gene perturbation. Preprint at bioRxiv. https://doi.org/

10.1101/2020.02.17.947416.

Khajuria, R.K., Munschauer, M., Ulirsch, J.C., Fiorini, C., Ludwig,

L.S., McFarland, S.K., Abdulhay, N.J., Specht, H., Keshishian, H.,

Mani, D.R., et al. (2018). Ribosome levels selectively regulate trans-

lation and lineage commitment in human hematopoiesis. Cell

173, 90–103.e19.

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H.,

Petukhov, V., Lidschreiber, K., Kastriti,M.E., Lönnerberg, P., Furlan,

A., et al. (2018). RNA velocity of single cells. Nature 560, 494–498.

Lange,M., Bergen,V.,Klein,M., Setty,M., Reuter, B., Bakhti,M., Lick-

ert,H.,Ansari,M., Schniering, J., Schiller,H.B., et al. (2022).CellRank

for directed single-cell fate mapping. Nat. Methods 19, 159–170.

Lareau, C.A., Duarte, F.M., Chew, J.G., Kartha, V.K., Burkett, Z.D.,

Kohlway, A.S., Pokholok, D., Aryee, M.J., Steemers, F.J., Lebofsky,

R., and Buenrostro, J.D. (2019). Droplet-based combinatorial in-

dexing for massive-scale single-cell chromatin accessibility. Nat.

Biotechnol. 37, 916–924.

Lareau, C.A., Ludwig, L.S., Muus, C., Gohil, S.H., Zhao, T., Chiang,

Z., Pelka, K., Verboon, J.M., Luo, W., Christian, E., et al. (2021).

Massively parallel single-cell mitochondrial DNA genotyping and

chromatin profiling. Nat. Biotechnol. 39, 451–461.

Lee-Six, H., Øbro,N.F., Shepherd,M.S., Grossmann, S., Dawson, K.,

Belmonte, M., Osborne, R.J., Huntly, B.J.P., Martincorena, I., An-

derson, E., et al. (2018). Population dynamics of normal human

blood inferred from somatic mutations. Nature 561, 473–478.

Liggett, L.A., and Sankaran,V.G. (2020). Unraveling hematopoiesis

through the lens of genomics. Cell 182, 1384–1400.
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Note S1: The diffusion-drift model of cell differentiation and its rela-
tion with Optimal Transport

Consider the probability density p(s, t) of cells occupying state coordinate s at a time point t. The
change in this density over time can be modelled by the diffusion-drift (also known as Fokker-Planck)
equation including three terms corresponding to stochasticity (diffusion), the potential energy landscape
U(s), and birth/death components of these dynamics. When denoting the diffusion coefficient as D(s)
(assuming that D and U are time independent), and population birth with birth/death rate as S(s, t),
the Fokker-Planck equation reads:

∂

∂t
p(s, t) = ∇ ·

(
∇D(s)p(s, t) + p(s, t)∇U(s) +∇S(s, t)p(s, t)

)
(1)

Note that in case of S(s, t) = 0, we would have conservation of mass such that
∫
p(s, t)ds = 1 for any

t. Otherwise, this integral can be less or greater than one, depending on the sum of birth/death events
over the space.

In discreet space, the probability density distribution at time t can further be denoted as a vector
P(t) of length N , where N is the number of the considered discreet cell states. The discreet version of
equation 1 reads:

∆P(t) = −P(t)Λ(L
α +W ) (2)

P(t) = P(t−1)(I − Λ(Lα +W )) (3)

where Λ is an N ∗ N diagonal matrix with the birth/death rates at each cell state, L the N ∗ N
Laplacian matrix (see for example (Haghverdi, 2016)), W the N ∗N drift matrix (similar to the energy
gradients ∇U(s) in Equation 1) and I presents the identity matrix. α ≥ 1 specifies the relative
strength of diffusion and drift terms, similarly to the role of diffusion coefficient D in the continuous
space formulation (for simplicity let us assume constant coefficients over the discreet data points as
well as over time). We can define Π = (I − Λ(Lα + W )) as the differentiation propagation operator
which maps P (t− 1) to P (t). After t time steps, we get:

P(t1+t) = P(t1)Π
t (4)

1



t_1 observation states 

unobserved states 

t_2 observation states 

Pseudotime axis of differentiation

Figure S 1

Consider the N discreet cell states in the phase (e.g., transcription) space as shown in Figure S 1,
which includes the observed cell states at two different time points. A realisation from the probability
density at time t1 is observed as P(t1) with N1 cells, and a sample Q(t2) with N2 cells at a later time
point t2 = t1 + t. A number of Nh intermediate cell states are unobserved (hidden states), such that
N1 + N2 + Nh = N . For the rest of this note, we will drop the time specifications of P(t1) and Q(t2)

simply referring to them as P and Q. For a given propagation matrix Π the likelihood for such an
observation set is given by:

L = PΠtQ (5)

=
∑

i,k∈1:N
P1i (Πt)ik Qk1 (6)

P = 1
N1

(1, 1, ..., 0, 0, ..., 0, 0, ...) and Q = 1
N2

(0, 0, ..., 0, 0, ..., 1, 1, ...) are both vectors of length N , with
nonzero values (= 1) only at the observed cell state positions at t1 and t2 respectively. Therefore, the
only non-zero terms Equation 6 come from:

L =
∑

i∈1:N1,k∈N−N2:N

P1i (Πt)ik Qk1 (7)

=
∑

i∈1:N1,k∈N−N2:N

P1i

[
(I − Λ(Lα +W ))t

]
ik

Qk1 (8)

=
∑

i∈1:N1,j∈1:N2

Pi π̂ij Qj (9)

, where we have redefined the 1 : N1 compartment of P as a new vector P and the (N − N2) : N
compartment of Q as Q. the respective compartment of matrix Πt is also denoted by a new N1 ∗ N2

matrix π̂. This implies that, the maximum-likelihood(ML) solution for the compartment of matrix
(Πt)i,k with i ∈ {1 : N1} and k ∈ {N −N2 : N} should be the same as the π̂ matrix we seek to optimise
in the Optimal Transport formalism (see Note S3).

Here we only describe the general form by which an ML solution for the diffusion-drift model would
translate to the Optimal Transport optimisation scheme. How exactly maximisation of log-likelihood
of the above function corresponds to each term in OT (see Note S3) has been researched recently
(Léonard, 2013; Fournier and Perthame, 2019), but the precise details and conditions of it (e.g., weak
topology requirement for the drift operator such that energy consumption of the transportation can be
assumed proportional to the Euclidean distance between the data points) are out of the scope of this
note. Interestingly, whereas assuming a model with an unknown number of unobserved intermediate
states may seem overwhelming, there is a mathematical workaround for it known as ”path integral”;
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one can assume a very large number of intermediate unobserved states (Nh → ∞), but then account for
paths of different length, i.e, summing transition probabilities over all possible paths of length t, but
also summing the probabilities over different path lengths (t = 1 : ∞). Such an integrated probability
of transition from a t1 cell state to a t2 cell state, turns out to be convergent and tractable (e.g., see
(Haghverdi et al., 2016)).

(Schiebinger et al., 2019) also point out the connection between diffusion-drift and optimal transport
frameworks and earlier works related to it (Cuturi, 2013; Léonard, 2013).

Note S2: Diffusion-drift’s relation with cell state velocities

We can rewrite equation 1 as:

∂

∂t
p(s, t) = ∇ · J⃗(s, t) (10)

J(s, t) = ∇D(s)p(s, t) + p(s, t)∇U(s) +∇S(s, t)p(s, t)

= V⃗ (s)p(s, t) +∇S(s, t)p(s, t) (11)

J⃗(s, t) can be interpreted as the flux of cells. That is, the time-derivative of the density p(s, t) is given
by the divergence of the flux; how much the number of cells changes in a volume around s in time δt
is equal to the number of cells that enter the volume minus the number of cells that exit it in δt (note

that probability density is the number of cells per volume, p(s, t) = δn(s,t)
δVOL ). In absence of birth/death

events, the mass flow in/out to the volume is given by δp =
∫
A J⃗δt =

∫
A

δn(s,t)

A⃗δt
δt =

∫
A

δn(s,t)V⃗ (s)

A⃗·V⃗ (s)δt
δt =∫

A p(s, t)V⃗ (s)δt, where A⃗ denotes the normal vectors of the surface of the volume and V⃗ (s) the velocity

vector field at position s. Therefore, by excluding birth/death events we have used the J⃗ ′ = V⃗ (s)p(s, t)
relation in equation 11, from which we conclude that cell state velocities are given by the sum of the
diffusion (noise) and drift (directed force) terms of the Fokker-Planck equation:

V⃗ (s)p(s, t) = ∇D(s)p(s, t) + p(s, t)∇U(s) (12)

Equation 12 is also known as the ”Langevin equation” in the statistical physics literature for Brow-
nian motion.

Note S3: The Optimal Transport model of cell differentiation

Here, we include the entropic regularised and unbalanced formulation of OT according to (Schiebinger
et al., 2019). To compute the Optimal Transport map between the data points P at time t1 and Q at
time t2, OT sets the following optimisation problem:

π̂ij = arg min
π

( ∑
i∈1:N1,j∈1:N2

c(si, sj)πij − ϵ
∑

i∈1:N1,j∈1:N2

πij log πij

+ β1KL

( ∑
i∈1:N1

πij ||Qj

)
+ β2KL

( ∑
j∈1:N2

πij ||Pi

) )
(13)

= arg min
π

( ∑
i∈1:N1,j∈1:N2

c(si, sj)πij − ϵ
∑

i∈1:N1,j∈1:N2

πij log πij

+ β1KL

(
µj ||Qj

)
+ β2KL

(
λi||Pi

) )
(14)
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si and sj determine the position of cells i ∈ {1 : N1} and j ∈ {1 : N2} from observation time points
t1 and t2, and P and Q present the N1 and N2 dimensional normalised state vectors at the corresponding
time points, similarly to the notation used in Note S1. c(si, sj) is the Euclidean distance between cell
i and j in the phase space and constitutes the energy consuming term of the transportation, similar
to drift in Note S1. ϵ determines the level of randomness (i.e., entropy) in the mapping between the
two observations, similar to diffusion. When using the OT model, the parameters ϵ, β1, β2 need to
be specified by the user. In the last line, µj =

∑N1
i=1 πij and λi =

∑N2
j=1 πij indicate the ”inferred”

birth/death rate for the corresponding cell states.
Too see display a form of the above regularized optimization problem of OT that more closely

relates to a log-likelihood maximisation scheme of the diffusion-drift operator (see the likelihood
function in equations 7-9), we expand the Kullback–Leibler divergence (KL) term as KL(µj ||Qj) =∑N2

j=1 µj(log(µj) − log(Qj)) and use the relation log(Qj) = log( 1
N2

) for all j ∈ 1 : N2 (similarly for
KL(λi||Pi) ):

π̂ij = arg min
π

( ∑
i∈1:N1,j∈1:N2

c(si, sj)πij − ϵ
∑

i∈1:N1,j∈1:N2

πij log πij

+β1
∑

j∈1:N2

µj(log(µj) + log(N2)) + β2
∑

i∈1:N1

λi(log(λi) + log(N1))

)
(15)

Using the OT formalism as such, one tries to identify the π̂ which best describes the observed
data P and Q generally without knowing the true values for the underlying (hidden) parameters of
the dynamics including the true birth/death rate at the position of each cell, the actual time steps
t by which the two observations are apart and the relative magnitude of randomness to the directed
(deterministic) component of cell differentiation.
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