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Abstract: Background: Instrumental motion analysis constitutes a promising development in the
assessment of motor function in clinical populations affected by movement disorders. To foster
implementation and facilitate interpretation of respective outcomes, we aimed to establish normative
data of healthy subjects for a markerless RGB-Depth camera-based motion analysis system and to
illustrate their use. Methods: We recorded 133 healthy adults (56% female) aged 20 to 60 years
with an RGB-Depth camera-based motion analysis system. Forty-three spatiotemporal parameters
were extracted from six short, standardized motor tasks—including three gait tasks, stepping in
place, standing-up and sitting down, and a postural control task. Associations with confounding
factors, height, weight, age, and sex were modelled using a predictive linear regression approach. A
z-score normalization approach was provided to improve usability of the data. Results: We reported
descriptive statistics for each spatiotemporal parameter (mean, standard deviation, coefficient of
variation, quartiles). Robust confounding associations emerged for step length and step width in
comfortable speed gait only. Accessible normative data usage was lastly exemplified with recordings
from one randomly selected individual with multiple sclerosis. Conclusion: We provided normative
data for an RGB depth camera-based motion analysis system covering broad aspects of motor capacity.

Keywords: instrumental motion analysis; normative data; RGB-Depth camera; Microsoft Kinect v2;
gait analysis; tandem gait; postural control; stepping in place; standing up and sitting down

1. Introduction

Identification and monitoring of motor impairments are key elements in the manage-
ment of diseases impacting motor function. The instrumental task-based assessment of
motor capacity provides an alternative to observation and assessment by clinical experts
and analog standardized tests, such as the Timed Up and Go Test [1] or Timed 25-Foot
Walk [2]. Due to anticipated time and cost efficiency as well as outcome objectivity, instru-
mental motion analysis has drawn increasing attention in recent years. Telemedical use of
such technologies from patients’ homes can further protect vulnerable groups and provide
relief for overburdened healthcare systems.
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Interpretability of outcomes from instrumental motion analysis is, however, still
limited. Heterogeneous usage of different technologies, movement protocols, extracted pa-
rameters and respective algorithms rarely allows for robust between-system compatibility.
Reliable normative data for the system in use thus comprises a crucial prerequisite for the
interpretation of outcomes. Respective values can help to define meaningful thresholds for
assumed pathology, expected variability, as well as dependencies on anthropometric and
demographic features. Normative datasets can further aid in improving harmonization by
revealing systematic biases between system outputs.

Large normative datasets of gait parameters ranging from gait speed to arm swing
asymmetry continue to be of high interest to the scientific community and are comparatively
prevalent [3–7]. Few larger databases exist for other motor tasks, such as tandem gait
and postural control [8–10]. However, most reported parameter values from healthy
controls stem from small case-control or proof-of-concept studies and comprise around
30 healthy subjects or less [11–21]. For this study, a motion analysis system based on
the use of a single RGB-Depth camera (Microsoft Kinect v2) was employed, which has
been evaluated for accuracy and reliability [11,22] and has been used in various clinical
populations [5,23,24]. Previous related works from our groups include outcome parameters
from healthy controls [23,25–29], but these do not represent a robust normative database
by themselves due to likewise limited sample sizes, restriction to single motor tasks, or
general study design.

In this study, we thus aimed to provide elaborate normative values for spatiotemporal
parameters of an RGB-Depth camera-based motion analysis system for six different motor
tasks. We further assessed associations of the parameters with confounding demographic
and anthropometric factors and illustrated usage of the normative data.

2. Materials and Methods
2.1. Participants

One-hundred-thirty-three participants were pooled from control groups of two multi-
ple sclerosis studies (acronyms: Valkinect, VIMS) and one autism spectrum disorder study
(acronym ASD) at Charité—Universitätsmedizin Berlin, Berlin, Germany. Participants
were recruited via social media posts, institutional databases, intranet, and by approaching
accompanying persons from respective case cohorts.

Exclusion criteria were psychiatric disorders, chronic neurological diseases, or acute
motor impairments. Adapted from norm data specifications for another commercially
available system [30,31], we used five persons per sex and age decade as a lower limit
in sample size planning. We focused on adult, decidedly non-geriatric, individuals and
thus included participants within the ages of 20 and 60, representing an adequate control
group for common neuroimmunological conditions. All included participants received
instrumental motion analysis and had complete information regarding age, sex, height,
and weight (Table 1, visualized in Supplementary Figure S1).

Table 1. Anthropometric and demographic subject characteristics overall and subdivided by study.
Abbreviations: SD: standard deviation.

Study Sample Size
(% Female)

Age Mean (SD;
Range) [Years]

Height Mean (SD;
Range) [cm]

Weight Mean (SD;
Range) [kg]

BMI Mean (SD; Range)
[kg/m2]

All 133 (56%) 36.83 (10.44; 20–60) 172.89 (9.34; 153–194) 71.80 (13.86; 46–115) 23.94 (3.79; 17.75–34.33)
ASD 41 (51%) 33.88 (7.99; 20–49) 174.17 (9.65; 155–194) 73.85 (16.06; 46–115) 24.24 (4.41; 17.75–33.90)
VIMS 57 (63%) 34.14 (9.06; 20–60) 172.16 (9.66; 153–193) 70.86 (13.69; 47–110) 23.83 (3.79; 18.29–34.33)
Valkinect 35 (51%) 44.69 (11.23; 22–60) 172.60 (8.52; 157–190) 70.91 (11.24; 53–97) 23.76 (3.01; 18.93–32.04)

Data from one randomly selected Valkinect participant with multiple sclerosis was used to exemplify usage of the
normative data (male, 53 years, 183 cm, 73 kg).
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2.2. Instrumental Motion Analysis

Labs (Motognosis GmbH, Berlin, Germany; versions 1.4.0.2, 1.4.0.3, 2.0.1.0, 2.1.2.0), and
a markerless motion analysis system based on a single RGB-Depth consumer camera (Mi-
crosoft Kinect v2; Microsoft cooperation, Redmond, WA, USA), were used to record short
movement tasks from participants wearing standard clothing and comfortable footwear
in a 1.5–4.5 m distance from the sensor (Figure 1). The Kinect v2 sensor was positioned
at a height of 1.4 m and tilted in a pitch direction of roughly −8◦ to −9◦. Scientific staff
operated the system following written standard operating procedures for technical setup
and task instruction.
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Figure 1. Technical set-up of the Motognosis Labs motion analysis system with a single Microsoft
Kinect v2 sensor with exemplary sketch of a gait task. The illustration was included by courtesy of
Motognosis GmbH.

We included data for six tasks: short comfortable speed walk (SCSW), short maximum
speed walk (SMSW; VIMS and Valkinect only as this task was not included in the ASD
measurement protocol), tandem gait referred to as short line walk (SLW), stepping in place
(SIP), standing up and sitting down (SAS; VIMS and Valkinect only as this task was not
included in the ASD measurement protocol), and postural control (POCO). Within each
session SCSW, SMSW, SLW, and SAS were recorded three consecutive times, SIP and POCO
were recorded once.

The Microsoft Kinect SDK (version 2.0.14) enables extraction of 25 three-dimensional
time series of body landmarks from these recordings, which were used to extract spatiotem-
poral parameters with custom algorithms. Here, we extracted 43 parameters (Table 2),
most of which have been previously introduced [22,23,25–28]. Others were carefully vet-
ted in terms of clinical interest and statistical properties when tested in an independent
dataset [22].

Table 2. Motor task descriptions, information on respectively extracted movement signals and
spatiotemporal parameters as well as parameter names. Abbreviations: AP: anterior-posterior;
n.u.: unitless; RR: Romberg ratio.

Task Description Movement Signal and Spatiotemporal Parameter Description Parameter Names

Short comfortable speed walk (SCSW)

The participant stands just outside the
sensor range and walks towards the
sensor at comfortable speed in
response to an auditory cue

Mean speed derived from pelvic center landmark movement in walk direction Gait speed [m/s]
Mean step length, mean step width, and mean step duration over all (left and
right) detected steps derived from left and right ankle landmark movement in
walk direction

Step length [cm]; Step width [cm];
Step duration [s]

Mean gait cadence extrapolated from detected steps and recording length Gait cadence [steps/min]
Mean angular arm swing amplitude (averaged over left and right averages) and
absolute symmetry angle [32] (between left and right mean angular arm swing
amplitude) derived from left and right wrist landmarks relative to manubrium
landmark movement in anterior-posterior direction

Arm angular amplitude [◦]; Arm
symmetry angle [n.u.]
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Table 2. Cont.

Task Description Movement Signal and Spatiotemporal Parameter Description Parameter Names

Short maximum speed walk (SMSW)

The participant stands just outside the
sensor range and walks towards the
sensor at maximum speed in response
to an auditory cue

Mean speed derived from pelvic center landmark movement in walk direction Gait speed [m/s]

Short line walk (SLW)

The participant stands just outside the
sensor area and, in response to an
auditory cue, walks towards the
sensor in tandem gait, i.e., walks on an
imaginary line with the heels touching
the toes at each step

Mean and coefficient of variation of progression speed derived from pelvic
center landmark movement in walk direction

Progression speed [◦/s]; Relative
progression variability [%]

Angular standard deviation and speed of upper body sway starting from pelvic
center landmark

Roll sway variability [◦]; Roll sway
speed [◦/s]

Line walk cadence derived from recording length and peaks of left and right
ankle landmark movement relative to respective hip landmarks Line walk cadence [steps/min]

Angular standard deviation and speed of arm movement angle (averaged over
left and right) derived from elbow landmarks relative to respective shoulder
landmarks movement in 3D

Arm variability [◦]; Arm speed [◦/s]

Stepping in place (SIP)

The participant walks on the spot at
comfortable pace for 40 s

Mean knee amplitude, mean step duration, and mean stance duration (averaged
over left and right averages) derived from knee landmark movement in
anterior-posterior direction

Knee amplitude [m]; Step duration [s];
Stance duration [s]

Mean stepping cadence extrapolated from detected steps and recording length Stepping cadence [steps/min]
Absolute symmetry angle [32] (between left and right mean knee amplitudes) Knee symmetry angle [n.u.]
Mean coefficient of variation of left and right “stride times” measured as time
between knee amplitude peaks (i.e., slightly adapted from [23]) Arrhythmicity [%]

Standing up and sitting down (SAS)

The participant sits on an armless
chair, arms hanging to the side, stands
up after an auditory cue and sits down
again after a second auditory cue

Speed of manubrium landmark movement in vertical and
anterior-posterior direction

Transition time (up) [s]; Transition
time (down) [s]

Range of manubrium landmark movement in anterior-posterior direction AP deflection range (up) [m]; AP
deflection range (down) [m]

Postural control (POCO)

The participant stands with closed feet
and open eyes facing the sensor for
20 s; after an auditory cue subject
closes eyes and remains in this
position for another 20 s

Angular range and mean speed of the body sway vector between mean ankle
landmark position and pelvic center landmark during eyes closed and eyes open
measurement conditions in pitch, roll, and 3D direction

Pitch/Roll/3D sway range (open eyes)
[◦]; Pitch/Roll/3D sway speed (open
eyes) [◦/s]; Pitch/Roll/3D sway range
(closed eyes) [◦]; Pitch/Roll/3D sway
speed (closed eyes) [◦/s]

Romberg ratio of sway range and sway speed in pitch, roll, and 3D
direction—i.e., value for closed eyes condition divided by respective value for
open eyes condition

RR of pitch/roll/3D sway range [n.u.];
RR of pitch/roll/3D sway speed [n.u.]

2.3. Data Analysis

Recordings with gross performance deviations (e.g., wrong feet position for POCO)
or technical errors were identified using a previously described post hoc quality control
pipeline [33] and discarded. Statistical analyses were performed, and visualizations were
generated using Python 3.7.3 (packages pandas 1.3.5, numpy 1.21.6, statsmodels 0.13.2,
seaborn 0.11.2, matplotlib 3.1.0, scipy 1.7.3, scikit-learn 0.21.2). For SCSW, SMSW, SLW
and SAS, the extracted spatiotemporal parameters were averaged per participant over all
remaining repetitions. Data are presented as group mean, standard deviation, coefficient of
variation, and quartiles and distributions are visualized.

To model and address the influence of potential confounders in a generalizable way,
we fitted ordinary least squares regression models—parameter ~ age + sex + height + weight +
study—where sex was dummy-coded (female: 0; male: 1), and the study was used as an
effect-coded control variable. Models were first fitted in a repeated (100 times) five-fold
cross-validation procedure, using the R2-value (R2

test) between true and predicted param-
eter values of respective test sets at each fold, and repetition as a performance indicator.
Predicted parameter values were calculated using derived β-values from respective training
sets, omitting the study to simulate assessing model performance on external data. For an
averaged R2

test > 0.1, models were assumed to describe generalizable associations. For these
models β-values, corresponding 95% confidence intervals and p-values for the independent
variables were extracted after fitting them on the full dataset.

For supplementary information, we extracted bivariate statistics (Pearson’s correlation
coefficient, independent samples t-test, one-way ANOVA) regarding associations between
spatiotemporal parameters and potential confounders.
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To better interpret individual behavior in comparison to normative data and across
different parameter scales, we applied z-score normalization. The z-score of a value refers
to its relative distance to the mean measured in numbers of standard deviations:

zraw, i =
xi − x

s
, (1)

with xi being the raw value for a given parameter and subject i, and x and s being the raw
normative data’s sample mean and standard deviation. For spatiotemporal parameters with
previously detected confounding associations with age, sex, height and weight, respectively
standardized residuals of the linear models were favored over zraw:

zres,i =
εi
sε

, (2)

with sε being the standard deviation of the normative residuals and

εi = xi − (β0 + βAgexi,Age + βSexxi,Sex + βHeightxi,Height + βWeightxi,Weight

)
. (3)

3. Results
3.1. Normative Values

Distributions and statistics presented in this section were produced using only data
that passed quality control, performed by one trained researcher. Discard rates (3.2–15.0%
depending on task) and reasons for exclusion are provided in supplementary Table S1. The
normative values are distributed highly variable (Figure 2): SCSW gait speed, for instance,
is approximately normally distributed, while other parameters such as SLW roll sway
speed are highly skewed or feature outliers. Respective descriptive statistics are provided
in Table 3.

Table 3. Descriptive statistics of spatiotemporal parameters and generalizability estimates regarding
linear models describing associations with confounders age, sex, height, and weight. Abbreviations:
AP: anterior-posterior; CV: cross-validation; CoV: coefficient of variation; n.u.: unitless; Q1: 25th
percentile; Q3: 75th percentile; RR: Romberg ratio; SD: standard deviation.

Spatiotemporal Parameter Mean SD CoV Q1 Q3
Mean R2

test for
Repeated (100×)
5-Fold CV

Short comfortable speed walk (SCSW); n = 126

Gait speed [m/s] 1.16 0.17 0.15 1.06 1.28 −0.05
Step length [cm] 69.35 7.69 0.11 64.85 74.38 0.14
Step width [cm] 10.19 2.72 0.27 8.24 11.77 0.13
Step duration [s] 0.52 0.05 0.10 0.48 0.56 −0.03
Gait cadence [steps/min] 112.07 10.55 0.09 103.97 120.04 −0.04
Arm angular amplitude [◦] 26.48 10.81 0.41 18.19 32.45 −0.14
Arm symmetry angle [n.u.] 0.23 0.16 0.72 0.11 0.30 −0.10

Short maximum speed walk (SMSW); n = 90

Gait speed [m/s] 1.66 0.18 0.11 1.53 1.77 −0.08

Short line walk (SLW); n = 128

Progression speed [m/s] 0.35 0.10 0.28 0.29 0.39 −0.07
Relative progression variability [%] 0.33 0.08 0.24 0.27 0.38 −0.09
Roll sway variability [◦] 1.80 0.76 0.42 1.21 2.16 −0.12
Roll sway speed [◦/s] 5.58 1.90 0.34 4.37 6.47 −0.14
Line walk cadence [steps/min] 71.78 16.35 0.23 60.50 81.39 −0.07
Arm variability [◦] 5.32 3.27 0.62 2.94 6.47 −0.12
Arm speed [◦/s] 18.20 7.54 0.41 13.24 20.74 −0.06
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Table 3. Cont.

Spatiotemporal Parameter Mean SD CoV Q1 Q3
Mean R2

test for
Repeated (100×)
5-Fold CV

Stepping in place (SIP); n = 121

Knee amplitude [m] 0.18 0.06 0.31 0.15 0.23 −0.15
Step duration [s] 0.83 0.11 0.13 0.74 0.88 −0.11
Stance duration [s] 0.39 0.15 0.38 0.28 0.47 0.01
Stepping cadence [steps/min] 98.29 16.13 0.16 87.07 111.00 −0.06
Knee symmetry angle [n.u.] 0.06 0.05 0.87 0.02 0.09 −0.14
Arrhythmicity [%] 6.00 0.84 0.14 5.37 6.50 −0.08

Standing up and sitting down (SAS); n = 90

Transition time (up) [s] 1.53 0.19 0.12 1.39 1.63 −0.16
Transition time (down) [s] 1.66 0.22 0.13 1.48 1.80 −0.09
AP deflection range (up) [m] 0.37 0.07 0.19 0.32 0.41 −0.11
AP deflection range (down) [m] 0.40 0.08 0.20 0.34 0.46 −0.11

Postural control (POCO); n = 113

Pitch sway range (open eyes) [◦] 0.91 0.43 0.48 0.59 1.15 −0.13
Roll sway range (open eyes) [◦] 0.89 0.37 0.42 0.64 1.09 −0.11
3D sway range (open eyes) [◦] 0.92 0.41 0.44 0.67 1.10 −0.14
Pitch sway speed (open eyes) [◦/s] 0.14 0.05 0.39 0.10 0.16 −0.10
Roll sway speed (open eyes) [◦/s] 0.15 0.06 0.37 0.10 0.18 −0.11
3D sway speed (open eyes) [◦/s] 0.22 0.07 0.34 0.17 0.26 −0.10
Pitch sway range (closed eyes) [◦] 1.12 0.50 0.45 0.74 1.40 −0.16
Roll sway range (closed eyes) [◦] 1.03 0.43 0.41 0.73 1.27 −0.10
3D sway range (closed eyes) [◦] 1.09 0.50 0.46 0.71 1.41 −0.15
Pitch sway speed (closed eyes) [◦/s] 0.18 0.06 0.36 0.14 0.22 −0.08
Roll sway speed (closed eyes) [◦/s] 0.20 0.08 0.39 0.14 0.25 −0.07
3D sway speed (closed eyes) [◦/s] 0.30 0.10 0.33 0.21 0.34 −0.06
RR of pitch sway range [n.u.] 1.42 0.75 0.53 0.94 1.75 −0.13
RR of roll sway range [n.u.] 1.29 0.62 0.49 0.84 1.64 −0.13
RR of 3D sway range [n.u.] 1.33 0.69 0.52 0.87 1.65 −0.14
RR of pitch sway speed [n.u.] 1.46 0.62 0.43 1.03 1.77 −0.14
RR of roll sway speed [n.u.] 1.43 0.62 0.43 0.90 1.89 −0.15
RR of 3D sway speed [n.u.] 1.41 0.51 0.36 0.99 1.64 −0.13

3.2. Associations with Age, Sex, Height, and Weight

Negative and low mean R2
test values (Table 3) indicated that most fitted models did not

generalize well when presented with the new data and modelled confounding associations
were not sustainable for this dataset. R2

test values greater than 0.1 were only observed for
SCSW step length and step width. For these parameters, linear models fitted using the full
dataset showed an association of increased step length in taller, lighter individuals and
increased step width in heavier, male individuals (Table 4). We thus suggest normalizing
new datapoints for these spatiotemporal parameters using the provided models (Table 4)
and (3). Resulting residuals should then be compared to residuals of the normative data
using (2). Bivariate statistics regarding associations between spatiotemporal factors age,
sex, height, weight, and study are provided in Supplementary Table S2.
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Figure 2. Distributions of raw spatiotemporal parameters color coded by motor task. Abbreviations:
AP: anterior-posterior; n.u.: unitless; POCO: postural control; RR: Romberg ratio; SAS: standing up
and sitting down; SCSW: short comfortable speed walk; SIP: stepping in place; SLW: short line walk;
SMSW: short maximum speed walk.



Int. J. Environ. Res. Public Health 2022, 19, 16989 8 of 14

Table 4. Linear model coefficients describing associations with confounders age, sex, height, and
weight. Abbreviations: CI: confidence interval; SCSW: short comfortable speed walk; sε: standard
deviation of residuals.

Spatiotemporal
Parameter β0

β0 p-Value;
95% CI βAge

βAge p-Value;
95% CI βSex

βSex p-Value;
95% CI βHeight

βHeight p-Value;
95% CI βWeight

βWeight p-Value;
95% CI sε

SCSW step
length [cm] −2.176 0.882;

[−31.187, 26.835] −0.073 0.234;
[−0.193, 0.048] −0.913 0.567;

[−4.062, 2.236] 0.510 <0.001;
[0.331, 0.689] −0.181 <0.001;

[−0.281, −0.080] 6.005

SCSW step
width [cm] 6.164 0.274;

[−4.953, 17.281] 0.038 0.107;
[−0.008, 0.084] 1.301 <0.05;

[0.094, 2.507] −0.020 0.561;
[−0.089, 0.048] 0.076 <0.001;

[0.038, 0.115] 2.301

3.3. Usage of Normative Values

Usage of the provided normative data was exemplified for data from a person with multiple
sclerosis (Figure 3). The illustration of z-score transformed values allows for straightforward
overview of individual patterns, and cross-checking whether findings from the literature apply
for the individual at hand. For instance, the person in Figure 3 shows above (healthy) average
POCO pitch/roll/3D sway speed with closed eyes and below average SMSW gait speed, which
has been likewise found at group level in pilot studies using Motognosis Labs and the Kinect v1
(healthy participant overlap with Valkinect and VIMS: n = 9) [26,27].
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For SCSW step length and step width, we suggest using zres over zraw in visualizations
and further analysis. In Figure 3, both are depicted to illustrate effects of regression-based
normalization for identified confounding associations. The patient shows below aver-
age SCSW step length and step width when looking at raw data (54.86 cm and 7.65 cm;
zraw = −1.88 and −0.93). These values deviate further from the healthy mean when control-
ling for age, sex, height, and weight (zres = −2.70 and −1.60).

4. Discussion

In this study, we provided normative data for 43 spatiotemporal parameters of six
short motor tasks recorded from 20- to 60-year-old healthy adults using an inexpensive and
easy-to-use RGB depth camera system. The necessity for regression-based normalization
regarding demographic and anthropometric confounders was found mostly negligible
for this sample except for two gait parameters. Further use of the raw and normalized
normative parameters was exemplified by means of z-score visualizations.

The presented values will aid interpretation of outcomes for clinical users and re-
searchers employing instrumental motion analysis—especially RGB-Depth camera systems.
At group level, the results can serve for hypothesis generation about populations of interest,
even without a sufficiently matched control group. Observed patterns may define univari-
ate or multivariate “motor biomarkers” indicating pathology. For longitudinal studies,
cross-sectional normative data is arguably less relevant, as subjects provide their own
baseline data. However, it can still aid overall interpretation of intraindividual changes.
For instance, changes of a similar magnitude might be clinically more meaningful if they
exceed certain normative thresholds.

4.1. Short Comfortable and Maximum Speed Walk (SCSW and SMSW)

Gait speed measurement highly depends on start protocol (static or dynamic), path
length, and speed instructions. Our means (SCSW: 1.16 m/s; SMSW: 1.66 m/s) are con-
sistent with values for adults under 60 recorded with a stopwatch (4 m gait, static start;
SCSW: 1.11–1.21 m/s; SMSW: 1.57–1.88 m/s) [3] and a Kinect v2 study by Latorre et al.
(measurements starting at 6 m from the sensor; SCSW: 1.16–1.19 m/s) [5]. However, SMSW
gait speed in Motognosis Labs studies with the Kinect v1 (healthy participant overlap with
Valkinect and VIMS: n = 9) substantially exceeded our results (1.83 and 1.85 m/s) [27,28],
likely because of a more dynamic starting protocol. The limited sensor range of the Kinect
v2 only allows for few SMSW gait cycles to be recorded. Thus, parameters other than speed
lack robustness [33] and were not reported here.

Latorre et al. further report comparable SCSW cadence (107.43–112.37 steps/min ver-
sus our 112.07 steps/min), but divergent step lengths and widths (62–67 cm and 11–12 cm
versus our 69.35 cm and 10.19 cm) [5], which may result from a differing set-up and
algorithmic step definition.

In line with our findings, mean arm angular amplitudes of 25.0–26.2◦ were measured
during 4 km/h treadmill walking with an ultrasound motion capture system [7]. During
1-min walking at preferred speed in adults younger than 60, Mirelman et al. measured con-
siderably higher arm swing amplitudes (42.0–53.4◦) but lower asymmetry (corresponding
to an arm symmetry angle of 0.164–0.202) [6]. A comparison with other asymmetry data
from the literature was mostly inconclusive because of different metrics, e.g., in [7].

Despite clinically well-established effects, age did not emerge as a relevant confounder
for gait parameters—possibly because of our comparatively young cohort. This is consistent
with findings that gait speed does not change significantly under the age of 60 [3,4]. We
expected to find associations with height, as respective gait parameter normalization
approaches have long been proposed and comprise for example scaling as a function of leg
length [34] or body height [35]. The extent to which size differences explain sex or weight
differences and vice versa cannot be reliably determined using our statistical approach.
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4.2. Short Line Walk (SLW)

Test performance of SLW can reveal subtle balance deficits and depends highly on
instructions and individual implementation strategies. Conventionally reported SLW
parameters include time-to-complete (stopwatch measure) and number of missteps (obser-
vational measure) [36], only few studies regarding instrumental motion analysis of SLW
are available.

Velázquez-Pérez et al. derived trunk, lumbar and arm ranges of motion using wear-
ables, which are kindred parameters to SLW arm or roll sway variability and speed, but
not directly comparable [37]. Grinberg et al. focused on lower limb gait parameters during
3 m tandem gait at self-selected speed and found a substantially higher line walk cadence
compared to our results (84.5 steps/min vs. 71.78 steps/min) [21]. Ganz et al., on the other
hand, provide rather synoptic parameters derived from a single wearable that describe
postural corrections, overall movement, as well as regularity and complexity. They reported
composite factors of these parameters to be associated with age, sex, and BMI in older
adults [8]. However, time-to-complete was reported not to be associated with age, sex, or
BMI [36], which is more in line with our results that yielded no robust model describing
associations between spatiotemporal parameters and respective confounders.

4.3. Stepping in Place (SIP)

The observed mean stepping cadence of 98.29 steps/min compared well to the
99 steps/min reported by Garcia et al. Interestingly, they found similar cadences for
SIP and SCSW in their samples [14], while SIP stepping cadence was substantially lower
than SCSW gait cadence here. Other authors implicitly report higher mean cadence
(104.35–112.15 steps/min; extrapolated from reported cycle durations) and lower arrhyth-
micity (2.63–3.89) [13,15]. Substantially higher arrhythmicity (slightly adapted algorithm)
was measured in persons with Parkinson’s disease using Motognosis Labs [23], yielding
the parameter as a potential gait variability substitute. In [23] further parameters, such as
longest stance time, were extracted to assess festination or freezing of gait behavior. This
was omitted here, as no such behavior was expected in healthy adults.

4.4. Standing up and Sitting down (SAS)

Although sit-to-stand transitions are widely used in clinical ratings or timed assess-
ments of various disorders (e.g., as part of the Timed Up and Go Test), heterogeneous
transition phase definitions, phase segmentation procedures and outcome parameters
obstruct direct comparisons to our data.

For instance, Weiss et al. [17,18] reported comparatively short mean durations for Sit-
to-Stand (0.5 s and 0.56 s) and Stand-to-Sit transitions (0.7 s and 0.85 s) during performance
of the Timed Up and Go Test.

However, they took the extrema of accelerometer-derived anterior-posterior acceler-
ation for phase segmentation, which systematically underestimates these phases, when
considering respective formal definitions [19]. Definitions from van Lummel et al. are more
consistent with our approach and yielded slightly lower values (1.45 s and 1.47 s) during
five times Sit-To-Stand at self-selected speed in young adults [16].

While we found low inter-individual variability and negligible confounding for transi-
tion times in our sample, differences in transition times were previously described between
age-groups 25 and younger and 70 and older [16,20]. Furthermore, possible cultural bias
has been observed for this task [25].

4.5. Postural Control (POCO)

Direct comparison to data from the literature is futile due to major differences in
measurement technologies (e.g., force plates, pressure plates, and accelerometers), motor
tasks (e.g., reaching, single-legged, and open stance tasks) and outcome measures (e.g., path
lengths and displacement of center of pressure) [9–12].



Int. J. Environ. Res. Public Health 2022, 19, 16989 11 of 14

Previously published values from healthy adults using Motognosis Labs with a Mi-
crosoft Kinect v1 (healthy participant overlap with Valkinect and VIMS: n = 9) feature
slightly lower sway speed values and slightly higher respective Romberg ratios. They
propose using the 95th percentile of 3D sway speed (closed eyes) in healthy controls as a
threshold for abnormal sway in persons with multiple sclerosis, which amounts to 0.50◦/s
and compares well to our data (95th percentile = 0.47◦/s; not explicitly reported here). Con-
sistent with our findings, they reported no associations with age, sex, height, or BMI [26].
In studies with a broader age range, increased center of pressure sway paths in balance
tasks were, however, reported to be associated with older age and male sex [9,10].

4.6. Z-Score Transformation and Visualization

Comprehensible data visualization greatly increases interpretability and usability
of outcomes for experienced and technology-naïve users alike. Z-score transformations
are well established considering, e.g., neuropsychological testing [38], and relate to visu-
alizations used in the usual lab report format, which is highly familiar to clinical users.
In instrumental motion analysis, such transformations and visualizations are used less
frequently. Notably, however, z-scores are visualized alongside metric value and per-
centile representations for the commercially available Mobility Lab v2 system (APDM Inc.,
Portland, OR, USA) [30].

4.7. Limitations

Our sample is biased demographically towards a German, Caucasian, and urban
population, which potentially influences motor behavior [25,39,40]. However, such biases
can be counteracted by comparing our results with databases from other study sites, social
or cultural groups [25].

Expanding the data set may generally lead to more stable estimates of normative
values and associations with confounders. For expansion, more demographically and an-
thropometrically extreme data should be used where appropriate, e.g., from older subjects
when investigating neurodegenerative diseases such as Parkinson’s disease.

In terms of analysis, we restricted our modelling of confounding effects to linear
associations. Further, advantages of z-scores are limited for non-normally distributed
parameters, e.g., direct conversion into percentiles is not possible. They still serve the
general purpose of normalization, but, depending on use case, other transformations could
be explored. Lastly, the participant used for exemplification of the z-score visualizations
was chosen at random and does not necessarily show representative motor behavior.

5. Conclusions

The reported normative values fill existing gaps in the literature of motion capture
for various tasks assessing motor capacity as well as generally RGB-Depth camera-based
motion analysis. The results will inform clinicians and researchers on how to effectively
use and interpret the outcomes of this technology.
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of age, height, weight, and BMI subdivided by sex. A: Distributions from all studies for motor tasks
postural control (POCO), stepping in place (SIP), short comfortable speed walk (SCSW), and short line
walk (SLW). B: Distributions from studies Valkinect and VIMS for motor tasks short maximum speed
walk (SMSW), standing up and sitting down (SAS); Table S1. Overview of discard rates and exclusion
reasons for recordings from studies ASD, Valkinect, and VIMS. Abbreviations: POCO: postural
control; rec/s: recording/s; RR: Romberg ratio; SAS: standing up and sitting down; SCSW: short
comfortable speed walk; SIP: stepping in place; SLW: short line walk; SMSW: short maximum speed
walk; Table S2. Associations of spatiotemporal parameters with factors age, height, weight, sex and
study, assessed with Pearson’s correlation coefficients (r), independent samples t-tests or one-way
ANOVA respectively. Statistics with respective p-values smaller than 0.05 are highlighted in bold
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