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Note S1: The diffusion-drift model of cell differentiation and its rela-
tion with Optimal Transport

Consider the probability density p(s, t) of cells occupying state coordinate s at a time point t. The
change in this density over time can be modelled by the diffusion-drift (also known as Fokker-Planck)
equation including three terms corresponding to stochasticity (diffusion), the potential energy landscape
U(s), and birth/death components of these dynamics. When denoting the diffusion coefficient as D(s)
(assuming that D and U are time independent), and population birth with birth/death rate as S(s, t),
the Fokker-Planck equation reads:

∂

∂t
p(s, t) = ∇ ·

(
∇D(s)p(s, t) + p(s, t)∇U(s) +∇S(s, t)p(s, t)

)
(1)

Note that in case of S(s, t) = 0, we would have conservation of mass such that
∫
p(s, t)ds = 1 for any

t. Otherwise, this integral can be less or greater than one, depending on the sum of birth/death events
over the space.

In discreet space, the probability density distribution at time t can further be denoted as a vector
P(t) of length N , where N is the number of the considered discreet cell states. The discreet version of
equation 1 reads:

∆P(t) = −P(t)Λ(L
α +W ) (2)

P(t) = P(t−1)(I − Λ(Lα +W )) (3)

where Λ is an N ∗ N diagonal matrix with the birth/death rates at each cell state, L the N ∗ N
Laplacian matrix (see for example (Haghverdi, 2016)), W the N ∗N drift matrix (similar to the energy
gradients ∇U(s) in Equation 1) and I presents the identity matrix. α ≥ 1 specifies the relative
strength of diffusion and drift terms, similarly to the role of diffusion coefficient D in the continuous
space formulation (for simplicity let us assume constant coefficients over the discreet data points as
well as over time). We can define Π = (I − Λ(Lα + W )) as the differentiation propagation operator
which maps P (t− 1) to P (t). After t time steps, we get:

P(t1+t) = P(t1)Π
t (4)
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Consider the N discreet cell states in the phase (e.g., transcription) space as shown in Figure S 1,
which includes the observed cell states at two different time points. A realisation from the probability
density at time t1 is observed as P(t1) with N1 cells, and a sample Q(t2) with N2 cells at a later time
point t2 = t1 + t. A number of Nh intermediate cell states are unobserved (hidden states), such that
N1 + N2 + Nh = N . For the rest of this note, we will drop the time specifications of P(t1) and Q(t2)

simply referring to them as P and Q. For a given propagation matrix Π the likelihood for such an
observation set is given by:

L = PΠtQ (5)

=
∑

i,k∈1:N
P1i (Πt)ik Qk1 (6)

P = 1
N1

(1, 1, ..., 0, 0, ..., 0, 0, ...) and Q = 1
N2

(0, 0, ..., 0, 0, ..., 1, 1, ...) are both vectors of length N , with
nonzero values (= 1) only at the observed cell state positions at t1 and t2 respectively. Therefore, the
only non-zero terms Equation 6 come from:

L =
∑

i∈1:N1,k∈N−N2:N

P1i (Πt)ik Qk1 (7)

=
∑

i∈1:N1,k∈N−N2:N

P1i

[
(I − Λ(Lα +W ))t

]
ik

Qk1 (8)

=
∑

i∈1:N1,j∈1:N2

Pi π̂ij Qj (9)

, where we have redefined the 1 : N1 compartment of P as a new vector P and the (N − N2) : N
compartment of Q as Q. the respective compartment of matrix Πt is also denoted by a new N1 ∗ N2

matrix π̂. This implies that, the maximum-likelihood(ML) solution for the compartment of matrix
(Πt)i,k with i ∈ {1 : N1} and k ∈ {N −N2 : N} should be the same as the π̂ matrix we seek to optimise
in the Optimal Transport formalism (see Note S3).

Here we only describe the general form by which an ML solution for the diffusion-drift model would
translate to the Optimal Transport optimisation scheme. How exactly maximisation of log-likelihood
of the above function corresponds to each term in OT (see Note S3) has been researched recently
(Léonard, 2013; Fournier and Perthame, 2019), but the precise details and conditions of it (e.g., weak
topology requirement for the drift operator such that energy consumption of the transportation can be
assumed proportional to the Euclidean distance between the data points) are out of the scope of this
note. Interestingly, whereas assuming a model with an unknown number of unobserved intermediate
states may seem overwhelming, there is a mathematical workaround for it known as ”path integral”;
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one can assume a very large number of intermediate unobserved states (Nh → ∞), but then account for
paths of different length, i.e, summing transition probabilities over all possible paths of length t, but
also summing the probabilities over different path lengths (t = 1 : ∞). Such an integrated probability
of transition from a t1 cell state to a t2 cell state, turns out to be convergent and tractable (e.g., see
(Haghverdi et al., 2016)).

(Schiebinger et al., 2019) also point out the connection between diffusion-drift and optimal transport
frameworks and earlier works related to it (Cuturi, 2013; Léonard, 2013).

Note S2: Diffusion-drift’s relation with cell state velocities

We can rewrite equation 1 as:

∂

∂t
p(s, t) = ∇ · J⃗(s, t) (10)

J(s, t) = ∇D(s)p(s, t) + p(s, t)∇U(s) +∇S(s, t)p(s, t)

= V⃗ (s)p(s, t) +∇S(s, t)p(s, t) (11)

J⃗(s, t) can be interpreted as the flux of cells. That is, the time-derivative of the density p(s, t) is given
by the divergence of the flux; how much the number of cells changes in a volume around s in time δt
is equal to the number of cells that enter the volume minus the number of cells that exit it in δt (note

that probability density is the number of cells per volume, p(s, t) = δn(s,t)
δVOL ). In absence of birth/death

events, the mass flow in/out to the volume is given by δp =
∫
A J⃗δt =

∫
A

δn(s,t)

A⃗δt
δt =

∫
A

δn(s,t)V⃗ (s)

A⃗·V⃗ (s)δt
δt =∫

A p(s, t)V⃗ (s)δt, where A⃗ denotes the normal vectors of the surface of the volume and V⃗ (s) the velocity

vector field at position s. Therefore, by excluding birth/death events we have used the J⃗ ′ = V⃗ (s)p(s, t)
relation in equation 11, from which we conclude that cell state velocities are given by the sum of the
diffusion (noise) and drift (directed force) terms of the Fokker-Planck equation:

V⃗ (s)p(s, t) = ∇D(s)p(s, t) + p(s, t)∇U(s) (12)

Equation 12 is also known as the ”Langevin equation” in the statistical physics literature for Brow-
nian motion.

Note S3: The Optimal Transport model of cell differentiation

Here, we include the entropic regularised and unbalanced formulation of OT according to (Schiebinger
et al., 2019). To compute the Optimal Transport map between the data points P at time t1 and Q at
time t2, OT sets the following optimisation problem:

π̂ij = arg min
π

( ∑
i∈1:N1,j∈1:N2

c(si, sj)πij − ϵ
∑

i∈1:N1,j∈1:N2

πij log πij

+ β1KL

( ∑
i∈1:N1

πij ||Qj

)
+ β2KL

( ∑
j∈1:N2

πij ||Pi

) )
(13)

= arg min
π

( ∑
i∈1:N1,j∈1:N2

c(si, sj)πij − ϵ
∑

i∈1:N1,j∈1:N2

πij log πij

+ β1KL

(
µj ||Qj

)
+ β2KL

(
λi||Pi

) )
(14)
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si and sj determine the position of cells i ∈ {1 : N1} and j ∈ {1 : N2} from observation time points
t1 and t2, and P and Q present the N1 and N2 dimensional normalised state vectors at the corresponding
time points, similarly to the notation used in Note S1. c(si, sj) is the Euclidean distance between cell
i and j in the phase space and constitutes the energy consuming term of the transportation, similar
to drift in Note S1. ϵ determines the level of randomness (i.e., entropy) in the mapping between the
two observations, similar to diffusion. When using the OT model, the parameters ϵ, β1, β2 need to
be specified by the user. In the last line, µj =

∑N1
i=1 πij and λi =

∑N2
j=1 πij indicate the ”inferred”

birth/death rate for the corresponding cell states.
Too see display a form of the above regularized optimization problem of OT that more closely

relates to a log-likelihood maximisation scheme of the diffusion-drift operator (see the likelihood
function in equations 7-9), we expand the Kullback–Leibler divergence (KL) term as KL(µj ||Qj) =∑N2

j=1 µj(log(µj) − log(Qj)) and use the relation log(Qj) = log( 1
N2

) for all j ∈ 1 : N2 (similarly for
KL(λi||Pi) ):

π̂ij = arg min
π

( ∑
i∈1:N1,j∈1:N2

c(si, sj)πij − ϵ
∑

i∈1:N1,j∈1:N2

πij log πij

+β1
∑

j∈1:N2

µj(log(µj) + log(N2)) + β2
∑

i∈1:N1

λi(log(λi) + log(N1))

)
(15)

Using the OT formalism as such, one tries to identify the π̂ which best describes the observed
data P and Q generally without knowing the true values for the underlying (hidden) parameters of
the dynamics including the true birth/death rate at the position of each cell, the actual time steps
t by which the two observations are apart and the relative magnitude of randomness to the directed
(deterministic) component of cell differentiation.
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