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Mitochondrial ribosomes are specialized to translate the 13
membrane proteins encoded in the mitochondrial genome,
which shapes the oxidative phosphorylation complexes essen-
tial for cellular energy metabolism. Despite the importance of
mitochondrial translation (MT) control, it is challenging to
identify and quantify the mitochondrial-encoded proteins
because of their hydrophobic nature and low abundance. Here,
we introduce a mass spectrometry–based proteomic method
that combines biochemical isolation of mitochondria with
pulse stable isotope labeling by amino acids in cell culture. Our
method provides the highest protein identification rate with
the shortest measurement time among currently available
methods, enabling us to quantify 12 of the 13 mitochondrial-
encoded proteins. We applied this method to uncover the
global picture of (post-)translational regulation of both mito-
chondrial- and nuclear-encoded subunits of oxidative phos-
phorylation complexes. We found that inhibition of MT led to
degradation of orphan nuclear-encoded subunits that are
considered to form subcomplexes with the mitochondrial-
encoded subunits. This method should be readily applicable
to study MT programs in many contexts, including oxidative
stress and mitochondrial disease.

In eukaryotes, both cytosolic and mitochondrial ribosomes
(mitoribosomes) play a central role in protein synthesis.
Cytosolic ribosomes produce constituents of the cellular pro-
teome encoded in the nuclear genome, whereas mitor-
ibosomes are specialized to translate the 13 membrane
proteins encoded in the mitochondrial genome. These trans-
lational products are some of the subunits of oxidative phos-
phorylation (OXPHOS) complexes that are essential for energy
generation in cells. Cytosolic and mitochondrial ribosomes
coordinate their translation to enable the proper assembly of
OXPHOS complexes on the inner mitochondrial membrane
(1–7). In yeast, cytosolic translation controls mitochondrial
translation (MT), directly facilitating balanced mitochondrial
and cytosolic protein synthesis through rapid feedback be-
tween the two translation systems (1–4, 6, 7). In contrast,
human OXPHOS complexes appear to be synthesized
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proportionally to each other by cytosolic and mitochondrial
ribosomes and do not rely on rapid feedback between the two
translation systems (5). Thus, the balance between the mito-
chondrial and cytosolic translation programs is essential for
maintaining mitochondrial proteostasis, that is, to prevent
accumulation of unwanted and potentially harmful assembly
intermediates (8). Moreover, many disease-associated mito-
chondrial mutations are known to impair the MT machinery
(9, 10), suggesting that dysregulation of MT leads to disease.

Despite the importance of the MT system, a simple and
robust method to monitor MT products is lacking. A classical
approach is pulse labeling of MT products with radiolabeled
amino acids, such as [35S]methionine and [35S]cysteine
(11, 12), but the use of radioactive materials and the low res-
olution of SDS-PAGE gel-based separation of the products
limits the utility of this methodology. Alternatively, mass
spectrometry (MS)–based proteomic approaches have been
developed to monitor protein synthesis (13). Quantitative
noncanonical amino acid tagging (14–16) relies on pulse la-
beling of newly synthesized proteins with a methionine analog,
azidohomoalanine (AHA) (17), allowing for selective enrich-
ment of the tagged protein pool through click chemistry as
well as MS-based profiling of the tagged proteins. Nascent
chain proteomics using puromycin or its analogs enables
isolation and identification of nascent polypeptide chains that
are being elongated by the ribosomes (18–24). However, these
methods require a large number of cells (typically >107 cells),
involve multiple steps to purify newly synthesized proteins via
affinity purification, and/or require the isolation of ribosome
complexes through density gradient ultracentrifugation.

In contrast, pulse stable isotope labeling of amino acids in cell
culture (pSILAC) is a simple and robust technique for global
analysis of cellular protein translation (20, 25–29). pSILAC in-
volvesmetabolic pulse labeling of newly synthesized proteins with
either heavy (e.g., Arg10/Lys8) ormedium–heavy (e.g., Arg6/Lys4)
amino acids for two cell populations of interest. The newly syn-
thesized (labeled) proteins can be distinguished from pre-existing
(nonlabeled) proteins by means of MS. The heavy to medium–
heavy ratios in the MS spectra reflect the differences in protein
production between the two conditions. Of note, a dynamic
SILAC approach (30), a variant of SILAC that measures protein
turnover by quantifying heavy (rate of synthesis) to light (rate of
degradation) ratios of individual proteins over a time course, was
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EDITORS’ PICK: Monitoring mitochondrial translation
also recently used to study the turnover rates of mitochondrial
proteins in yeast (31) and humans (32, 33). Recently, the Münch’s
group developed the multiplexed enhanced protein dynamics
method that combines pSILAC labeling with tandem mass tag
(TMT)–based multiplexing for studying stress-induced trans-
lational responses (27) and mitochondrial protein import (21).
Compared with the methods described previously, pSILAC does
not require many cells (from one to three orders of magnitude
fewer), and the downstream experimental process is simply a
conventional proteomic workflow. Thus, pSILAC would be a
powerful approach to monitor MT, but its application to mito-
chondrial research has been limited.

One of the major challenges in the analysis of MT is that
mass spectrometric identification and quantification of the 13
mitochondrial-encoded membrane proteins is hampered by
poor protein identification (Fig. 1 and see the Experimental
procedures section) because of the hydrophobic nature and
relatively low abundance of these proteins. To overcome this
problem, we present a method to comprehensively monitor
protein synthesis by mitoribosomes that combines pSILAC
with biochemical isolation of mitochondria. Our method offers
the highest protein identification rate and the shortest MS
measurement time among currently available methods. To
demonstrate its utility, we applied it to examine the trans-
lational regulation of the mitochondrial- and nuclear-encoded
subunits of the OXPHOS complexes.

Results and discussion

Biochemical optimization for comprehensive analysis of MT
products

While proteomic technologies to quantify protein synthesis
have been developed, comprehensive analysis of MT products
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Figure 1. Comparison of the present method with previous studies. The
identification numbers of MT-proteins (left axis) and the total LC/MS/MS
measurement time (right axis) are shown. The present study gave the
highest identification rate of MT-proteins (12 proteins) with the shortest
measurement time (14 h). To compare our method with that of previous
reports, we selected studies that had employed pSILAC (a (25), b (20), and c
(26)), AHA (e, (16)), puromycin (f, (18), g, (22), and h (23)) or dynamic SILAC-
tandem mass tag (TMT) (d (21) and i (21)). If multiple experiments were
performed within a study, the single specific experiment with the highest
proteome coverage was chosen. More detailed information is provided in
the Experimental procedures section. AHA, azidohomoalanine; MT, mito-
chondrial translation; pSILAC, pulse stable isotope labeling of amino acids in
cell culture.
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(hereafter, MT-proteins or MT-encoded subunits) remains
challenging, regardless of extensive peptide prefractionation
and the use of high-sensitivity mass spectrometers (Fig. 1 and
see the Experimental procedures section). To address this
issue, we first examined whether the identification of MT-
proteins could be improved by combining biochemical isola-
tion of mitochondria with the application of combinations of
proteases. Chymotrypsin cleaves on the C-terminal side of the
hydrophobic essential amino acids (phenylalanine, tryptophan,
and tyrosine) and thus might be suitable for digesting mem-
brane proteins and for pSILAC, which requires essential amino
acids for metabolic labeling. We adapted a reported protocol
for mitochondrial isolation according to Ref. (34), as it is
relatively simple (not requiring ultracentrifugation) and quick
(approximately 40 min) (see the Experimental procedures
section). Mitochondria pellets isolated from human embry-
onic kidney 293T (HEK293T) cells were lysed, and protein
digestion was performed with (1) chymotrypsin, (2)
chymotrypsin-lysC, (3) lysC-trypsin, or (4) chymotrypsin–
trypsin. Although chymotrypsin itself was used and evaluated
for mitochondrial research (33, 35), we also considered
combining chymotrypsin with the other proteases. In parallel,
total cell lysates were digested in the same way as a control.
Two biological replicates were analyzed. A complete list of the
6442 proteins identified from total cell lysates and mitochon-
drial pellets is provided in Table S1. We first confirmed that
mitochondrial proteins were highly enriched in the isolated
mitochondrial fractions, as judged by Gene Ontology (GO)
enrichment analysis (Fig 2A for the top three terms and Fig. S1
for all terms) and by examination of selected marker proteins
(Fig. 2B). It should be noted that contamination with proteins
from other membranes cannot be completely avoided (Fig. S1),
as discussed elsewhere (36).

Figure 2C shows the number of MT-proteins identified by
the different protocols. Isolation of mitochondria significantly
enhanced the identification of MT-proteins, as compared with
the total cell lysate. In every digestion protocol, 12 of the 13
MT-proteins were identified in the mitochondrial fraction,
whereas on average, only nine proteins were identified in the
total lysates. Importantly, it was possible to identify all 13 MT-
proteins by utilizing a combination of two digestion protocols
(e.g., lysC-trypsin and chymotrypsin) after mitochondrial
isolation, indicating that comprehensive profiling of the
MT-proteins can be achieved with these two digestion
protocols.

To further evaluate the relationship between protease
combinations and the number of MT-proteins identified, we
assessed theoretically observable (i.e., a length of 6–30 amino
acids) and experimentally identified peptides for both MT- and
nuclear-encoded OXPHOS subunits (Figs. 2, D and E and S2).
We found a clear correlation between the numbers of theo-
retical and identified peptides for all protease combinations
(Fig. 2, D and E, left panels). The reason why one of the 13
MT-proteins was missed in the mitochondrial fraction in every
digestion protocol (Fig. 2C) can be explained by observable
peptides. For example, we always missed MT-ND4L when
lysC-trypsin was used because there is only one arginine
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Figure 2. Optimization of biochemical conditions for proteomic analysis of mitochondrial-encoded proteins. A, the top three Gene Ontology (GO)
terms enriched in the mitochondrial fraction (top, light green) and total cell lysate (bottom, gray). B, abundance profiles of selected organelle markers (left:
mitochondria, center: cytosol, and right: nucleus) for the mitochondrial fraction (Mito) and total lysate (Total). Only lysC-trypsin digestion samples are shown.
C, the numbers of identified MT-proteins obtained under eight different conditions. The bars show the average number of identified proteins from two
independent experiments (filled circle). D and E, heatmaps showing the number of identified peptides (left) and iBAQ values (right) from MT- and nuclear-
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residue in that protein (Fig. 2D, bottom). This resulted in the
production of only two tryptic peptides of 23 and 75 residues
with a high content of hydrophobic amino acids, limiting the
identification of MT-ND4L-derived peptides. In addition to
the number of identified peptides, we assessed abundance of
MT-proteins quantified from individual protocols (Figs. 2, D
and E and S2, right panels). The different digestion protocols
for a given protein should yield different numbers of peptides.
To minimize and normalize this variation in the number of
peptides among the different protocols, we used intensity-
based absolute quantification (37) values, which are normal-
ized intensities based on the number of observable peptides.
Interestingly, even though fewer peptides were identified from
MT-proteins with lysC-trypsin digestion, we observed higher
intensity-based absolute quantification intensities for MT-
protein-derived tryptic peptides (Fig. 2, D and E, right
panels) compared with other protease-cleaved peptides. This
observation can potentially be explained by the fact that the
J. Biol. Chem. (2023) 299(2) 102865 3
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physicochemical properties of tryptic peptides with C-terminal
positive charges enhance the solubility, ionization efficiency,
and/or MS2 fragmentation efficiency of them.

Given that all the digestion protocols allowed identification
of 12 MT-proteins (Fig. 2C), we decided to focus on lysC-
trypsin digestion of isolated mitochondria for further anal-
ysis, as it produced tryptic peptides that are quantifiable with a
standard pSILAC protocol using stable isotope–labeled argi-
nine and lysine (28, 29), and also provided higher peptide in-
tensities of MT-proteins than did other proteases. Although
the chymotrypsin digestion protocols also allowed us to profile
12 MT-proteins, the broad usability of the method is
hampered because a tyrosine-, phenylalanine-, and
tryptophan-free custom-made medium and corresponding
stable isotope–labeled amino acids are required for pulse
labeling.
pSILAC approach to monitor MT

Having established suitable biochemical conditions, we next
performed pSILAC experiments. Chloramphenicol (CAP)
binds to the A-site crevice on bacterial and mitochondrial ri-
bosomes (38) and thereby inhibits mitochondrial, but not
cytosolic, translation (Fig. 3A). We sought to assess how in-
hibition of MT through CAP impacts on the synthesis of both
MT- and nuclear-encoded OXPHOS complex subunits by
applying pSILAC methodology.

The experimental scheme of the pSILAC experiment is
depicted in Figure 3A. HEK293T cells cultivated in “light (L)”
medium were switched to “medium–heavy (M)” (13C6-arginine
[Arg”6”] and D4-lysine [Lys”4”]) or “heavy (H)” (13C6,

15N4-
arginine [Arg”10”] and 13C6,

15N2-lysine [Lys”8”]) medium to
pulse label newly synthesized proteins. Cells were first pre-
incubated for 8 h and then further incubated for 16 h in the
presence of 10 μg/ml CAP or vehicle (dimethyl sulfoxide
[DMSO]). We chose 24 h pulse labeling because this period
has previously been employed in many studies (20, 25–29),
based on the fact that newly synthesized forms (M and H) of
most mammalian proteins can be detected over a period of
24 h (39), thus enabling accurate quantification of H/M ratios.
Two independent experiments involving label-swap conditions
were performed. For pSILAC samples, corresponding M- and
H-labeled cells were combined immediately after harvesting
cells to minimize technical variability during sample prepara-
tion, followed by mitochondria isolation and lysC and trypsin
digestion. The digested peptides were fractionated into seven
fractions using an SCX StageTip (40), and individual fractions
were analyzed by means of 110 min LC/MS/MS runs with a
65 min gradient, resulting in a measurement time of approx-
imately 14 h per condition. We then quantified the H/M ratios
in MS spectra to evaluate changes in protein synthesis between
CAP and DMSO treatments.

In total, we identified 4193 proteins, of which 3501 proteins
were quantified in both of two independent experiments and
were used for further analysis (see Table S2 for a complete list
of proteins and Fig. S3 for a more detailed workflow for
computational analysis). As expected, our method successfully
4 J. Biol. Chem. (2023) 299(2) 102865
quantified 12 of the 13 MT-proteins, all of which exhibited
translational inhibition except for MT-ND6 (Fig. 3B). Exem-
plary MS spectra for an MT-CO2-derived peptide
(VVLPIEAPIR, +2) are shown in Figure 3C. Manual inspection
of the MS spectra for an MT-ND6-derived peptide (EDPI-
GAGALYDYGR, +2) revealed that MT-ND6 is likely to be
downregulated by CAP (Fig. S4, left panel) as with other MT-
encoded subunits. On the one hand, particular isotope peaks of
M- and H-labeled MT-ND6 peptides overlapped with adjacent
high-intensity peaks in one of the replicates (Fig. S4, right
panel), thus hampering accurate quantification of H/M ratio of
the peptide.

In summary, these results show that the levels of newly
synthesized MT-proteins were decreased by CAP treatment
(Fig. 3, B and C), confirming that our approach is indeed able
to capture the expected changes in MT. The developed pro-
teomic method provides near-comprehensive (92%) quantifi-
cation of MT-proteins, representing an improvement of about
twofold in protein identification as compared with previous
pSILAC studies (Fig. 1 and see the Experimental procedures
section).

Of note, in addition to OXPHOS subunits, amounts of
several mitochondrial and nonmitochondrial proteins were
modulated by CAP (Fig. 3D and Table S2). For example,
MTRF1L (41) and RPUSD4 (42) which localize in mitochon-
dria and positively regulate MT, were downregulated, possibly
because of feedback regulation caused by the suppression of
MT. We also observed the inhibition of synthesis of non-
mitochondrial proteins involved in ubiquitination (USP5,
MYCBP2, RABGEF1, KLHL9, RNF170, RNF214, and USP33)
and membrane trafficking (GAK, RABGEF1, DBNL, SNX9,
USP33, CARMIL1, PRKAA2, ARFGAP3, USE1, ARL3, RBSN,
and TBC1D5), implying that these proteins may crosstalk with
MT. Although the mitoribosomes appear to exclusively
translate the mitochondrial mRNAs according to the ribosome
profiling data (5, 43), it would be intriguing to speculate that
nuclear transcripts are also regulated by the mitoribosomes.
Relationship between MT and assembly of OXPHOS complexes

In addition to MT-proteins, our mitochondria-focused
approach afforded good coverage of OXPHOS complex sub-
units, including the nuclear-encoded proteins—41 of 45 pro-
teins (91%), 4 of 4 proteins (100%), 9 of 11 proteins (82%), 14
of 21 proteins (67%), and 13 of 17 proteins (76%) from com-
plexes I–V (CI–V), respectively. Therefore, these data can be
used to assess how the nuclear-encoded subunits are (post-)
translationally regulated in concert with the inhibition of MT.
We found significant attenuation of the production of some
nuclear-encoded subunits in CI, CIII, and CIV (Fig. 4A),
though production of most of the nuclear-encoded OXPHOS
subunits (especially CII and CV) remained unchanged.

To better understand this differential regulation of
nuclear-encoded subunits, we focused on CI (NADH:ubi-
quinone oxidoreductase), CIV (cytochrome c oxidase), and
CV (ATP synthase) whose assembly subcomplexes and
pathways have been well characterized in humans (44–48).



L

M

L

H

Pulse labeling
8 hr

m/z

In
te

ns
ity

A HEK293T cells

553.5 560.5 553.5 560.5m/z m/z

MT-CO2: VVLPIEAPIR (+2)
L

M: CAP

H: Control

L

M: Control

H: CAP

H/M: 3.04 H/M: 0.32

H

L

+CAP or DMSO

Harvest & combine cells

LC/MS/MS

Mitochondria isolation

LysC & trypsin digestion

M

II III IV
VI

Mitochondrion

Cytosol

OXPHOS
complexes

CAP

B

C

−1 0 1 2
Log2 H/M (CAP/Control)

−l
og

10 
(p

−v
al

ue
)

-2

MT-proteins

R
el

at
iv

e 
in

te
ns

ity
 (%

) 100

0

0

1

2

MT-CO3

MT-ND5

MT-ND2

MT-CO2
MT-ND4

MT-CO1

MT-CYB
MT-ATP6

MT-ND3

MT-ND1 MT-ATP8

MT-ND6

StageTip-based SCX fractionation

n=3,501

(MT-encoded subunits)

16 hr

H/M ratio

−2

−1

0

1

M
ea

n 
lo

g2
 (C

AP
/C

on
tro

l) 

OXPHOS OXPHOS Others Not-mitochondria

Mitochondrial proteins (MitoCarta 3.0)

NUDT8

MTRF1L
MTFR1L

MCL1

SLC25A46

PDSS2RPUSD4

MPP7

SARM1RABGEF1 TAB1

(MT-encoded) (nuclear-encoded) (nuclear-encoded) (nuclear-encoded)

GAK

FAM134A

FKBP1A
MCMBP
DAAM1

RBSN
TMEM237

KLHL9
USP33

POMT2
RNF214
SUN1

UBXN8
TMEM181
FAM8A1USP5

D

Figure 3. pSILAC experiments. A, experimental scheme of pSILAC. HEK293T cells were pulsed-labeled with medium–heavy (M) or heavy (H) amino acids in
the presence of CAP or DMSO. Two independent experiments involving a label-swap condition were performed. B, a volcano plot showing mean log2 fold
change (CAP/DMSO) and −log10 p value. The MT-proteins are indicated by light green-filled circles. C, MS spectrum of an MT-CO2 peptide (VVLPIEAPIR, +2),
as an example. D, box plots showing log2 fold change (CAP/control) of proteins grouped into four categories: MT-encoded OXPHOS subunits, nuclear-
encoded OXPHOS subunits, nuclear-encoded mitochondrial proteins, and nuclear-encoded nonmitochondrial proteins. Mitochondrial proteins were
defined based on MitoCarta3.0 (71). CAP, chloramphenicol; DMSO, dimethyl sulfoxide; HEK293T, human embryonic kidney 293T cell line; MT, mitochondrial
translation; OXPHOS, oxidative phosphorylation; pSILAC, pulse stable isotope labeling of amino acids in cell culture.

EDITORS’ PICK: Monitoring mitochondrial translation
Notably, we observed a trend for nuclear-encoded subunits
that are assembly partners with MT-encoded subunits to be
downregulated by CAP (Fig. 4A). CI is composed of seven
modules that are assembled individually (Fig. 4B, left). Our
pSILAC data indicate that some of the nascent nuclear-
encoded subunits residing in the same structural modules
of the MT-encoded subunits (i.e., ND1, ND2, ND4, and ND5
modules) were downregulated (Fig. 4B, bottom right corner).
In contrast, N module, Q module, and NDUFAB1, which are
composed of only nuclear-encoded subunits (but not MT-
encoded subunits), were rather stable (Fig. 4B, upper right
corner). It should be noted that N module exhibited a slight
decrease compared with Q module and NDUFAB1. A recent
report suggested that CI, CIII, and CIV assemble in a
cooperative way (49), and CIII and CIV appear to aid the
incorporation of N module into CI at the very end, indicating
J. Biol. Chem. (2023) 299(2) 102865 5
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EDITORS’ PICK: Monitoring mitochondrial translation
that N module might interact with an MT-protein(s) of CI,
CIII, and CIV. Likewise, we found that the nuclear-encoded
subunits (COX5B, COX6C, COX7C, and COX8A) of CIV
affected by CAP are assembly partners of MT-proteins (MT-
CO1, MT-CO2, and MT-CO3) (see subcomplex 2 in Fig. 4, C
and D). In contrast, we observed no significant regulation of
the early assembly subunits (COX4 and COX5A) that do not
6 J. Biol. Chem. (2023) 299(2) 102865
form a subcomplex with MT-proteins (see subcomplex 1 in
Fig. 4, C and D). Similar results were obtained for CV (Fig. 4,
E and F); MT-ATP6 and MT-ATP8 are involved in the late
step of the complex assembly (step 3 in Fig. 4, E and F), and
therefore, it is reasonable that the early and intermediate
subcomplexes of the nuclear-encoded subunits were not
regulated (see subcomplexes 1 and 2 in Fig. 4, E and F).
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These results support the notion that “orphan” subunits (i.e.,
proteins that cannot be assembled into multiprotein com-
plexes) are subject to (post-)translational degradation (8, 50,
51) or a translational pause (4) to prevent accumulation of
unwanted assembly intermediates. Consistent with this idea,
we observed a trend that nuclear-encoded proteins are cor-
egulated with MT-proteins within the same subcomplex
(Fig. 4, B, D and F). Our data clearly indicate that abundance of
nuclear-encoded subunits decreases when they lose a partner
MT-encoded subunit within the same subcomplex module. In
other words, whether nuclear-encoded subunits form sub-
complexes with MT-encoded subunits is likely to be inferred
based on changes in the levels of newly synthesized subunits
(i.e., H/M ratios) induced by CAP treatment.

Inferring members of intermediate subcomplexes of CIII

We next sought to infer the intermediate steps (sub-
complexes) of CIII (cytochrome bc1 complex) assembly
because so far only the first and last steps of its assembly are
well understood in humans (46, 52). The assembly model of
CIII from yeast (53–55) is shown in Figure 4G. In accordance
with the initial step, inhibiting the translation of MT-CYB led
to (post-)translational repression of its partner subunits,
UQCRQ and UQCRB (see subcomplex 1 in Fig. 4, G–I, left).
Furthermore, consistent with the last step of the assembly in
which the Rieske Fe–S protein, UQCRFS1, joins the pre-CIII
assembly (46), orphan UQCRFS1 was downregulated (see
subcomplex 3 in Fig. 4, G–I, middle for exemplary MS spectra
for UQCRFS1). Intriguingly, in contrast to the yeast model, our
results imply that UQCRC1 and UQCRC2 may be incorpo-
rated into the early assembled complex of MT-CYB, UQCRQ,
and UQCRB (see subcomplex 1 in Fig. 4, G and H) during the
initial/intermediate steps because the abundances of newly
synthesized UQCRC1 and UQCRC2 decreased in concert with
the translational inhibition of MT-CYB (Fig. 4, G and H). In
contrast, other subunits (CYC1, UQCRH, and UQCR10)
remained unchanged, indicating that these subunits do not
form subcomplexes with MT-CYB and might form distinct
module(s) (see Fig. 4I, right for exemplary MS spectra for
CYC1).

Orphan newly synthesized subunits are more quickly
degraded than nonorphan subunits

The data (Fig. 4) presented so far indicate that orphan
nuclear-encoded OXPHOS subunits whose partner MT-
encoded subunits are lost are more likely to be degraded as
seen in other protein complexes (50). To confirm this, we
performed a slightly modified version of previously reported
global pulse-chase experiments (50); HEK293T cells were
pulse-labeled with H amino acids for 4 h, followed by chasing
newly synthesized H forms for another 4 h by switching to
medium containing M amino acids in the presence of CAP or
DMSO (Fig. 5A). If newly synthesized (H) proteins are less
stable than old (L) proteins, their H/L ratios are expected to
decrease during the chase. Hence, this experiment should
allow us to assess the extent of degradation of newly
synthesized proteins during CAP chase by computing the H/L
(CAP)/H/L (DMSO) ratios. To this end, we grouped the
nuclear-encoded subunits into the two categories; “unchanged
(log2 H/M ≧ −0.5)” or “CAP-sensitive (log2 H/M < −0.5),”
according to the pSILAC experiment (Figs. 3 and 4) and asked
whether proteins in the CAP-sensitive group (i.e., orphan
subunits) are less stable than those in the unchanged group.
We first confirmed that CAP inhibited protein synthesis
(M-channel) of the CAP-sensitive group more effectively than
that of the unchanged group (Fig. 5B, left panel and Table S3).
Consistent with our hypothesis, we observed a trend that
newly made subunits (H-channel) in the CAP-sensitive group
were less stable than the other subunits (Fig. 5B, right panel).
We also repeated the pulse-chase experiment and observed the
same trend (Fig. S5).

To further assess if the nuclear-encoded orphan subunits
are degraded via the proteasome, we performed an additional
experiment where cells were treated with the proteasome in-
hibitor MG132 during the CAP chase. To do this, HEK293T
cells were pulse-labeled with H amino acids for 4 h, followed
by chasing newly synthesized H forms for another 4 h in a
medium containing M amino acids in the presence of CAP and
MG132. We also repeated the same experiments shown in
Figure 5A and recapitulated the previous findings (Fig. 5C, left
and middle panels). While newly made subunits (H-channel)
in the CAP-sensitive group were less stable than the other
subunits (Fig. 5C, middle panel), consistent with Figures 5B
and S5, this trend was not seen in the MG132-treated cells
(Fig. 5C, right panel). Thus, proteasome inhibition indeed
attenuated the degradation of the nuclear-encoded subunits,
indicating that these proteins are degraded through the pro-
teasome. This result also supports a recent finding showing
that the turnover of several OXPHOS proteins is dependent
upon the ubiquitin–proteasome system (56).

Collectively, these results suggest that protein degradation is
a key pathway of elimination of orphan nuclear-encoded
subunits that cannot form a subcomplex with MT-encoded
subunits.
Validation of the method using normal diploid human cells

Finally, we sought to validate our method and results using
WI38 cells, which are normal diploid human fibroblasts
derived from lung tissue. Three independent pSILAC experi-
ments were done with WI38 cells, and results from an analysis
of the isolated mitochondria confirmed the key findings from
HEK293T cells. First, we found that CAP treatment also spe-
cifically inhibited translation of the MT-encoded proteins
(Fig. 6A). Although we only identified eight MT-encoded
proteins, of which seven proteins were quantified in all three
experiments, this may be due to the lower protein expression
level of particular MT-encoded proteins in WI38 compared
with HEK293T cells. Indeed, only nine MT-proteins could be
identified in a deep proteomic study of WI38 cells where
nearly 10,000 proteins were identified (57). Second, a specific
subset of nuclear-encoded OXPHOS subunits was also found
to be coregulated with MT-encoded subunits (Fig. 6, B and C).
J. Biol. Chem. (2023) 299(2) 102865 7
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EDITORS’ PICK: Monitoring mitochondrial translation
Notably, the changes in the levels of newly synthesized
OXPHOS subunits were significantly correlated between
WI38 and HEK293T cells (Pearson correlation coefficient r =
0.64), whereas other mitochondrial and nonmitochondrial
proteins did not show such strong correlation (Fig. 6C).
Importantly, specific nuclear-encoded subunits that showed
CAP-induced reduction in their abundance in HEK293T were
also downregulated in WI38 cells, recapitulating the observa-
tions shown in Figure 4. Collectively, these data indicate that
the (post-)translational control of OXPHOS multiprotein
complexes is partially cell type independent.
Conclusions

While pSILAC is an established approach for studying
protein synthesis, its application to MT has been limited. The
8 J. Biol. Chem. (2023) 299(2) 102865
significance of this study lies in the improvement and devel-
opment of the pSILAC approach combined with a simple
biochemical separation for mitochondria. To our knowledge,
this is the first study to achieve a near-comprehensive profiling
of nascent MT-proteins translated by mitoribosomes. More-
over, this methodology provides a global view of OXPHOS
complex assembly on the basis of (post-)translational regula-
tion of mitochondrial- and nuclear-encoded proteins. We
found that CAP-mediated inhibition of MT induced degra-
dation of the nuclear-encoded proteins of OXPHOS com-
plexes, and this regulation appears to be maintained at the
structural module level; our results suggest that orphan
nascent nuclear-encoded proteins are degraded in concert
with the loss of their partner MT-proteins in the same struc-
tural module. Very recently, a pSILAC-TMT approach
revealed that the protein import into mitochondria is regulated
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EDITORS’ PICK: Monitoring mitochondrial translation
at the levels of cytosolic translation and protein uptake during
stress (21). Also, it was shown by ribosome profiling that
human OXPHOS complexes are synthesized proportionally to
each other by cytosolic and mitochondrial ribosomes (5). In
addition to our findings, these exciting results obtained by
cutting-edge technologies will facilitate our understanding of
mitochondrial proteostasis; how mitochondrial proteome is
shaped through the two translation systems, the mitochondrial
protein import systems, and the protein degradation systems.
We believe that this methodology will enable us to probe MT
programs in many contexts, including oxidative stress and
mitochondrial disease.
Limitations of the study

It is challenging to isolate genuine organelle residents bio-
chemically without contaminants. Here, we adapted a rela-
tively simple protocol for mitochondria isolation that allowed
us to enrich mitochondrial proteins (Figs. 2A and S1), but
nevertheless, contaminants from other organelles (e.g.,
J. Biol. Chem. (2023) 299(2) 102865 9
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endoplasmic reticulum) were observed. A method for prepa-
ration of highly purified mitochondria combined with density
gradient centrifugation or affinity purification may help to
improve readouts of pSILAC experiments, such as identifica-
tion of mitochondrial proteins/peptides, although there is
always a tradeoff between the required time for preparation
and the purity of the organelle. Our mitochondrial purification
and digestion protocol always missed one specific MT-
encoded protein (Fig. 2C). Thus, a combination of two diges-
tion protocols (e.g., lysC-trypsin and chymotrypsin) would be
required for comprehensive profiling of the 13 MT-proteins.
Also, our pSILAC experimental set-up is specialized to
monitor changes in protein production of MT-proteins by
quantifying metabolically labeled proteins under two condi-
tions. An alternative pSILAC set-up described elsewhere
(39, 58) might make a useful combination to quantify protein
degradation, synthesis, and turnover rates.

Experimental procedures

Cell culture and pulse labeling

HEK293T and WI38 cells obtained from American Type
Culture Collection were cultured in Dulbecco’s modified
Eagle’s medium (Fujifilm Wako) containing 10% fetal bovine
serum (Thermo Fisher Scientific) in 10 cm diameter dishes. All
cells were maintained in a humidified 37 �C incubator with 5%
CO2. For pulse SILAC labeling (related to Figs. 3 and 6), the
cell culture medium was switched to arginine- and lysine-free
Dulbecco’s modified Eagle’s medium (Thermo Fisher Scienti-
fic) supplemented with 10% fetal bovine serum and either
“heavy” amino acids [0.398 mM L-(13C6,

15N4)-arginine
(Arg”10”) and 0.798 mM L-(13C6,

15N2)-lysine (Lys”8”)] or
“medium–heavy” amino acids [0.398 mM L-(13C6)-arginine
(Arg”6”) and 0.798 mM L-(D4)-lysine (Lys”4”)] (Cambridge
Isotope Laboratories). For CAP (Fujifilm Wako) treatment,
cells were first preincubated with the corresponding SILAC
medium for 8 h and then further incubated for 16 h in the
presence of 10 μg/ml CAP or vehicle (DMSO). The cells were
washed and harvested in ice-cold PBS and pelleted by centri-
fugation at 600g for 5 min at 4 �C. Label-swap (biological
duplicate) experiments were performed. For global pulse-chase
experiments (related to Fig. 5), cells were pulse-labeled with
“heavy” amino acids for 4 h as described previously, followed
by chasing newly synthesized “heavy” forms for 4 h by
switching to medium containing “medium–heavy” amino acids
in the presence of 10 μg/ml CAP (Figs. 5B and S5) or 10 μg/ml
CAP and 10 μM MG132 (Fig. 5C). Two independent experi-
ments of the pulse-chase experiments under the CAP condi-
tion were performed. As a vehicle control, cells were chased in
the presence of 0.1% DMSO instead of CAP and used as a
universal reference.

Mitochondria isolation

Mitochondria were isolated from five million cells in a
10 cm dish as reported (34). For pSILAC samples, corre-
sponding medium–heavy and heavy-labeled cells were com-
bined at this stage. The cell pellets were resuspended in
10 J. Biol. Chem. (2023) 299(2) 102865
500 μl of ice-cold mitochondria isolation buffer (10 mM
Tris–Mops [pH 7.4] containing 1 mM EGTA/Tris and
200 mM sucrose). The cells were homogenized using a glass/
Teflon Potter Elvehjem homogenizer (2 ml volume; 40
strokes). The homogenate was transferred to a new 1.5 ml
tube and centrifuged at 600g for 10 min at 4 �C. The su-
pernatant was transferred to a new 1.5 ml tube and centri-
fuged at 7000g for 10 min at 4 �C. The pellet containing
mitochondria was resuspended in 100 μl of ice-cold mito-
chondria isolation buffer and centrifuged at 7000g for 10 min
at 4 �C. The supernatant was discarded, and the pellet was
used as the mitochondrial fraction. Approximately 80 and
50 μg protein were obtained from mitochondrial pellets of
HEK293T and WI38, respectively.

Protein digestion

Protein digestion was performed according to the phase-
transfer surfactant–aided digestion protocol, as described
previously (59, 60). Briefly, the mitochondrial fraction was
lysed with phase-transfer surfactant buffer (12 mM sodium
deoxycholate [Fujifilm Wako], 12 mM sodium N-lauroyl sar-
cosinate [Fujifilm Wako] in 0.1 M Tris–HCl [pH 8.0]) and
incubated with 10 mM DTT at 37 �C for 30 min, followed by
alkylation with 50 mM iodoacetamide at 37 �C for 30 min in
the dark. The samples were diluted five times with 50 mM
ammonium bicarbonate. To optimize the digestion protocol
for MT products, proteins were digested with (1) chymo-
trypsin (Promega), (2) chymotrypsin and lysyl endopeptidase
(lys-C) (Fujifilm Wako), (3) lys-C and trypsin (Promega), and
(4) chymotrypsin and trypsin at a protein-to-protease ratio of
50:1 (w/w) overnight at 37 �C on a shaking incubator. For the
pSILAC experiments, proteins were first digested with lys-C
for 3 h at 37 �C and then with trypsin overnight at 37 �C on
a shaking incubator. Next day, an equal volume of ethyl acetate
(Fujifilm Wako) was added to the sample, and digestion was
quenched by adding 0.5% TFA (final concentration). The
samples were shaken for 1 min and centrifuged at 16,000g for
2 min at 25 �C. The organic phase containing sodium deox-
ycholate and sodium N-lauroyl sarcosinate was discarded. The
resulting peptide solution was evaporated in a SpeedVac, and
the residue was resuspended in 200 μl 0.1% TFA and 5%
acetonitrile (ACN). The peptides corresponding to 10 to 20 μg
protein were desalted with an SDB-XC StageTip (61) or frac-
tionated into seven fractions using an SDB-XC-SCX StageTip
(40). Each sample solution was evaporated in a SpeedVac, and
the residue was resuspended in 0.5% TFA and 4% ACN. A
peptide sample corresponding to 500 ng protein was injected
into MS.

LC/MS/MS analysis

Nano-scale reversed-phase liquid chromatography coupled
with tandem MS (nanoLC/MS/MS) was performed on an
Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher
Scientific), connected to a Thermo Ultimate 3000 RSLCnano
pump and an HTC-PAL autosampler (CTC Analytics)
equipped with a self-pulled analytical column (150 mm
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length × 100 μm i.d.) (62) packed with ReproSil-Pur C18-AQ
materials (3 μm; Dr Maisch GmbH). The mobile phases
consisted of (A) 0.5% acetic acid and (B) 0.5% acetic acid and
80% ACN. For pSILAC experiments using HEK293T (Fig. 3),
peptides were eluted from the analytical column at a flow
rate of 500 nl/min by altering the gradient: 5 to 10% B in
5 min, 10 to 40% B in 60 min, 40 to 99% B in 5 min and 99%
for 5 min, and a 300 min gradient was used for the
biochemical optimization. The Orbitrap Fusion Lumos in-
strument was operated in the data-dependent mode with a
full scan in the Orbitrap followed by MS/MS scans for 3 s
using higher-energy collisional dissociation (HCD). The
applied voltage for ionization was 2.4 kV. The full scans were
performed with a resolution of 120,000, a target value of 4 ×
105 ions, and a maximum injection time of 50 ms. The MS
scan range was m/z 300 to 1500. The MS/MS scans were
performed with 15,000 resolution, 5 × 104 target value, and
50 ms maximum injection time. The isolation window was
set to 1.6, and the normalized HCD collision energy was 30.
Dynamic exclusion was applied for 20 s. For the pSILAC
experiments using WI38 cells (Fig. 6), nanoLC/MS/MS was
performed on an Orbitrap Exploris 480 mass spectrometer
(Thermo Fisher Scientific). The mass range of the survey
scan was from 300 to 1500 m/z with a resolution of 60,000,
300% normalized automatic gain control target, and auto
maximum injection time. The first mass of the MS/MS scan
was set to 120 m/z with a resolution of 15,000, standard
automatic gain control, and auto maximum injection time.
Fragmentation was performed by HCD with a normalized
collision energy of 30%. The dynamic exclusion time was set
to 20 s.
Database searching and protein quantification

All rawfileswere analyzedandprocessedbyMaxQuant (version
1.6.0.13 or 1.6.15.0) (63). Search parameters included two missed
cleavage sites and variable modifications such as methionine
oxidation, protein N-terminal acetylation, and SILAC-specific
modifications [L-(13C6,

15N4)-arginine, L-(13C6,
15N2)-lysine,

L-(13C6)-arginine, and L-(D4)-lysine]. Cysteine carbamidomethy-
lation was set as a fixed modification. The peptide mass tolerance
Table 1
Method comparison

Reference This study a. (25) b. (20) c. (26) d. (27)

PubMed ID — 24637697 26183718 30220558 31812349
Measurement
time (h)

14 38 20 8 48

No. of MT-
proteins

12 6 4 2 9

No. of total
proteins

3501 5435 5126 3422 6039

Methodology pSILAC pSILAC pSILAC pSILAC pSILAC-TM
Cell type HEK293T HeLa SW480 HEK293T HeLa

MS Fusion Lumos LTQ-
Orbitrap

LTQ-
Orbitrap
Elite

Q-Exac-
tive Plus

Fusion Lumo

Fractionation StageTip-based
SCX fraction-

ation (7
fractions)

GeLCMS
(15 slices)

GeLCMS
(20 slices)

Single
shot

High pH-
reversed pha
fractionation

fractions)
was 4.5 ppm, and theMS/MS tolerancewas 20 ppm. The database
search was performed with Andromeda (64) against the UniProt/
Swiss-Prot human database (downloaded on October 2014) with
common serum contaminants and enzyme sequences. The false
discovery rate was set to 1% at the peptide spectrum match level
and protein level. The “match between runs” functions were
employed. For protein quantification, a minimum of one unique
peptide ion was used, and to ensure accurate quantification, we
required proteins to be quantified in all samples for further anal-
ysis. Protein intensities from SILAC medium–heavy and heavy
channels were normalized using the variance stabilization
normalization (65) in the R package of DEP (66) to correct for
mixing error between the two SILAC-labeled lysates. p Values
were computed based on differential expression of proteins using
protein-wise linear models and empirical Bayes statistics through
the limma function (67).

Assessment of the number of identified MT products and
measurement time (related to Fig. 1)

There are a number of studies on cellular translation using
pSILAC, AHA, and/or puromycin, as described in the intro-
duction section. To compare our findings with those of pre-
vious reports, we chose studies that had employed pSILAC
with medium–heavy and heavy amino acids (i.e., triplex
SILAC) and that showed reasonably high proteome coverage
(Table 1). Recent studies using AHA, puromycin (and its
analog), or dynamic SILAC-TMT were also included. If mul-
tiple experiments were performed within a study, the single
specific experiment with the highest proteome coverage was
chosen (Fig. 1). The measurement time per experiment is a
conservative estimate, as some studies provided only the LC
gradient time and did not mention total measurement time.

GO enrichment analysis (related to Fig. 2A)

GO enrichment analysis was performed using DAVID (The
Laboratory of Human Retrovirology and Immunoinformatics)
(68). To identify enriched GO terms in the mitochondrial
fraction and total cell lysate, we used only proteins quantified
in all the digestion protocols. The top three enriched terms for
cellular components are shown in Figure 2A, whereas a full list
e. (16) f. (18) g. (22) h. (23) i. (21)

27764671 23934657 32531160 32926143 34847359
12 4 40 14 28

7 3 9 7 10

5940 2535 2589 4365 4074

T AHA Puro Puro-TMT Puro-pSILAC TMT-pSILAC
Mouse
neurons

HeLa THP-1 HeLa HeLa

s Q-Exac-
tive Plus

Q-Exactive LTQ-Orbitrap
Elite

Fusion Lumos Fusion Lumos

se
(24

Single
shots (4
times)

Single shot High pH-
reversed phase
fractionation (20

fractions)

StageTip-based
SCX fraction-

ation (7
fractions)

High pH-
reversed phase
fractionation (8

fractions)
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of enriched GO terms is shown in Fig. S1. False discovery rates
were corrected by the Benjamini–Hochberg method.

Analysis of global pulse-chase experiment (related to Fig. 5)

Only nuclear-encodedOXPHOS subunits were analyzed, and
they were grouped into the two categories, “unchanged (log2
H/M ≧ −0.5)” or “CAP-sensitive (log2 H/M < −0.5),” based on
the pSILAC experiment shown in Figures 3 and 4. Heavy (H)
peaks in MS spectra represent the abundance of newly synthe-
sized proteins after the chase in the presence of CAP or DMSO.
Light (L) peaks indicate pre-existing proteins. Hence, the degree
of degradation of newly synthesized H proteins induced by CAP
treatment can be assessed by computing H/L (CAP)/H/L
(DMSO). Individual dots in the box plots (Figs. 5B and S5)
represent log2 (H/L [CAP]/H/L [DMSO]) values for individual
nuclear-encoded subunits categorized into the “unchanged” or
“CAP-sensitive” group. The p values were computed using the
one-sided Wilcoxon rank-sum test.

Data availability

The proteomics data have been deposited to the Proteo-
meXchange Consortium via jPOST (69, 70) partner repository
with the dataset identifier JPST001007 (PXD022476 for
ProteomeXchange).

Supporting information—This article contains supporting informa-
tion (65).
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