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Abstract
Background Retinal degeneration leading to optical coherence tomography (OCT) changes is frequent in patients with 
multiple sclerosis (PwMS).
Objective To investigate associations among OCT changes, MRI measurements of global and regional brain volume loss, 
and physical and cognitive impairment in PwMS.
Methods 95 PwMS and 52 healthy controls underwent OCT and MRI examinations. Mean peripapillary retinal nerve fiber 
layer (pRNFL) thickness and ganglion cell/inner plexiform layer (GCIPL) volume were measured. In PwMS disability was 
quantified with the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT). Associations 
between OCT, MRI, and clinical measures were investigated with multivariable regression models.
Results In PwMS, pRNFL and GCIPL were associated with the volume of whole brain (p < 0.04), total gray matter 
(p < 0.002), thalamus (p ≤ 0.04), and cerebral cortex (p ≤ 0.003) –both globally and regionally–, but not white matter. pRNFL 
and GCIPL were also inversely associated with T2-lesion volume (T2LV), especially in the optic radiations (p < 0.0001). The 
brain volumes associated with EDSS and SDMT significantly overlapped with those correlating with pRNFL and GCIPL.
Conclusions In PwMS, pRNFL and GCIPL reflect the integrity of clinically-relevant gray matter structures, underling the 
value of OCT measures as markers of neurodegeneration and disability in multiple sclerosis.
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Introduction

Neuroaxonal loss plays a crucial role in multiple sclero-
sis (MS) pathophysiology showing close association with 
clinical disability [1]. However, direct in vivo monitoring 
of neuroaxonal loss remains challenging.

Optical coherence tomography (OCT) offers the oppor-
tunity to visualize and quantify layers of neurons and 
axons in the retina, in a non-invasive and patient-friendly 
way, with high inter-rater and intra-rater reproducibility 
[2] ⁠. OCT alterations are frequently detected in patients 
with MS (PwMS) as a consequence of clinically-evident or 
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sub-clinical optic nerve demyelination, retrograde degen-
eration triggered by tissue damage in the posterior visual 
pathway, and primary degeneration of ganglion cells in 
parallel with neuronal degeneration in the rest of the CNS 
[3] ⁠.

Among OCT measures, peripapillary retinal nerve fiber 
layer (pRNFL) and ganglion cell/inner plexiform layer 
(GCIPL) are most sensitive and robust in reflecting MS-
associated neurodegeneration; conversely, retinal inner 
nuclear layer (INL) has been associated with inflamma-
tory activity [4].

Previous studies showed consistent associations of OCT 
measures with white matter lesion load and total brain 
volume (TBV) loss [5–8] ⁠. However, investigations on the 
relationship of OCT measures with the volumes of gray 
matter (GM) and white matter (WM), as well as with vol-
umes of regional brain structures relevant in MS pathol-
ogy, produced contradictory results [6, 8–11] ⁠. Conflicting 
results were also obtained when considering the cerebral 
cortex regionally, with reported associations either lim-
ited to areas involved in the visuospatial performance or 
concomitantly involving areas relevant for cognitive per-
formance—including the insula [12–14] ⁠.

Understanding to what extent OCT measures reflect 
brain volume loss, not only in the afferent visual pathway, 
but also in regions critically involved in physical and cog-
nitive performance, can strengthen the use of OCT as a 
marker of CNS neurodegeneration in MS.

Thus, our aims were:

1. To investigate the association of OCT measures 
(pRNFL, GCIPL, and INL) with global/regional brain 
volumes; additionally, to explore the relative strength of 
association of OCT measures with (i) global neurode-
generation and (ii) WM lesions in the optic radiations 
(ORs) – as a proxy of retrograde degeneration in the 
visual pathway;

2. To assess whether OCT measures reflect changes in 
brain volumetric measurements related to physical and 
cognitive disability.

Materials and methods

Study design

We conducted a cross-sectional study in PwMS and healthy 
controls (HCs). Demographic and clinical data were col-
lected. PwMS underwent neurological and cognitive screen-
ing assessments; both PwMS and HCs underwent OCT and 
brain MRI examinations. All evaluations were obtained for 
each participant within two weeks.

The study is reported following the Strengthening the 
Reporting of Observational Studies in Epidemiology 
(STROBE) guideline [15] ⁠. The study was approved by the 
local ethics committee (Ethikkommission Nordwest- und 
Zentralschweiz; 285/11) and conducted in accordance with 
the declaration of Helsinki. Written informed consent was 
obtained from all subjects before study enrollment.

Participants

PwMS were prospectively recruited at the MS Center of the 
University Hospital of Basel, between 2016 and 2019. A 
thorough investigation of the past clinical history was per-
formed by neurologists specialized in MS. For inclusion, 
PwMS had to fulfill the following criteria: 1) diagnosis of 
MS according to the 2010 revised McDonald criteria; [16] ⁠ 
2) age ≥ 18 years. The exclusion criteria were: 1) known 
ophthalmological comorbidities (e.g. glaucoma); 2) refrac-
tive errors > 6 diopters; 3) history of bilateral optic neuritis.

HCs were recruited between 2017 and 2019, matched 
in age and sex with the PwMS. To be enrolled, HCs had 
to have: 1) no medical history of neurological, psychiatric, 
and ophthalmological diseases; 2) age ≥ 18 years. The only 
exclusion criterion was the presence of refractive errors > 6 
diopters.

Clinical assessment

In PwMS, neurological examinations were performed by 
certified raters to determine the Expanded Disability Sta-
tus Scale (EDSS) score [17].Cognitive performance was 
explored with the Symbol Digit Modalities Test (SDMT) 
[18]. ⁠ Raw SDMT scores were converted to age, and educa-
tion-corrected z-scores based on published normative data ⁠ 
[18].

OCT acquisition and analysis

OCT was performed on a Heidelberg Engineering Spectralis 
device, in a dark room, without pupil dilation. OCT quality 
control was performed according to the OSCAR-IB crite-
ria; [19] ⁠ all images passed quality assessment. pRNFL was 
measured using 3.4 mm ring scans around the optic nerve 
head (12°, 1536 A-scans, 12 ≤ ART ≤ 100); the mean thick-
ness was used in the analysis. Macular data were obtained 
with a macular volume scan, with eye-tracking (scan details: 
25° × 30°, 61 vertical B-scans, 768 A-scans per B-scan). 
After an initial automated segmentation of all intraretinal 
layers using the software provided by Heidelberg Engi-
neering (Eye Explorer 1.9.13.0), segmentation results of 
the macular ganglion cell layer (GCL), the inner plexiform 
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layer (IPL), and the INL were checked, and corrected where 
needed. For the analyses we used the combined GCIPL 
volume of the macular region (6-mm-diameter cylinder of 
the 1, 3, 6 mm ring adjacent to the fovea), as well as the 
INL volume. 8 subjects had to be excluded for the GCIPL/
INL analysis (reasons for exclusion are reported in Online 
Resource 1).

To selectively investigate the effect of chronic neurode-
generation on OCT measures, excluding changes related to 
acute focal damage, eyes with history of optic neuritis were 
excluded (n = 31).

MRI acquisition and analysis

Brain MRI was acquired on a 3-Tesla scanner (Siemens 
Skyra). The protocol included a 3-dimensional (3D), 
T1-weighted, 1-mm isotropic magnetization prepared rapid 
gradient-echo (MPRAGE), and a 3D, 1-mm isotropic fluid-
attenuated inversion recovery (FLAIR). All images were 
visually assessed to ensure absence of image artifacts; 5 
scans had to be excluded due to insufficient quality (motion 
artifacts).

T2-hyperintense lesions were automatically segmented, 
and results were manually revised. Volumetric analysis was 
performed on MPRAGE images, after filling WM hypoin-
tensities, with FreeSurfer (version 6.0.0, http:// surfer. nmr. 
mgh. harva rd. edu). Cortical reconstructions and volumetric 
segmentations were visually inspected, and manually cor-
rected if needed.

As measures of interest we considered total brain volume 
(TBV), total GM volume, total WM volume, and cerebel-
lar volume, as well as volumes of specific GM structures 
(namely cerebral cortex, thalamus, caudate, putamen, and 
hippocampus). Cortical volumes were further investigated 
regionally, according to the Desikan–Killiany atlas [20]. 
Total intracranial volume (TIV) was quantified with SPM12 
(www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12).

T2-lesion volume (T2LV) in each brain lobe and in the 
ORs was obtained after co-registering the lesion masks with 
FreeSurfer reconstructions and with the Juelich brain seg-
mentation atlas, [21] ⁠ respectively.

Statistical analysis

Statistical analysis was conducted in R (version 3.6.3; http:// 
www.R- proje ct. org).

Comparisons of demographic, clinical, OCT, and 
MRI measurements between PwMS and HCs were per-
formed with Welch’s t-test, Pearson’s chi-squared test, 
and Mann–Whitney U test. Due to non-normal distribu-
tion, T2LV and EDSS score were logarithmic transformed 
(T2LV-log; EDSS-log).

Associations between OCT measures and (i) global/
regional T2LV-log, (ii) EDSS-log, and (iii) SDMT z-score 
were explored with univariable linear regression models. 
Associations between global/regional brain volumes and (i) 
OCT measures, (ii) EDSS-log, and (iii) SDMT z-score were 
investigated with general linear models, adjusting for age, 
sex, total T2LV-log, and TIV.

To assess the relative strength of association of (i) retro-
grade degeneration along the visual pathway and (ii) global 
neurodegeneration, with the OCT measures of neuroaxonal 
loss (RNFL, GCIPL), we performed multivariable regres-
sion models with OCT measures as dependent variables, and 
T2LV-log in ORs (taken as a marker of retrograde degen-
eration) as well as GM fraction (i.e., the ratio between GM 
volume and TIV, taken as a marker of global neurodegenera-
tion) as explanatory variables, adjusting for age, and sex.

Results were corrected for multiple comparisons using 
the false discovery rate (FDR) approach; reported p-values 
are adjusted for FDR. Effect size is reported as the standard-
ized regression coefficient (β). Graphical results for regional 
cortical volume analysis were displayed with the fsbrain 
package [22] ⁠.

To exclude that the observed OCT-MRI associations were 
affected by the effect of disease-modifying therapies (DMTs) 
which are known to have an impact on both MRI and OCT 
measures [23] ⁠—we performed a sensitivity analysis includ-
ing DMTs class as a covariate in the statistical models.

Additional sensitivity analyses were conducted to explore 
the OCT-MRI associations (i) separately in patients with 
relapsing–remitting MS (RRMS) and progressive MS, as 
well as (ii) in multivariable regression models including 
also disease duration and EDSS score as covariates (Online 
Resources 3–6).

Results

In total, 95 PwMS and 52 HCs were included in the study. 
Demographic and clinical characteristics of the cohort are 
summarized in Table 1.

Group comparisons

PwMS and HCs did not differ in age (p = 0.47), and sex 
distribution (p = 0.89).

Compared to HCs, PwMS showed lower pRNFL thick-
ness (p < 0.0001), and lower GCIPL volume (p < 0.0001); 
there were no significant differences in INL volume 
(p = 0.06) (Table 2).

PwMS showed lower TBV than HCs, as well as lower 
total GM and WM volumes (all p < 0.0001) (Table 2).

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.R-project.org
http://www.R-project.org
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Associations between OCT and brain volumetric 
measurements

In PwMS, both pRNFL and GCIPL were positively associ-
ated with TBV (β = 0.170; p = 0.002 and β = 0.128; p = 0.04, 
respectively), and total GM volume (β = 0.252; p = 0.001 and 
β = 0.271; p = 0.002, respectively), but not with total WM 
volume.

When looking at different GM regions, both pRNFL and 
GCIPL were associated with the volumes of the cerebral 
cortex (β = 0.234; p = 0.003 and β = 0.273; p = 0.002, respec-
tively), and thalamus (β = 0.214; p = 0.002 and β = 0.150; 
p = 0.04, respectively), while only GCIPL was associated 
with hippocampal volume (β = 0.235; p = 0.04) (Table 3).

When considering regional cortical volumes, mean 
pRNFL thickness showed extensive associations involving 

Table 1  Main demographic and 
clinical cohort’s characteristics

* Group comparison performed with Welch’s t-test; **group comparison performed with Pearson’s chi-
squared test
Abbreviations: PwMS patients with multiple sclerosis; HCs healthy controls; SD standard deviation; ON 
optic neuritis; RRMS relapsing–remitting multiple sclerosis; PMS progressive multiple sclerosis; EDSS 
Expanded Disability Status Scale; DMTs disease-modifying therapies; Platform DMTs included interferon-
beta, and glatiramer-acetate; Oral DMTs included teriflunomide, dimethyl fumarate, and fingolimod; mon-
oclonal antibodies DMTs included natalizumab, rituximab, ocrelizumab, and alemtuzumab

PwMS (n = 95) HCs (n = 52) Between-group comparison

Age (years): mean (SD) 49.9 (11.3) 51.5 (13.6) *t = 0.722, p = 0.472
Female: n (%) 61 (64) 34 (65) **X2 = 0.020, p = 0.887
Disease duration (years): mean (SD) 18.2 (9.6) / /
Previous ON: n (%) 31 (33) / /
Disease course:
RRMS: n (%)
PMS: n (%)

78 (82)
17 (18)

/ /

EDSS: median (min–max) 3.0 (0–8.0) / /
On DMTs: n (%)
Platform: n
Oral:
Monoclonal antibodies: n

69 (73)
8
48
13

/ /

Table 2  OCT and MRI cohort’s 
characteristics

* Group comparison performed with Welch’s t-test; **group comparison performed with Mann–Whitney U 
test; ***group comparison performed with general linear model adjusting for age, sex, and total intracra-
nial volume. Significant p-values are reported in bold
Abbreviations: PwMS patients with multiple sclerosis; HCs healthy controls; pRNFL peripapillary retinal 
nerve fiber layer; GCIPL ganglion cell-inner plexiform layer; INL inner nuclear layer; T2LV, T2-lesion vol-
ume; IQR interquartile range; SD standard deviation; GM gray matter; WM white matter

OCT measures PwMS (n = 95) HCs (n = 52) Between-group comparison

 pRNFL (μm): mean (SD) 92.9 (14.0) 100.9 (7.4) *t = – 4.523, p < 0.0001
 GCIPL  (mm3): mean (SD) 1.87 (0.24) 2.04 (0.11) *t = – 5.626, p < 0.0001
 INL  (mm3): mean (SD) 0.99 (0.06) 0.97 (0.06) *t = 1.882, p = 0.063

MRI measures
 T2LV (ml): median (IQR) 6.6 (12.5) 0.1 (0.5) **W = 4476, p < 0.0001
 Total brain volume (ml): mean (SD) 1,013.4 (112.2) 1,128.5 (120.6) ***t = – 8.343, p < 0.0001
 Total GM volume (ml): mean (SD) 565.2 (54.3) 629.3 (68.2) ***t = – 7.744, p < 0.0001
 Total WM volume (ml): mean (SD) 449.6 (68.8) 499.5 (65.6) ***t = – 4.342, p < 0.0001
 Cerebral cortex volume (ml): mean (SD) 418.6 (44.4) 463.8 (55.9) ***t = – 6.232, p < 0.0001
 Deep GM volume (ml): mean (SD) 50.1 (6.0) 57.1 (6.2) ***t = – 7.925, p < 0.0001
 Thalamic volume (ml): mean (SD) 12.4 (2.2) 14.2 (2.1) ***t = – 5.144, p < 0.0001
 Caudate volume (ml): mean (SD) 6.3 (1.0) 6.9 (1.2) ***t = – 1.954, p = 0.0526
 Putamen volume (ml): mean (SD) 8.4 (1.9) 9.7 (1.4) ***t = – 5.132, p < 0.0001
 Hippocampal volume (ml): mean (SD) 7.2 (0.8) 8.3 (0.8) ***t = – 8.548, p < 0.0001
 Cerebellar volume (ml): mean (SD) 119.6 (11.9) 138.0 (18.0) ***t = – 6.608, p < 0.0001



2143Journal of Neurology (2023) 270:2139–2148 

1 3

the frontal (β = 0.277; p = 0.007), occipital (β = 0.239; 
p = 0.01), insular (β = 0.227; p = 0.01), and parietal 
(β = 0.205; p = 0.01) lobes. Similarly, GCIPL volume was 
positively associated with cortical volume in the frontal 
(β = 0.295; p = 0.004), parietal (β = 0.251; p = 0.004), 
occipital (β = 0.244; p = 0.02), insular (β = 0.219; 
p = 0.002), and temporal (β = 0.194; p = 0.02) lobes 
(Fig. 1).

In contrast to pRNFL and GCIPL, INL volume was not 
associated with any measure of GM volume. Conversely, 
INL showed an inverse association with total WM volume 
(β = – 0.160; p = 0.01) (Table 3). In the cortical regional 
analysis, INL was not associated with the volume of any 
brain lobe, and only a regional association to the pars 

opercularis of the inferior frontal gyrus emerged (β = 0.305; 
p = 0.003) (Fig. 1).

Associations between OCT and MRI measures were not 
significantly altered after including in the models DMTs 
class as a covariate (Online Resource 2).

In the subgroup of patients with RRMS, correlations 
of pRNFL with TBV, total GM volume, cerebral cortex 
volume, and thalamic volume were also observed (Online 
Resource 3). No associations between OCT and MRI 
measures survived multiple comparisons correction in 
the subgroup of patients with progressive MS (n = 17).

Significant associations between OCT and MRI meas-
ures were confirmed in PwMS also when including dis-
ease duration and EDSS score as covariates in the multi-
variable regression models (Online Resources 5–6).

Table 3  Association between 
OCT measures and brain 
volumes in PwMS

Associations between brain volumes (dependent variable) and OCT measures (independent variable) were 
explored with general linear models, adjusting for age, sex, T2-lesion volume, and total intracranial vol-
ume. Significant p-values are reported in bold
Abbreviations: pRNFL peripapillary retinal nerve fiber layer; GCIPL ganglion cell-inner plexiform layer; 
INL inner nuclear layer; β standardized regression coefficient; FDR false discovery rate; GM gray matter; 
WM white matter

pRNFL (n = 95) GCIPL (n = 89) INL (n = 89)

β FDR-p β FDR-p β FDR-p

Total brain volume 0.170 0.0020 0.128 0.0386 – 0.079 0.5585
Total GM 0.252 0.0013 0.271 0.0019 0.041 0.6956
Total WM 0.079 0.1324 – 0.006 0.9114 – 0.160 0.0130
Cerebral cortex 0.234 0.0031 0.273 0.0021 0.080 0.5774
Thalamus 0.214 0.0020 0.150 0.0408 – 0.057 0.6000
Caudate 0.189 0.0876 0.175 0.08813 0.049 0.6956
Putamen 0.129 0.0876 0.075 0.3594 – 0.075 0.5774
Hippocampus 0.175 0.0876 0.235 0.0408 – 0.004 0.9657
Cerebellum 0.159 0.1176 0.187 0.0881 – 0.129 0.5643

Fig. 1  Associations of regional cortical volumes with OCT measures 
and with measures of disability. The effect size, expressed as stand-
ardized beta (β), is graphically displayed for each of the Desikan-
Killiany atlas regions presenting significant association after multiple 

comparisons correction. Abbreviations: pRNFL peripapillary retinal 
nerve fiber layer; GCIPL ganglion cell-inner plexiform layer; INL 
inner nuclear layer; EDSS, Expanded Disability Status Scale; SDMT 
Symbol Digit Modalities Test; β standardized regression coefficient
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No association between OCT measures and brain vol-
umes were found in HCs.

Associations between OCT and WM lesions

In PwMS, both pRNFL and GCIPL were associated 
with total T2LV (β = – 0.327; p = 0.004 and β = – 0.397; 
p < 0.0001, respectively), as well as with T2LV in vast 
majority of brain lobes. The strongest association was 
measured with T2LV in the ORs (pRNFL: β = – 0.387; 
p = 0.001; GCIPL: β = – 0.471; p < 0.0001); the associa-
tion remained significant after adjusting for total T2LV. 
INL volume was not associated with total, nor with lobar 
T2LV (Table 4).

No association between OCT measures and global/
regional T2LV was present in HCs.

Overall, lesion volume in the ORs (taken as marker of 
retrograde degeneration in the visual pathway) and GM 
fraction (taken as marker of global neurodegeneration in 
the brain) showed a similar strength of associations with 
both pRNFL and GCIPL (Table 5).

Associations among OCT, MRI and clinical measures

Both pRNFL and GCIPL were inversely associated 
with the EDSS (β = – 0.422; p < 0.0001 and β = – 0.519; 
p =  < 0.0001, respectively), and positively associated with 
the SDMT (β = 0.377; p = 0.0002 and β = 0.402; p < 0.0001, 
respectively), while INL did not significantly correlate with 
clinical measures.

EDSS and SDMT were associated with thalamic volume 
(β = – 0.233; p = 0.01 and β = 0.153; p = 0.04, respectively), 
while only SDMT showed association with TBV (β = 0.152; 

p = 0.02), total GM volume (β = 0.198; p = 0.02), and cortical 
volume (β = 0.188; p = 0.04). In regional cortical analysis, 
the EDSS showed an association limited to the volume of 
post-central gyrus (β = – 0.308; p = 0.04), while the SDMT 
presented more extensive associations, involving areas in the 
frontal, parietal, and cingulate cortex. The overlap between 
the brain structures showing associations with EDSS/SDMT 
and those associated with OCT measures is graphically dis-
played in Figs. 1 and 2.

Discussion

In this study, we found that the OCT measures of neuroax-
onal loss (pRNFL, GCIPL) in PwMS reflect GM rather 
than WM integrity. Both pRNFL and GCIPL showed also 

Table 4  Association between 
T2-lesion load and OCT 
measures in PwMS

*Association explored with univariable linear regression; **association explored with linear regression 
adjusting for total T2LV. Significant p-values are reported in bold
Abbreviations: pRNFL peripapillary retinal nerve fiber layer; GCIPL ganglion cell-inner plexiform layer; 
INL inner nuclear layer; β standardized regression coefficient; FDR false discovery rate; T2LV T2-weighted 
hyperintense lesion volume; ORs optic radiations

pRNFL (n = 95) GCIPL (n=89) INL (n=89)

β FDR-p β FDR-p β FDR-p

*Total T2LV – 0.327 0.0036 – 0.397  < 0.0001 – 0.100 0.9759
Regional lesion volume
 *Temporal T2LV – 0.253 0.0198 – 0.344 0.0020 – 0.045 0.9759
 *Frontal T2LV – 0.223 0.0338 – 0.301 0.0062 – 0.001 0.9950
 *Parietal T2LV – 0.268 0.0157 – 0.340 0.0020 – 0.010 0.9950
 *Occipital T2LV – 0.335 0.0036 – 0.426 0.0001 – 0.033 0.9759
 *Cingulate T2LV – 0.299 0.0074 – 0.272 0.0129 0.067 0.9759
 *Insular T2LV – 0.162 0.1160 – 0.222 0.0367 – 0.045 0.9759
 *ORs T2LV – 0.387 0.0010 – 0.471  < 0.0001 – 0.078 0.9759
 **ORs T2LV – 0.438 0.0334 – 0.464 0.0186 0.034 0.9759

Table 5  Association of ORs lesions and GM fraction with the OCT 
measures of neuroaxonal loss

The OCT measures were each time dependent variables, and the 
lesion volume in the ORs as well as the GM fraction were independ-
ent variables in the linear regression models, adjusting for age, sex, 
total T2LV, and total intracranial volume. Significant p-values are 
reported in bold
Abbreviations: pRNFL peripapillary retinal nerve fiber layer; GCIPL 
ganglion cell-inner plexiform layer; β standardized regression coef-
ficient; T2LV T2-weighted hyperintense lesion volume; ORs optic 
radiations; GM gray matter

pRNFL GCIPL

Independent variables β p-value β p-value

T2LV in ORs – 0.393 0.0004 – 0.383 0.0006
GM fraction 0.337 0.0145 0.380 0.0075
Adjusted R2 0.2170 0.2519
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associations with the burden of focal lesion damage, espe-
cially in the ORs (in line with retrograde degeneration in 
the visual pathway). Overall, the strength of the OCT-asso-
ciations was similar for GM fraction and for lesion volume 
in the ORs, suggesting that global CNS neurodegeneration 
and retrograde degeneration along the visual pathway may 
contribute similarly to pRNFL and GCIPL thinning in MS.

Notably, pRNFL and GCIPL were associated with vol-
umes of brain structures such as the thalamus and the cer-
ebral cortex, that are related to physical and cognitive dis-
ability in MS.

In contrast to the OCT measures of neuroaxonal loss, INL 
showed no associations with GM integrity nor with WM 
lesions, but an inverse association with WM volume.

Our results are in line with previous studies showing 
associations between retinal measures of neuroaxonal loss 
and GM volume [6, 8, 11]. ⁠ The association of pRNFL and 
GCIPL with GM integrity provides information on key 
pathological processes of MS. Indeed, GM is significantly 
affected in PwMS, even from the earliest disease stages, with 
rates of decline greater than WM [24, 25] Furthermore, GM 
atrophy is recognized as a pivotal process underlying disease 
progression in MS, reflecting disability to a greater extent 
than WM loss [26]. ⁠ Considering that MRI monitoring of 
GM integrity at the individual patient level is still very chal-
lenging in clinical practice, [26, 27] OCT may represent a 
valuable marker of GM damage and neurodegeneration in 
MS.

The relationship between OCT measures of neuroaxonal 
loss and thalamic volume is also of interest, since thalamic 
atrophy has been proposed as a marker of the net accumula-
tion of MS-related damage throughout the entire CNS [28].

In our cohort, pRNFL and GCIPL correlated also with the 
volume of the entire cerebral cortex, as well as regionally 
with the integrity of several cortical areas. Cortical atrophy 
is common in MS, and it is considered to progress largely 
in a non-random manner, correlating with both physical and 
cognitive disability [29, 30].⁠ Interestingly, we found that the 
areas showing association with OCT measures were not lim-
ited to the visual cortex, but rather involved diffuse regions 
in the frontal, parietal, temporal, and insular lobes, in a pat-
tern more widespread than previously reported [12–14]. ⁠

To further investigate whether the brain volumes associ-
ated with OCT measures were clinically-relevant, we also 
explored the association between brain volumes and meas-
ures of physical and cognitive disability. Remarkably, the 
brain volumes associated with measures of both physical 
and cognitive disability significantly overlapped with those 
correlating with OCT measures of neuroaxonal loss. Spe-
cifically, after adjusting for age, sex, TIV, and lesion load, 
physical disability was associated with thalamic volume, 
while cognitive disability was associated with TBV, and the 
volumes of total GM, thalamus and cerebral cortex; all of 
these brain compartments were also associated with both 
pRNFL and GCIPL.

In line with previous observations [5, 6, 11], ⁠ OCT meas-
ures of neuroaxonal loss correlated also with WM lesion 
load, most notably in the ORs. Interestingly, in contrast with 
a recent study which reported an association with T2LV only 
for pRNFL thickness, in our cohort GCIPL volume was also 
associated with T2LV (especially in the ORs), suggesting 
that retrograde degeneration reaches the GCIPL, as previ-
ously proposed [31] ⁠.

Fig. 2  Associations of MRI measures with OCT measures and with 
measures of disability. The effect size, expressed as standardized 
beta (β), is graphically displayed for each brain volume presenting 
significant association after multiple comparisons correction. Abbre-
viations: EDSS, Expanded Disability Status Scale; SDMT Symbol 

Digit Modalities Test; pRNFL peripapillary retinal nerve fiber layer; 
GCIPL ganglion cell-inner plexiform layer; INL inner nuclear layer; β 
standardized regression coefficient; GM gray matter; WM white mat-
ter
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Overall, we found very similar associations of the OCT 
measures with both WM lesion burden in the ORs and GM 
atrophy, suggesting a similar contribution of both mecha-
nisms to the retinal changes. However, these variables, 
together with age, sex, and TIV explained only 20–25% of 
the variability in OCT measures in our models. Thus, other 
factors, such as biological variability, subclinical demyelina-
tion of the optic nerves as well as subclinical inflammatory 
and neurodegenerative processes in the retina (independently 
of the brain), may be important contributors to the observed 
OCT changes. To exclude that the observed OCT-MRI asso-
ciations were critically driven by definite subsets of PwMS, 
we conducted sensitivity analyses to explore the effect of 
disease phenotype, disease duration, and EDSS score on 
such associations. Overall, substantial OCT-MRI correla-
tions were confirmed in patients with RRMS, as well as in 
the entire cohort of PwMS when adjusting for the effect 
of disease duration and disability severity. Notably, while 
no OCT-MRI associations survived multiple comparisons 
correction in patients with progressive MS, such results are 
likely significantly influenced by the small sample size in 
this subgroup.

In our cohort, INL volume showed a different behavior 
than pRNFL and GCIPL, exhibiting no associations with 
GM integrity and inverse correlation with WM volume. This 
result, which is in line with a previous study, [32] ⁠ may sup-
port the role of INL thickening as an indicator of inflam-
matory processes in the WM—ultimately resulting in WM 
atrophy as previously proposed [4, 32]. ⁠

Overall, we found that both pRNFL and GCIPL exhibited 
very similar patterns of associations not only with the MRI 
measures, but also with clinical disability. This is partially 
in contrast with a previous study suggesting that GCIPL 
may be a more reliable measure of neurodegeneration than 
pRNFL [11]. ⁠ Notably, these results may be of practical 
interest, since the assessment of pRNFL can be more easily 
implemented in clinical practice, and may present less inter-
center variability than GCIPL [33] ⁠.

No associations between OCT and MRI measures 
emerged in HCs, supporting the independence of the results 
found in PwMS from physiological, age-related mechanisms 
of retinal and brain neurodegeneration. Moreover, the lack 
of association between the incidental WM hyperintensities 
detected in HCs and retinal integrity may suggest that those 
lesions are less likely to produce retrograde degeneration, 
although it should be noted that the total lesion load was 
much lower in HCs than in PwMS, and a potential critical 
threshold may not have been reached.

Our study has limitations, the most relevant being its 
cross-sectional design, which does not allow the investiga-
tion of the temporal dynamics of the relationship between 
retinal and brain atrophy. Moreover, we did not include 
measures of spinal cord damage. Additionally, exploring a 

high number of associations between OCT and MRI meas-
ures may per se increase the chances for significant results; 
however, to address this point all results were corrected for 
multiple comparisons.

Strengths of our study are the comprehensive assessment 
of changes in the retina and brain, with measures reflecting 
both neurodegeneration and inflammation at a global but 
also regional level, as well as the combination of last gen-
eration OCT and high-resolution MRI, both obtained with 
standardized protocols. Despite the study being conducted 
in a single center, the PwMS included were participants of 
a representative MS-cohort, characterized by a variety of 
ages, degrees of disability, and treatments. Thus, taking into 
account the above mentioned limitations, the results of this 
study may be generalizable to a larger population with MS.

To conclude, we showed that OCT measures of retinal 
neuroaxonal loss (pRNFL and GCIPL) reflect the accumu-
lation of GM loss in PwMS, independently of lesion load 
in the whole brain and in the ORs. The overlap between 
the brain regions associated with retinal atrophy and those 
associated with physical and cognitive disability underlines 
the clinical relevance of OCT measures, and highlights the 
role of pRNFL and GCIPL as markers of neurodegeneration 
and disability in MS.
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