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Abstract
Three-dimensional information is crucial to our understanding of biological phenomena. The vast
majority of biological microscopy specimens are inherently three-dimensional. However, conventional
light microscopy is largely geared towards 2D images, while 3D microscopy and image reconstruction
remain feasible only with specialized equipment and techniques. Inspired by the working principles of
one such technique - confocal microscopy, we propose a novel approach to 3D widefield microscopy
reconstruction through semantic segmentation of in-focus and out-of-focus pixels. For this, we explore a
number of rule-based algorithms commonly used for software-based autofocusing and apply them to a
dataset of widefield focal stacks. We propose a computation scheme allowing the calculation of lateral
focus score maps of the slices of each stack using these algorithms. Furthermore, we identify algorithms
preferable for obtaining such maps. Finally, to ensure the practicality of our approach, we propose a
surrogate model based on a deep neural network, capable of segmenting in-focus pixels from the out-of-
focus background in a fast and reliable fashion. The deep-neural-network-based approach allows a major
speedup for data processing making it usable for online data processing.

Introduction
Gaining insights into biological processes in three dimensions (3D) is vital for understanding biological
mechanisms, as well as improving translation between in vitro and in vivo 1. However, following the
historical concept of microscopy, the vast majority of common techniques used in laboratories remain
focused on acquiring 2D images. Among other existing techniques, confocal laser scanning microscopy
(CLSM) 2 remains the most widely used to capture 3D information about biological entities. During CLSM
imaging, the pinhole present in the optical path filters out the scattered light, ensuring all the captured
intensities are in-focus. This process is repeated for each focal plane as the acquisition moves along the
axial axis 3. In this way, CLSM reconstructs the clear 3D models of biological entities slice-by-slice.
However, long imaging time, high requirements for trained personnel or facility, as well as high equipment
costs make CLSM less accessible than traditional widefield microscopy. At the same time, widefield
microscopes and binoculars using transmission light are inexpensive, abundant in laboratories across
the world, and require minimal training or specimen labeling.

The stepwise acquisition of a larger translucent specimen in 3D may also be performed using widefield
microscopy through sequential alteration of the focal plane. Unlike optical sectioning in CLSM 3, when
widefield microscopy is directly applied to 3D specimens, all light - both in-focus and scattered -
contributes to the formation of an image 4. This introduces the noise from the other focal planes to the
recorded images; reduces the contrast information and decreases the quality of 3D reconstruction. An
ability to separate in-focus and out-of-focus parts of each focal slice would not only allow for precise 3D
reconstruction of the specimen but also make such imaging modality quantitative. This would be
possible through a clear separation of background and foreground pixels.
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Separation of in-focus and out-of-focus microscopy images without reference may be achieved
algorithmically using image-based (passive) autofocusing 5. In-focus images of specimens are often rich
with context patterns which makes neighbouring pixels in the in-focus image less autocorrelative
compared to the out-of-focus image. This, in turn, leads to greater contrast, wider ranges of intensity, and
sharper contour information in the in-focus images, making it possible to evaluate images' in-focus
status. Many passive autofocusing algorithms, for example, Vollath 6, Brenner 7, and Variance 8 are
designed based on this concept. Yet, most of them are used to evaluate the in-focus status of the whole
images or slices in a focal stack. Furthermore, most of these algorithms are relatively slow to compute.
This may be addressed using surrogate machine learning models (ML). For example, models based on
deep neural networks (DNNs) are recently showing great promise in a plethora of microscopy
applications 9–11. With the development of DNNs has gained more popularity in various computer vision
tasks (image classification (Simonyan & Zisserman 2015), segmentation 12 and object detection, etc.).
Through convolution operations, the DNN models extract features from images on multiple scales. These
diverse features enhance the accuracy of vision tasks. Specifically, Waller et al. have reviewed the
potential of DNNs in 3D microscopy. Chen et al. proposed a 3D convolutional DNN and validated the
algorithm for medical image segmentation. Yet, DNN models are known to perform best when used in a
supervised ML setting, which would require manual data annotation.

To eliminate the need for manual annotation, here we created a novel DNN model for widefield focal
sectioning through in-focus pixel segmentation, trained using algorithmically derived Ground Truth (GT).
The widefield microscopy image dataset we employed contains in vivo transmission light focal stack
micrographs of Danio rerio (zebrafish) larva’s head 13,14. To obtain the GT we investigated 8 algorithms
commonly used in autofocusing tasks including Brenner 15, Variance 16, Tenengrad 5, etc. These
algorithms obtained focus-score maps of each slice using a sliding window approach and maxima Z-
projection. Next, we compared the sensitivity of the focus measurement algorithms using the output of
focus measurement algorithms as a focus score. To ensure that the output of these algorithms
represents a good proxy for in-focus pixels we compared these outputs to a manually annotated test
subset (manual segmented GT). We concluded that five detectors - Variance, Vollath, Standard Deviation
16, Brenner, and Laplacian - were superior to others in detecting changes of focus planes. After the
assessment of the target segmentation qualities, we concluded that the Standard Deviation (std) detector
outperformed the others in evaluating the focus status of images. Next, we adopted a DNN model with
the U-Net 17 architecture to obtain a surrogate model speeding up the previous focal score computation
process.

Our results suggest that using conventional algorithms as weak labels, DNN may be employed as a
surrogate model for the detection of in-focus pixels in stable quality. This solution separates the in-focus
pixels from image stacks of widefield microscopy, enables the optical sectioning in a digital manner, and
reveals the 3D information of the specimen. This, in turn, can make in vivo 3D imaging widely accessible
for laboratories with modest funding.
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Methods

Dataset source and ethics declaration
The dataset of this work comes from the observation of in vivo zebrafish (Danio Rerio) larvae heads
recorded as focal stacks using a stereomicroscope (Leica M205FA; Leica Microsystems, Nussloch GmbH,
Nussloch, Germany). All images were obtained at x130 magnification with a 1x objective. The lateral
resolution was 0.79 µm per pixel. To obtain a focal stack, twenty Z-planes were captured covering a total
axial distance of 171 µm at 8.55-µm intervals and saved as TIFF stacks 13. In each file, the target is in the
middle of the view field. As stated in 13, the animal experiments were performed according to the Animals
(Scientific Procedures) Act of 1986 and approved by the Home Office (project licenses PPL P84A89400
and P4E664E3C).

An algorithm for segmentation of in-focus pixels
The focus measurement algorithms 8 evaluate the in-focus status through the pixel value patterns in
images. Such algorithms give the highest focus score for in-focus pixel intensities. The focus score
decreases when the focal plane changes. While a great number of focus detection algorithms have been
proposed in the literature (reviewed in previous paper 16, including an autofocusing algorithm selection).
In this work, we investigate the 8 most widely used algorithms. The algorithms can be classified into three
categories based on their design

a) Derivative-based algorithms

These algorithms assume that in-focus images contain more high-frequency content. Therefore, the pixel
intensity changes stronger than in out-focus images. These intensity variations can be recognized by
computing the derivatives of pixel values. We selected the five most promising algorithms below.

1) Brenner gradient 7. This algorithm computes the first-order derivation between the target pixel and its
neighbours. Eq. 1 is presented below with . Here the  is a manually
defined threshold.

1
2) Tenengrad 18. This algorithm derives from the Sobel operator by detecting the contour in both
horizontal and vertical directions (  and ).

2
3) Laplacian 19. This algorithm convolves the image with Laplacian operators and sums the values.

(i(x + 1, y) − i(x, y ))2 ≥ θ θ

FBrenner = ∑
Height

∑
Width

(i(x + 2, y) − i(x, y ))2

Sx(x, y) Sy(x, y)

FTenengrad = ∑
Height

∑
Width

Sx(x, y)
2

+ Sy(x, y)
2
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3
4) Sum Modulus Difference (SMD) 20. This algorithm calculates the first-order derivation between pixels
and neighbours.
         

 (4)

5) Vollath 6. The Vollath algorithm computes the derivation between pixel intensity in both horizontal and
vertical directions.

5
b) Statistic-based algorithms

These algorithms distinguish the in-focus status by statistical features of images (variance, standard
derivation, correlation, etc.). Compared to the derivative-based algorithms, such algorithms are more
stable to noise. The candidates in this work are below.

6) Standard deviation 21. When the images are in-focus, the contrast of pixel values is high. This can be
detected by calculating the standard deviation.

6
7) Variance 8. The power operation amplifies the variation differences from pixel values.

7
c). Histogram-based algorithm.

These algorithms assess the patterns of intensity distributions. This work inspects one histogram-based
algorithm outlined below.

8) entropy algorithm 22. This method assumes the in-focus images contain more information about the
target. Thus, it shows higher entropy scores.  is the probability of pixels with intensity .

8

FSML = ∑
Height

∑
Width

|Lx(x, y)| + ∣∣Ly(x, y)∣∣

SMDx = ∑x∑y |I(x, y) − I(x, y − 1)| SMDy = ∑x∑y |I(x, y) − I(x + 1, y)|

FSMD = SMDx + SMDy

FV oll4 = ∑
M−1

i=1
∑

N

j=1
g(i, j) ∗ g(i + 1, j) −∑

M−1

i=1
∑

N

j=1
g(i, j) ∗ g(i + 2, j)

Fcorr−stddev = ∑
Height

∑
Width

i(x, y) ∗ i(x + 1, y) − H ∗ W ∗ μ2

Fcorr−stddev = ∑
Height

∑
Width

(i(x, y) − μ)
21

H ∗ W

pi i

Fentropy = −∑
Intensities

pi ∗ log2 (pi)
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Sliding window scheme
To obtain the focus-score on fractions of high-resolution micrographs, we employed a scanning scheme
23,24. This algorithmic scheme - illustrated in Fig. 1a below - changes the scanning window sizes, slides
windows in various step widths (strides), and segments the in-focus pixels based on the previously
proposed focus score. Specifically, we computed the focus score of pixels within the scanning window. A
perception window slides across the images with various stride parameters and extracts the pixel
intensities within windows. The focus measurement algorithm then evaluates the intensities and outputs
their focus scores.

Ranking of the focus score algorithms
Each widefield microscopy dataset contained twenty Z-slices - ranging from in-focus to out-of-focus.
Besides the changes of focus status in the lateral plane (Fig. 1a), the focal plane differs also along the
axial direction. We proposed the scanning scheme in Fig. 1b. Applied to the different slices, the eight in-
focus segmentation algorithms above evaluated the pixels and outputted a focus score for every slice.
Since each slice corresponds to different focal planes, the focus scores varied from each other. This
makes it possible to distinguish the in-focus slice from the stacks in the axial direction. The higher the
focus scores difference between slices, the better the algorithms can recognize the out-of-focus slices.

Image-wide focus map
These scores served for the generation of the focus-score patch (the same size as the scanning window).
This process was repeated on every slice of image stacks in both stride directions (vertical and
horizontal). It produces a focus-score map of the scanned image. By changing the stride parameters, this
scanning generates multiple focus-score maps with different perceptions. Since the in-focus pixels gain
higher scores in every scanning, their focus scores peak in the stacks. To obtain the distinct changes for
each scanning, we amplify the difference between in-focus and out-focus pixels through the maxima Z-
projections of the focus-score stack. This operation preserves the highest focus score for patches. As the
scanning repeats, the focus score of in-focus pixels increases more steeply than the out-focus pixels.
This makes it possible to distinguish the in-focus pixels from the images. To diversify the perceptions, the
strides parameters and size of windows can be assigned with multiple values as presented in Fig. 2. This
compresses the bias introduced by the scanning parameters configurations.

Deep neural network architecture
This work proposes a 7-layers symmetric U-Net model with a 3-layer encoder and decoder structure
(C256-C128-C64-C32-DC64-DC128-DC256). This U-Net segments the in-focus pixels from the widefield
microscopy images end-to-end. This bypasses calculating the computationally expensive focus score
acting as a surrogate model. For the training dataset, we use the previous focus score maps as GT
masks. The widefield microscopy image paired with the corresponding GT masks served as input. The U-
Net model learns the transfer between raw widefield images and GT masks directly. These GT masks
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serve as references for in-focus segmentation. After training, the model translates the widefield
microscopy image stacks into corresponding 3D pixel information.

Hardware used and the training time
The GPU calculations for this work were performed on a Tesla V100, and the 8 rule-based algorithms
were run on an AMD Rome core. The training speed for our DNN-based solution is 1s/epoch on average
resulting in a training time of 8.5 min for 500 epochs. This training process can be around 20 min for the
GPU of a consumer GPU (Nvidia GTX 30xx).

Results

Widefield focal stack dataset
To develop an approach for in-focus region detection, we have employed a published dataset of Danio
rerio (zebrafish) in vivo widefield microscopy 13. In this dataset, the fraction of the head of the zebrafish is
located in the middle of the field of view. Each observation consists of a stack of 20 images taken in
different focal planes (focal stack). The last slice (No. 19) of stacks contains mostly in-focus pixels, while
most of the pixels in the first slice (No. 0) are out-of-focus. The remaining slices contain a mixture of in-
focus and out-of-focus signals (see Methods for details).

Rule-based in-focus region detection
The widefield microscopy datasets of bulk objects, similar to the one we employed here, often contain in-
focus and out-of-focus lateral regions in each slice of the focal stack. These regions change from slice to
slice as the focal plane goes through the bulk of the specimen. To distinguish the regions of the slice
which are in-focus from those that are out-of-focus, we have explored algorithms typically used for focal
plane detection in the axial direction. For each subregion (see sliding window scheme in the Methods
section) in each slice of the focal stack we have computed a score corresponding to the focal plane
detection algorithm (Fig. 1). Specifically, we compared the following 8 algorithms: Brenner, Tenengrad,
Laplacian, SMD, Vollath, Std, Variance, Entropy. Figure 1a illustrates the scanning results from one image
(slice). To preserve the homogeneity of the original image, this work uses a square perception window
(see Methods section). As presented in the left part of the panel, the perception window slid in the same
step size in both horizontal and vertical directions. We tested the following windows sizes: 64, 128, and
256. We tested the strides (step sizes) 16, 32, 64, and 128 in this experiment. We obtained a focus-score
map for each slice of the focal stack by reassembling them into a stack and maxima Z-projecting them
(see Methods).

As presented in the focus-score map in the right part of Fig. 1a, the brightness indicates a high focus
score. We noted that the smaller the perception window was, the more detailed the scanning result was.
Yet, a small perception window failed to show the low-frequency information (the global features). For
example, the first row extracted only contour information, while the other preserved more global
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information. Conversely, the large window lost the high-frequency signal (details of images) during
scanning leading to undesired results. Notably, between the second and third rows, the third row failed to
capture the detailed contour information. Therefore, the balance between low- and high-frequency
signals, the window size 128 proved a more appropriate choice for both global features and local details.
Next, we examined the stride parameters for this optimal perception window size (Fig. 1a, second row).
We noted that the smaller the strides correspond to smoother the final focus scores in the map. A smooth
focus-score map indicates the structure details of the zebrafish (eye contour, body components).
Conversely, bigger stride steps allow for retaining more global information. This prevents the focus-score
map scanning from turning into a simple contour detection method. We further noted that all stride
parameters contributed valuable detailed information at various levels. Therefore, a better scanning
process should contain multiple stride values to preserve both high-frequency information and local
details.

To determine the appropriate focus metric for each region, we applied the eight described rule-based
algorithms on the widefield microscopy dataset. The best focus metric was expected to distinguish
images on varied focal planes continuously in the axial direction. The in-focus region should score the
highest value, while the out-of-focus region should rank at the bottom. With this in mind, we have
measured the outputs of each algorithm in comparison to the distance from the perfect focus of a region
(defocus). Figure 1b illustrates the sensitivity detection to the focal plane changes.

We noted that five (Variance, Vollath, Std, Brenner, and Laplacian) out of the eight algorithms detected the
focal plane changes successfully - from slice No. 0 to slice No. 19. Interestingly, the Vollath algorithm
recognized the difference between in-focus images and out-focus images. However, it failed to detect the
changes continuously in the middle slices of the stacks. In these slices, the amount of in-focus pixels was
visually comparable to the amount of out-of-focus pixels (mixed-focus slice). However, the Vollath score
varied only slightly since the fifth slice (see Fig. 1b). In Table 1, we evaluated the time consumption for all
eight candidates. Compared to the other candidates, the Brenner and Vollath algorithms were much more
computationally expensive for the same images (16 minutes/ slice vs. less than 1 minute from other
candidates). Nonetheless, the results were marginally better than Laplacian. Therefore, we concluded that
the three algorithms - Variance, Std, and Laplacian outperform other algorithms in sensitivity along the
axial direction, as well as in processing time.
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Table 1
The time consumption comparison between 9

candidates for in-focus pixels segmentation. To
obtain measurements, we evaluated the

computation time for segmentation on the whole
stack (all 20 slices of one example stack).

Candidates Computation time (s)

Standard deviation (std) 203

Variance 199

Laplacian 270

Tenengrad 1212

SMD > 2.4∙104

SMD2 > 2.4∙104

Brenner 1.92∙104

Vollath 1.2∙104

DNN 0.062

Unlike focal plane detection in the axial direction, the task of detecting in-focus parts of the specimen
requires focus measurement to distinguish both the in-focus status and the contour information in the
lateral directions. The first row of Fig. 1c presents the in-focus status of two images. Zooming into the
same patch of these images, the pixel intensities indicate varied contour information. The optimal
algorithm should preserve the correct image content during the focus status detection. In the second row
of Figure. 1c, we calculated the focus score map from the mixed-focus images (middle slice, mixture from
both in-focus and out-of-focus pixels) with the three algorithms above. The detected contour information
using the Laplacian differs from the other two. To validate the differences, we merged the focus score
map with the corresponding microscopy image in the third row of Fig. 1c. The segmented contour from
Laplacian appears to show relatively less detail, compared with Std and Variance.

Thresholding the focus score map with the Otsu algorithm 25, we obtained the focus score masks as
references for in-focus pixels. This mask preserves the pixels only from the target focal plane and filters
out pixels from other focal planes. In Figure. 2a, we compared the segmentations of the three focus
algorithms (Laplacian, Variance, and Std) to the manual segmented GT for validation. The Laplacian
shows severe inconsistency with the manual GT. Thus, we concluded that it is inferior to the other two in
preserving the correct image content. To be noticed, the Variance marks the in-focus pixels in a more
conservative way. This yields the loss of specimen information. We assessed the information loss of two
algorithms (Variance and Std) on whole stacks in Figure. 2b. Compared to the manual GT, the Variance
barely preserved the complete contour information. The Std, however, showed consistency with the
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manual GT. This makes the Std the focus algorithm of choice satisfying focus sensitivity and the ability
to detect the morphology of specimens.

Deep neural network surrogate for the rule-based in-focus
region detection
We have shown that the focus score pipeline with the Std algorithm may generate reliable focus score
maps (Fig. 3a). Furthermore, accompanied by automated thresholding algorithms, these maps allow to
obtain focus masks which are comparable to the manual GT. However, this rule-based pipeline is
relatively computationally expensive and requires a long time to process image stacks). To achieve
similar results in an end-to-end single-step fashion, we proposed a DNN surrogate model with the U-Net-
like structure 17 Illustrated in Fig. 3b. To obtain the U-Net-based surrogate model, we used the binary
masks captured from the output of the rule-based focus score algorithms as weak labels 26. This way, the
model learns directly the transformation between focus score masks and raw images.

We opted for U-Net architecture as it is commonly used in biomedical image segmentation tasks. U-Net
combines the convolutional neural network (CNN) and the Autoencoder (AE) like structures 27. As a
representation learning model, the first several convolutional layers of U-Net (the encoder part) enhance
channel numbers of the input images and extract the features in the AE structure. The middle
convolutional layer (the bottleneck part) encodes the previous features as embedding vectors in the latent
space. The last multiple de-convolutional layers (the decoder part) upsamples the embedding vectors
back into the original images. Optimizing the loss between reconstructed images and inputs, the encoder
and decoder learn jointly the manifold structures 28 of given datasets. In contrast to the traditional AE
structures, the U-Net concatenates the up-sampled embedding code with the feature maps from the
corresponding layers in the encoder part 29. This operation casts constraints on the outputs and gives the
U-Net an advantage in the supervised learning tasks. This model segmented the in-focus pixels directly
from the widefield microscopy images.

As illustrated in Fig. 3b, this model contains 7 convolutional layers − 3 for the encoder; 1 for the
bottleneck; 3 up-sampling layers for the decoder. The loss function we chose consisted of focal loss, dice
loss, and binary cross entropy summed up into a total loss. To evaluate the performance of the model,
this work adopted the IoU score 30 as the metric. As the optimizer, we used Adam with a learning rate of
0.001. After 400 epochs of learning with a batch size of 8, the model converged to a stable value both for
IoU scores and the loss. The final IoU was 0.98 and the loss was 0.05 (Supplementary Fig. 1). As
presented in Table 1, this DNN model speeds up the segmentation process with 0.062 seconds for one
stack. Even with the training time of 8.5 minutes in one shot, this solution is still superior to other
candidates by accelerating the segmentation to at least ~ 10000 times.

Surrogate model evaluation
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The trained U-Net surrogate model can directly predict the focus-score mask with the widefield
microscopy images as inputs. This approach significantly simplified the segmentation compared to the
previous focus-score pipeline. Figure 4a illustrates part of the segmentation results. Notably, from the
completely out-of-focus slice (slice 0) to the completely in-focus slice (slice 19), the DNN model
distinguished the in-focus pixels correctly. In slice 0, the model labelled the whole image as out-focus.
The results were consistent with the GT mask. As the focal plane changed during optical sectioning, the
image contained more in-focus pixels. The predictions of the DNN model stayed reliable. In slice 19, the
model labeled correctly the whole target as in-focus. However, the prediction varied from the GT masks in
certain cases (slice 9), which highlights opportunities for future improvements of this DNN model in the
future.

The focus-score masks obtained from the surrogate model may be employed for in-focus pixel
segmentation from the widefield microscopy images. As shown in Figure. 4b, these masks allow retaining
only the in-focus part of the image. These, in turn, may be assembled into a 3D model of a specimen.
Notably, this is possible by employing images obtained using widefield in vivo microscopy, in which
unlike in CLSM, both in-focus and out-focus light contribute to the formation of the image in every image
plane.

Conclusion & Discussion
Inspired by the mechanism of CLSM and software-based autofocusing algorithms, this paper proposed
an approach to filter in-focus from out-of-focus regions of the image in the focal stack obtained in
widefield microscopy. The latter can be obtained by altering the focal plane and scanning through bulk
specimens like live zebrafish (D. Rerio). However, focal stacks obtained by widefield microscopy in such a
manner contain a mixture of information produced by both in-focus and out-of-focus light. To select the
optimal focus measurement algorithm, this work investigated eight candidates widely used in software-
based focal plane detection (Vollath, Brenner, std, etc.). Our experiments showed that for the purpose of
in-focus region detection and content information preservation, standard-deviation-based pipelines were
optimal.

To overcome the computational costs of the rule-based pipeline, we proposed a DNN surrogate model
based on U-Net architecture for in-focus pixel segmentation. This model was trained to adopt the
previous rule-based segmentation results as GT. The resulting DNN model filtered out the out-of-focus
signals digitally without a complex and expensive confocal setup. The segmentation results on the
zebrafish dataset showed consistency with the manual segmentation GT. Compared to the previous eight
candidates, the DNN model overwhelms others by the calculation speed with at least ~ 10000 times
faster by in-focus segmentations, still noting that the rule-based processing was performed without GPU
acceleration. Nonetheless, the speedup is impressive making virtual optical sectioning possible for in vivo
widefield microscopy. Upon segmentation of the in-focus pixels, our DNN allows us to reconstruct 3D
models of the specimen obtained from widefield imaging.
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While multiple tasks in machine learning and deep learning for microscopy have been proposed in the
past 9, 31–33, no tasks for the separation of in-focus from out-of-focus images have been explored until
now. We argue that our work opens an avenue to advanced image protocols, such as 3D in vivo imaging
using simple and inexpensive hardware. Widefield microscopes are abundant in research and education
facilities and may find new applications using approaches akin to ours. Remarkably, as the GT for our
surrogate model was obtained purely programmatically, it is tempting to speculate that this approach
may be useful in weak labeling and self-supervised learning 26,34,35.

As a possible extension of this work, a better focus-score pipeline could combine multiple focus
measurement algorithms instead of only one. This could possibly enhance the quality of the
segmentation. This serves as a better GT for training the DNN models. Besides, other DNN structures
(pix2pix GAN, transfer learning, 3D U-Net, etc.) might bring better performance regarding segmentation
accuracy.
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Figures

Figure 1

Sliding window scanning approach for focus score maps computation. (a) illustrates a perception
window sliding across the widefield microscopy images in both x and y directions, while evaluating the in-
focus status of pixels, and outputting the focus-score maps. The three rows show the scanning results
with window sizes (64, 128, 256). The focus-score maps with bigger perception windows show fewer
details. The three columns stand for different stride plans for specific window sizes. (b) shows the axial
sensitivity of focus measurements. The image stack contains 20 images - from the out-of-focus slice 0 to
the in-focus slice 19 (shown in the OX axis). Min-max-normalized focus score for each tested algorithm is
shown in the OY axis. Figure legend names algorithms in the order of maximum focus score value
reached. (c) presents the lateral sensitivity of focus measurements. The slices of one stack range from
out-of-focus (left) to in-focus (right). (d)the top row shows an example of how the three detectors
(Variance, std, and Laplacian) marked the in-focus pixels in the middle slice. This slice contains pixels
from both in-focus and out-of-focus. The bottom row shows merges of the maps with microscopy
images. The scale bar in all images is 500 µm.
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Figure 2

In-focus masks and pixel segmentation. (a) shows binary masks from the focus measurements
corresponding to the respective algorithm. To obtain masks, the focus-score maps were binarized using
the Otsu thresholding. Comparison with the manually marked ground truth (GT) masks is presented on
the right-hand side. (b) shows in-focus masks of Variance and Standard deviation merged with
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corresponding images compared to the manual ground truth (GT) in red. The scale bar in all images is
500 µm.

Figure 3

The pipeline of the in-focus segmentation using deep neural networks. (a) shows the preprocessing part,
which scans the regions of image stacks from widefield microscopy and outputs the feature map for the
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maxima projecting. The focus-score map resulting from maxima projecting serves as the input for the
binarizing step. This process marks the in-focus pixels in the focus-score maps as the Weak-label Ground
Truth (WGT) masks. (b) the deep learning part adopts the WGT masks along with the widefield
microscopy images for the surrogate deep neural network (DNN) training. The DNN segments directly the
in-focus pixels from the original image stacks and presents the 3D information of targets. The scale bar
in all images corresponds to 500 μm.
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Figure 4

The end-to-end in-focus segmentation model using deep neural network (DNN). (a) shows input,
prediction, and manual Ground Truth on slices ranging from 0 (out-of-focus) to slice 19 (in-focus) in one
stack. But in some slices (slice 9 for example), the 7-layer DNN fails to keep consistent with the GT mask.
This leaves the improvement space for future work. (b)as the end-to-end pipeline, the trained DNN
segments the in-focus pixels from the image stacks of widefield images directly. These pixels represent
the 3D information of targets. This enables the operations of optical sectioning in a digital way by using
widefield microscopy.
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