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Abstract

Multi-omics characterization of single cells holds outstanding potential
for profiling gene regulatory states of thousands of cells and their dynam-
ics and relations. How to integrate multimodal data is an open problem,
especially when aiming to combine data from multiple sources or condi-
tions containing biological and technical variation. We introduce liam, a
flexible model for the simultaneous horizontal and vertical integration of
paired single-cell multimodal data. Liam learns a joint low-dimensional
representation of two concurrently measured modalities, which proves
beneficial when the information content or quality of the modalities
differ. Its integration accounts for complex batch effects using a tune-
able combination of conditional and adversarial training and can be
optimized using replicate information while retaining selected biologi-
cal variation. We demonstrate liam’s superior performance on multiple
multimodal data sets, including Multiome and CITE-seq data. Detailed
benchmarking experiments illustrate the complexities and challenges
remaining for integration and the meaningful assessment of its success.

Keywords: single-cell, multi-omics, multimodal, integration, batch effects,
benchmark, deep learning, adversarial training, conditional VAE, Multiome,
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1 Introduction

Single-cell omics technologies have transformed the way we can study cellu-
lar systems, and they have quickly become integral to the current biomedical
research landscape. Recent advances allow for concurrently measuring multi-
ple modalities, such as gene expression and chromatin accessibility, per cell
(Ma et al, 2020a; Lee et al, 2020; Peng et al, 2020). These paired multimodal
assays promise unprecedented insight into cellular diversity and relationships
between molecular layers and regulatory processes. However, novel data types
also pose new and complex challenges for data integration. We need to com-
bine data from distinct modalities providing complementary information, each
with unique dimensionality and statistical properties (vertical integration). It
is unclear whether it is advantageous to analyze the different modalities sepa-
rately or at what level of abstraction it may be beneficial to project data into a
joint latent space. At the same time, intricate study designs and meta-analyses
require sophisticated non-linear batch effect removal (horizontal integration)
(Argelaguet et al, 2021).

Solutions for horizontal integration exist for many unimodal data types
(Luecken et al, 2022; Cao et al, 2021; Kopp et al, 2022; Ashuach et al, 2022).
However, applying these unimodal solutions to multimodal data is not straight-
forward, and they showed varying success on complex horizontal integration
tasks in a comprehensive benchmark (Luecken et al, 2022). Likewise, several
methods for the vertical integration of multimodal single-cell data are avail-
able, but most do not explicitly allow for and evaluate complex batch effect
removal (Argelaguet et al, 2020; Singh et al, 2021; Hao et al, 2021; Zuo and
Chen, 2021; Minoura et al, 2021; Cheng et al, 2022; Duren et al, 2022; Li et al,
2022b). A notable exception is the model totalVI that performs simultaneous
horizontal and vertical integration of CITE-seq data using a conditional vari-
ational autoencoder (CVAE) (Gayoso et al, 2021). In addition, recent models
for the related problem of mosaic integration combine multimodal and uni-
modal data sets into a single representation (Ashuach et al, 2021; Gong et al,
2021). Though not explicitly designed and tested for paired multimodal data
integration, these methods are, in principle, applicable to the task, but are
typically not systematically evaluated. The breadth of methods reflects increas-
ingly complex experimental designs and data types in genomics. However, none
address and explore all challenges posed by paired multimodal single-cell data,
and often, the modeling choices driving the success of the methods remain
elusive.

To effectively tackle these challenges, we developed a conditional varia-
tional autoencoder-based model for integrating paired multimodal single-cell
data. To our knowledge, liam (leveraging information across modalities) is
the first approach that allows for a principled tuning of the strength of batch
mixing via an adversarial loss term that we recently introduced for the hori-
zontal integration of scATAC-seq data (Kopp et al, 2022). In the following, we
apply liam to complex experimental designs with replicate data to confidently
assess its integration performance. Its early-stage integration strategy leads to
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higher robustness towards low-quality modalities than later-stage integration.
Through ablation studies, we pinpointed the principal contributors to batch
integration. At the same time, we demonstrate its competitive performance
on multiple distinct multimodal data sets. Our findings demonstrate the need
for methods that account for and exploit complex real-world study designs,
explore novel avenues for method evaluation, and expose challenges of current
benchmarking and evaluation strategies.

2 Results
2.1 The model liam

Liam (leveraging information across modalities) is a model for the simultane-
ous horizontal and vertical integration of paired multimodal single-cell data.
It builds on prior work employing variational autoencoders for dimensional-
ity reduction and horizontal integration of unimodal single-cell data (Lopez
et al, 2018; Svensson et al, 2020; Kopp et al, 2022). The deep generative model
learns a joint low-dimensional representation of two single-cell modalities while
accounting for batch effects. Liam currently supports any pairwise combination
of gene expression, chromatin accessibility, and cell surface protein measure-
ments (demonstrated on Multiome and CITE-seq data). We use the negative
binomial loss for raw gene expression and CLR-normalized cell surface pro-
tein counts and the recently proposed negative multinomial loss for chromatin
accessibility data (Kopp et al, 2022).

To enable the model to use potential correlations across modalities at an
early stage, the modalities share multiple layers in the encoder that project
the data into a shared latent space. To account for intricate study designs
resulting in complex batch effects, we model size factors and use a conditional
decoder combined with an adversarial training strategy to remove the influence
of nuisance variables on the low-dimensional data representation (Ganin et al,
2016; Kopp et al, 2022). The adversarial training strategy introduces a tuneable
scaling parameter «, with which we optimize the contribution of the batch
loss to encourage the mixing of cells from different batches. We employ a
logistic-normal distribution for the latent cell variable, making the latent factor
loadings interpretable as probabilities (Svensson et al, 2020; Gayoso et al,
2021). We use layer norm for each layer, motivated by the finding of superior
horizontal integration performance of the single modality model scVI when
using layer norm instead of batch norm (scVI default) (Supplementary note
Ad).

Figure 1 shows a complete overview of liam’s architecture. Apart from the
default variant of liam developed for paired multimodal data from two simul-
taneously measured modalities, we also provide variants of liam for unimodal
data, e.g., gene expression data (scRNA-seq). We give further details on liam’s
implementation in the Methods section.
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Fig. 1 Liam’s architecture. Schematic representation of liam’s architecture for Multiome
(paired gene expression and chromatin accessibility data) excluding inferred parameters.
The latent cell representation z, corresponds to the integrated low-dimensional data repre-
sentation (or embedding, default dimensionality: k = 20) that we obtain after training. To
remove nuisance variables, we model and infer data type- and batch-specific size factors (I,
dn) and dispersion parameters (not shown), and combine a conditional decoder, where we
feed the one-hot encoded batch label of each cell n (sy) to the decoder with an adversarial
training strategy. The model components required for the adversarial training strategy are
labeled in red. The gradient reversal layer is represented by a dashed red line. Representation
inspired by Supplementary Figure 13 from (Gayoso et al, 2021).

2.2 Exploiting replicates for selected treatment effect
retention and enhanced batch mixing
Increasingly complex study designs necessitate flexible integration methods

that reduce unwanted noise while retaining biologically meaningful differences.
We developed liam such that it can exploit nested batch effect structure and
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disentangle technical from biological variation. To illustrate this unique fea-
ture, we apply liam to a data set for which we have two replicates of a
treatment-control experiment (stimulation of T cells; DOGMA-seq use case)
amounting to four samples (Mimitou et al, 2021) (cf. Figure 2(f)). This data
set comprises measurements of three modalities from the same cell, chromatin
accessibility and gene expression (used for model training), and cell surface
proteins (used for model validation). Using meta-information collected during
sample preparation, we conduct experiments assigning distinct variables as the
"batch variable” in the model (i.e., the variable whose effects to remove from
the latent representation) (Figure 2). We measure the removal or retention of
effects of distinct variables from the collected meta-information with the diver-
sity score iLIST ((Korsunsky et al, 2019), as implemented in scib (Luecken et al,
2022)), for which a higher score indicates better mixing with respect to the
chosen variable. When treating the experimental replicate pairs as two distinct
batches, liam removes technical variation between replicates while retaining
differences between conditions (i.e., treatment and control). By contrast, when
treating each sample as a distinct batch, cells from treatment and control
samples within and between replicates are mostly mixed, potentially resulting
in a loss of biological signal induced by the treatment. Both settings retain
known treatment effects, e.g., the emergence of activated T cells marked by
the expression of the cell surface protein CD69 after T cell stimulation. How-
ever, some more subtle biological differences are only retained by the model
penalizing differences between replicates, but not samples, as seen in the split
of cell populations by treatment, coinciding with treatment-affected cell sur-
face marker expression not used for training (e.g., the selective depletion of
CD3-2 cell surface marker expression in treated samples).

These experiments highlight common issues of integrating data sets without
replicates: When removing batch effects between samples, we face a trade-
off between preserving biological variation and removing nuisance variables.
Assuming that shared variation between multiple replicates profiled under the
same condition is more likely to be of biological than of technical origin and
that we run a low risk of removing biological signal between replicates beyond
sampling variation, we investigate the effect of increasing the contribution of
the adversarial loss to the model’s total loss for the previous experiments. In
particular, we choose different penalization strengths of batch effects via the
scaling parameter « using either replicate or sample as the batch variable.
Figures 2(c) and (d) demonstrate that we can improve replicate mixing when
upscaling the contribution of the adversarial component in liam’s loss func-
tion while retaining condition-specific differences ((c) left panel) across a wide
range of scaling parameters when choosing replicate as the batch variable. We
can optimize this effect via the iLISI replicate metric, which changes with the
upscaling of the contribution of the adversarial term. At the same time, the
iLISI condition metric stays constant across scaling factors, demonstrating that
this approach is robust and does not reduce biologically meaningful variation.
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When removing all differences between samples (disregarding replicate infor-
mation, i.e., mirroring the common situation without available replicates), we
can also improve replicate mixing (increasing score for iLISI replicate). How-
ever, we also remove condition-specific effects when upscaling the contribution
of the adversarial term (Figure 2(c) right panel and (e)) (increasing score for
iLISI condition). These results underscore the merits of replicates and the
power of the batch adversarial strategy implemented in liam concerning the
removal of unwanted variation.

2.3 Liam excels in a comprehensive benchmark across
distinct data types

To further test liam’s capabilities, we use the first-of-its-kind benchmark data
set specifically designed to evaluate multimodal single-cell data integration
in the NeurIPS 2021 competition "Multimodal Single-Cell Data Integration”
(Luecken et al, 2021). To ensure that the data reflects real-world challenges, the
organizers generated data from multiple donors across multiple sites, thereby
introducing within- and across-site and donor-variation (nested batch effects).
This specific experimental design allows for assessing if methods can handle
batch effects of distinct sources and scales. We competed with liam for one
of the posed NeurIPS competition tasks: ”Jointly learning representations of
cellular identity” (Task 3). In this competition, liam ranked 4th for Multiome
and 2nd for CITE-seq data in the online training category. For this data set,
the organizers provide expert-derived cell type annotations as a surrogate for
ground truth for cellular state, allowing us to evaluate our modeling choices
beyond batch effect removal.

Since the competition metrics were unfortunately either confounded by
the nested batch effect structure of the data or had low discriminative power
(Lance et al, 2022), we set out for additional evaluations that include unbiased
metrics for batch effect removal. In addition to the models that performed
best according to the competition’s evaluation criteria for the respective data
types and online learning category, we include MultiVI' (Ashuach et al, 2021)
for Multiome and totalVI (Gayoso et al, 2021) for CITE-seq data, which are
alternative approaches based on VAEs. We trained all models using the sample
id (composite of site and donor) as the batch variable, and in contrast to the
competition, we did not set any constraints on resource usage.

Figure 3 illustrates that liam is highly effective in removing nested batch
effects while retaining biological variation for both Multiome and CITE-seq
data (all metrics shown in figures A5 and A6). On Multiome data, liam out-
performs MultiVI and LSL_AE on the bio-conservation metrics dependent on
cell type annotations (nmi and asw_label), as well as on trajectory conserva-
tion (ti_cons_batch_mean). LSL_AE performs best on cell cycle conservation
(cc_cons), followed by liam and last MultiVI. For evaluating batch effect
removal (asw_batch and iLIST), we restricted our evaluation to cells from donor

'The model MultiVI is designed for mosaic integration, of which the paired multimodal data
integration studied here is a subtask.
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1, for which samples were measured at multiple sites. We assume that batch
effects between samples from the same donor should be minimal and mainly
reflect sampling and technical differences. Here, liam is best on asw_batch_d1,
and MultiVI on iLISI_d1. Both clearly outperform LSL_AE, which did not
remove the nested batch effects between sites, reflected by the stratification of
cells by the site for LSL_AE in figure 3(a). For CITE-seq data, liam outperforms
totalVI and Guanlab-dengkw on the metric asw_label and Guanlab-dengkw
on nmi. For the metrics cc_cons and ti_cons_batch_mean, Guanlab-dengkw
achieves the best results, but the superior performance on those metrics is ren-
dered irrelevant by the model’s failure to integrate data from different sites.
As for the Multiome data, liam and totalVI outperform the model performing
best in the competition concerning batch integration, with totalVI performing
slightly better than liam. In summary, liam successfully removes complex batch
effects while preserving biological signal for Multiome and CITE-seq data.

All of these comparative results need to be considered in the context of
the striking observation that a variant of liam, for which we only use RNA as
a single modality from the Multiome data (cf. Figure A2), performs equally
well. Data availability and quality of the individual modalities, the dynamics of
the biological system, the granularity of expert annotations, and assumptions
behind evaluation metrics may all limit what conclusions can be drawn. While
this does not impair our ability to evaluate horizontal integration and to com-
pare our model with alternative approaches, it points to the limit of insights
that can be gained from benchmarks, especially concerning minor performance
differences. We address this observation in detail in Supplementary note A.3,
and we show all models’ performances, including baselines (simpler variants of
liam detailed in Methods), in supplementary figures A5 and A6. The issue of
annotation is also illustrated by liam readily discovering cell types not present
in the competition ”ground truth”. When considering the silhouette scores of
individual cells with respect to cell type annotations, we observe low silhouette
scores in regions in-between cell types. However, we also find a striking example
of a low agreement between the reference annotation and obtained clustering
for a group of cells annotated as CD8+ T cells. This group of cells expresses
the well-characterized MAIT cell markers KLRB1 and SLC4A10 (Park et al,
2019) (Figure Al). Combined with the best concordance with the provided cell
type annotations, this suggests that the embedding learned by liam captures
the cellular states present in the data sets well.

2.4 Examining modeling choices

While the scope of possible evaluations in competitions is limited, the con-
trolled setup of the NeurIPS competition allows us to further dissect modeling
choices and gain insights into liam’s strengths. Specifically, we systemati-
cally ablate individual model components, with all models using at least
batch-specific cell size factors and dispersion parameters (except for VAE,
see Methods). The main contribution to the performance is the conditional
decoder, with no clear advantage of adding the adversarial component (a: x1)
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or a conditional encoder. The conditional encoder VAE (CEVAE) and adver-
sarial VAE (AVAE; a: x1) alone cannot remove batch effects. The performance
of batch adversarial VAE (BAVAE, liam default, a: x1), conditional VAE
(CVAE), and conditional decoder VAE (CDVAE) is indistinguishable (Figures
4(c) and A3).

When assessing the impact of up-weighting the adversarial contribution
in the loss function of liam (BAVAE) (range a: x50, x100, x1000), consider-
able improvements of batch effect removal (asw_batch_d1 and iLISI_d1) are
observed, albeit at reduced performance on the cell type label-dependent met-
rics asw_label and nmi. Additionally, while an AVAE with a scaling parameter
of 1 fails to integrate the samples horizontally, an AVAE alone can also per-
form well with a suitable choice for the adversarial scaling parameter (c: x50,
x100), performing only slightly worse than liam BAVAE with the same scaling
parameter choice. Outside a favorable regime for the scaling term (a: x1000),
liam AVAE appears less stable (Figure A4).

When integrating samples from distinct sources, data quality can vary con-
siderably between samples and, in the case of multimodal data, also between
modalities of the same sample. We reasoned that liam may be able to com-
pensate for technical dropouts by exploiting correlation and complementarity
between distinct modalities: liam is based on an early-stage joint modeling
strategy with a joint encoder architecture, which is in contrast to later-stage
integration strategies such as implemented in MultiVI. As the evaluation of
liam and the baseline variant liam concat for the high-quality competition
Multiome data led to highly similar results (Figure A3(c)), we deliberately
decreased the information content of the chromatin accessibility modality by
subsampling, to simulate a scenario where we combine a high-quality with a
low-quality modality. In particular, we dropped 75% and 90% of the observed
features per cell of the binarized ATAC data (this strategy preserves the feature
set derived from the full data set). We compared liam to an alternative that
concatenates the low-dimensional data representations obtained from two indi-
vidual modality models (concat) and MultiVI. In this setting, the joint model
performs better on bio-conservation than the concat model or MultiVI, with
trends reinforcing with diminishing information content (Figures 4 and Ab5).
With diminishing information content, we notice a better mixing of batches
for all models (asw_batch_d1 and iLISI_d1), yet again highlighting the trade-off
between bio-conservation and batch effect removal. Importantly, liam jointly
modeling two modalities performs at least as well as the best performing single
modality liam model variant (rna only 10 dims or 20 dims). This finding sug-
gests that liam’s early-stage integration strategy does not impair the model’s
performance when jointly modeling a high- and low-quality modality, which
we expect to be critical in real-world settings.
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3 Discussion

Liam is a flexible model for the simultaneous horizontal and vertical integra-
tion of single-cell multimodal data. In contrast to other models for multimodal
single-cell data, which require the independent horizontal integration of the
distinct modalities before vertical integration (Argelaguet et al, 2020; Singh
et al, 2021; Hao et al, 2021), liam learns a joint latent representation of two con-
currently measured modalities. Currently available multi-omics (benchmark)
profiling is strongly biased towards well-studied cell types in human, such as
peripheral blood mononuclear cells (PBMCs), where high-quality data has
been obtained on different platforms. Recent work on a wider range of cell
types and species has shown a broad range of relative data quality and abun-
dance, indicating that laborious case-by-case optimization may be needed to
obtain data of similar quality. Liam’s joint representation is demonstrably ben-
eficial when the modalities’ information content and data quality differ and,
hence, a much-needed complementary approach. Liam can generally account
for complex batch effects, and its adversarial training strategy proves espe-
cially useful when replicates are available, enabling the retention of selected
treatment effects for treatment/control experiments and the optimal removal
of batch effects without running the risk of removing biological variation.

A problem of current multimodal method development is the considerable
uncertainty associated with annotations of cellular identity used as a surrogate
for ground truth for evaluation. Since they are usually expert-derived from the
data itself, they are subject to available knowledge and varying data quality,
and they may be biased towards a specific preprocessing strategy and better-
studied modalities. For the NeurIPS competition data set, which we chose to
illustrate liam’s features, the organizers tried to minimize biasing choices con-
cerning integration approaches and modality. Regardless, the data set is still
vulnerable to the problems mentioned, highlighted by the unannotated MAIT
cell population in the Multiome data set and the on par performance of an
RNA-only model with the joint model on the Multiome data (see Supplemen-
tary note A.3). To combat this problem, we suggest scrutinizing and updating
benchmarks with new insights, considering multiple, independent use cases,
and possibly limiting future evaluations to cells that can be reliably annotated
across several preprocessing strategies. In general, cell type annotation may
not be the most insightful benchmark task for multimodal methods, where the
impact of successful integration may be better discernible in downstream tasks
such as trajectory inference or network reconstruction (Li et al, 2022a). How-
ever, ground truth annotations for such tasks may be even harder to come by
or obtain.

Increasingly complex study designs require flexible horizontal data inte-
gration strategies. Liam’s adversarial batch effect removal strategy allows for
optimizing its strength based on integration metrics across replicates. As this
strategy demonstrably retains biological variation, it provides a first-of-its-kind
principled solution to the trade-off between technical batch effect removal and
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biological variance preservation. Future work will focus on testing this frame-
work more thoroughly, on more use cases across species and technologies, and
on assessing how to efficiently determine optimal values, e.g., via a simple grid
search optimizing batch mixing and monitoring the retention of biological vari-
ation. In the absence of replicates or orthogonal data, a user-defined choice
of the contribution of the adversarial term is not trivial, as the parameter is
likely highly data set-dependent.

We show that liam performs favorably compared to MultiVI in the compe-
tition benchmark and when one modality’s data quality is lower. Of note, liam
was specifically designed for paired multimodal data, whereas MultiVI was
developed with the primary focus of mosaic integration (integration of data
sets where some might only contain partially overlapping modalities) and can
hence tackle data integration challenges currently not addressed by our model.
In this and all other comparisons, we made a deliberate effort to provide fair
choices of user-defined parameters, adhering to author-recommended defaults,
and testing the robustness to the preprocessing choice of feature preselection
for Multiome data (Supplementary note A.2).

In summary, liam provides a flexible, extendable framework for multimodal
data integration. Its joint latent space and tuneable batch integration provide
demonstrable competitive strengths, making it a method of choice for paired
single-cell data.

4 Methods

4.1 Data sets
4.1.1 NeurIPS competition data set

For the competition use case, we use the phase 2 data of the Multi-
modal Single-Cell Data Integration NeurIPS competition 2021, accessible
through AWS S3. The organizers provide Multiome and CITE-seq data,
which comprise gene expression and chromatin accessibility measure-
ments, and gene expression and cell surface protein expression (captured
via antibody-derived tags (adt)) measurements, respectively. The data
can be retrieved via s3://openproblems-bio/public/phase2-private-data,/
joint_embedding/openproblems_bmmec_multiome_phase2/ (Multiome)
and  s3://openproblems-bio/public/phase2-private-data/joint_embedding/
openproblems_bmme_cite_phase2/ (CITE-seq). In their study design, the
competition organizers purposefully introduced nested batch effects. Their
design allows testing generalization capabilities of computational approaches
for horizontal data integration by investigating different levels of batch effects
removal, e.g., the removal of inter- vs. intra-donor and -site variation. The
samples stem from bone marrow mononuclear cells (BMMCs), a complex,
disease-relevant, and easily accessible system, and ten distinct donors. The
data was generated at four different sites, with samples from one particular


s3://openproblems-bio/public/phase2-private-data/joint_embedding/openproblems_bmmc_multiome_phase2/
s3://openproblems-bio/public/phase2-private-data/joint_embedding/openproblems_bmmc_multiome_phase2/
s3://openproblems-bio/public/phase2-private-data/joint_embedding/openproblems_bmmc_cite_phase2/
s3://openproblems-bio/public/phase2-private-data/joint_embedding/openproblems_bmmc_cite_phase2/
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donor being measured at four (CITE-seq) and three out of the four (Multi-
ome) sites. For all other donors, a single sample at one site was measured
(cf. Figure 3(e)). Each sample is identifiable by a donor site combination
(d*s*, with ”*” being a wildcard for an identifier for a particular donor and
site). The organizers preprocessed and annotated the data from each sam-
ple independently. In particular, they preprocessed the distinct modalities
separately, deriving independent cell type annotations per modality, which
were harmonized afterward into one unified annotation per sample. Of note,
the cell type annotations are generally marker gene- or cell surface protein
marker-based, including the chromatin accessibility modality, for which the
organizers derived gene activity matrices from the chromatin accessibility
data before marker gene-based annotation (cf. Supplementary note A.3). A
more detailed description of the data set and its preprocessing can be found
in appendix Al of (Luecken et al, 2021).

4.1.2 Treatment/Control data sets from DOGMA-seq

For the treatment/control use case, we use data sets from (Mimitou et al,
2021), which are available on GEO (GSE156478). The data sets are multimodal
single-cell data sets of peripheral blood mononuclear cells (PBMCs) that were
in vitro stimulated with anti-CD3/CD28 and a control (unstimulated). We use
data from the DOGMA-seq technology, which measures three modalities at a
time, chromatin accessibility, gene expression, and cell surface protein (adt)
expression. For DOGMA-seq, a replicate of the experiment is available, as the
authors published two DOGMA-seq data sets of the same experiment using
two different lysis conditions abbreviated as DIG and LLL. For one of these
data sets (LLL), also mitochondrial DNA was profiled, but we do not use this
modality here. For the sole purpose of deriving a feature set for the chromatin
accessibility data, we also considered samples from the ASAP-seq technology
from the same manuscript, which simultaneously profiles chromatin accessibil-
ity and cell surface protein levels, as described below. For more information,
see (Mimitou et al, 2021).

4.2 Data preprocessing
4.2.1 Competition data sets

We used the competition data provided as part of the NeurIPS compe-
tition. For ADT counts, we used CLR transformed data (across features)
(stored in the field adata.X of the provided AnnData object). For gene
expression, we used raw counts, and for ATAC, binarized counts (stored
in the field adata.layers[’counts”] in the provided AnnData objects, respec-
tively). The structure of the data set is described in detail in the competition
documentation: https://openproblems.bio/neurips_docs/data/dataset/.


https://openproblems.bio/neurips_docs/data/dataset/
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4.2.2 Treatment/Control data sets from DOGMA-seq

For the treatment/control use case, we reprocessed the author-provided data.
Our reprocessing is loosely based on the preprocessing of the original publica-
tion (Mimitou et al, 2021) but was modified to enable the joint analysis of all
DOGMA-seq data sets (samples). Each modality underwent separate quality
control, and we retain only cells for which all modalities pass it.

Chromatin Accessibility

To derive a shared feature set for the chromatin accessibility data from the
distinct samples, we jointly analyzed the data from all four DOGMA-seq
samples and included chromatin accessibility data from the two ASAP-seq
samples from the same study. Starting from the author-provided fragment
files, we use an alternative approach to peak calling for feature selection
which segments the genome according to cross-cell accessibility profiles called
ScregSeg-fi (McGarvey et al, 2022). First, we filter each data set indepen-
dently using ArchR, only retaining cells with a TSS score exceeding four and
a minimum of 1,000 fragments (ArchR version 1.0.0, R version 4.1.2, refer-
ence annotation: hg38 from package BSgenome.Hsapiens.UCSC.hg38 version
1.4.1). Next, we remove cells with high counts exceeding Q3 + 1.5x IQR for
each data set. Afterward, data from all data sets were combined and used
for shared feature calling with ScregSeg-fi. We selected 1,000 bp bins, only
autosomes, and only considered regions with at least one count across all cells
and binarized the data. We chose the following parameters for ScregSeg-fi: 7
random runs, HMM with 50 states, and 3,000 iterations starting from random
initial parameters for each run. As the threshold for informative regions, we
chose regions of states that cover at most 1.5% of the genome and that reach
a posterior decoding probability of at least 0.9.

Gene expression

Starting from author-provided cell-by-feature count matrices, we process each
data set separately. First, we remove cells with a total number of unique
molecular identifiers (umis) smaller than 1,001. After removing low-count
cells, we exclude cells with high umi counts. In particular, those that exceed
Q3 + 1.5x IQR. Lastly, we ensure that a minimum of 500 genes was captured
per cell and that the percentage of mitochondrial reads is below 30%. As the
last step, we exclude mitochondrial genes from the analysis.

Cell surface protein expression
Starting from author-provided cell-by-feature count matrices, for each data
set, we remove cells that have less than 101 or more than 25,000 counts, that
exceed nine control counts, and that have high CD8 and CD4 expression in
the same cell. In particular, a cell cannot have more than 30 CD8 counts and
100 CD4 counts at the same time, considering the antibodies for ”CD8&” and
”CD4-17.
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4.3 Liam: model and software
4.3.1 Model description

VAEs have been successfully employed for the horizontal integration of uni-
modal data (Lopez et al, 2018; Svensson et al, 2020; Kopp et al, 2022). Here
we modify the prototypical VAE framework, building on recent advances in
modeling scRNA-seq data and scATAC-seq data (Lopez et al, 2018; Svensson
et al, 2020; Kopp et al, 2022), and introduce liam (leveraging information
across modalities), a model for paired multimodal single-cell data integration,
simultaneously solving the horizontal and vertical integration task.

Encoding

Liam’s encoder has two separate input layers for the two modalities of each
cell n, followed by one hidden layer each. The output of these hidden layers
is fed to separate network branches for modeling cell- and modality-specific
size factors, with batch-specific priors (I,, for rna and d,, for atac/adt), which
are part of our horizontal data integration strategy. Additionally, we con-
catenate the output of the two modality-specific hidden layers to model the
k-dimensional (default: 20) latent variable z,, the low-dimensional cell repre-
sentation, allowing the model to combine information from both modalities.

Decoding

We employ two separate decoders, one per modality. These consist of two
hidden layers each, which take a sample from the latent variable z, and the
one-hot encoded batch variable s,, (conditional decoder) as input. In this con-
text, "batch” refers to a meta-information variable, such as the condition or
sample of a cell. This way, the model can use the batch information for recon-
structing the input data without needing to encode batch-related information
in the embedding, which is part of our horizontal data integration strategy. We
model gene expression and the CLR-transformed adt counts with a negative
binomial distribution, using the implementation of Lopez et al (2018) that
uses the cell-specific size factor [,,. For the chromatin accessibility data, we use
the negative multinomial loss, which jointly models a cell’s entire chromatin
accessibility profile as introduced in BAVARIA (Kopp et al, 2022), with the
modification that we add an extra node to the penultimate fully connected
layer, which takes the value of the learned cell-specific atac size factor (d,,).

Latent factor distributions and inferred parameters
We model cell-specific size factors as log-normally distributed and the latent
variable z,, as logistic-normal distributed (Svensson et al, 2020; Gayoso et al,
2021), which has the benefit of the latent factors summing to one, allowing
for archetype analysis (Svensson et al, 2020; Gayoso et al, 2021). Addition-
ally, there are several inferred parameters in the model: the batch-specific
per gene/adt dispersion of the negative binomial distribution and the batch-
specific dispersion of the negative multinomial loss (batch-specific parameters
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are part of our horizontal data integration strategy).

Adversarial training strategy

To further encourage the model to learn latent representations devoid of
batch effects and provide a way of tuning batch-mixing, we employ a batch
adversarial training strategy. In particular, we introduce an additional neural
network, a batch classifier, as a part of our framework that is trained together
with the VAE model. The batch classifier has a single fully-connected hidden
layer with 32 nodes that takes as input a sample from z,,, which is fed through
a gradient reversal layer and predicts the batch from which the sample stems.
Using a gradient reversal layer allows us to send a negative feedback to the
encoder during joint training when the batch classifier gets better at predict-
ing the batch.

Further architecture details
All layers are fully-connected layers. We employ dropout layers for the
encoder, not for the decoder and batch classifier. We use layer norm and the
ReLu activation function for all layers, except for the respective output lay-
ers, in which we use other specified nonlinearities (cf. Figure 1). A complete
schematic representation of the model’s architecture for Multiome data is
shown in figure 1. The figure also details all layer dimensions.

Difference between Multiome and CITE-seq architecture
For CITE-seq data, the only difference is that the adt-specific encoder has
input dimensions equal to the number of adt features, and that decoder mirrors
the rna-specific decoder, with output dimensionality equal to the number of
adt features.

4.3.2 Loss function

The model’s loss function comprises regularization terms for the learned latent
factors. In particular, we use the Kullback—Leibler divergence for z,, encour-
aging z, to follow a logistic-normal distribution (z, ~ Logisticnormal(0,I)),
and for the cell-specific size factors of the distinct modalities I,, and d,,, encour-
aging them to follow a log-normal distribution, using the real mean (I,,d,)
and variance (l,2,d,2) of the log of the mean library size per batch (s,) as
priors (I, | sp ~ Lognormal(l;fsn,l;zsn); dp, | Sn ~ Lognormal(dzsn,d;sn)).
The total regularization loss is:

losskr, = KL, + KL+ KLy

Additionally, the model’s loss function comprises reconstruction loss terms
for the distinct modalities. They score the divergence between the input data
and the reconstruction with:

108Srna & 108sqq1:= Negative binomial loss (Lopez et al, 2018)



Springer Nature 2021 I TEX template

Liam tackles complex multimodal single-cell data integration challenges 15
l08Sqtac := Negative multinomial loss (Kopp et al, 2022)

Lastly, the loss function comprises an adversarial term that stems from a
batch classifier for which we employ a cross-entropy loss between the predicted
class (batch) probability and the real batch (lossgq,). In some experiments,
we use a user-defined scaling parameter «, with which we can up-weight the
contribution of the loss of the batch classifier in the total loss (o = 1 in liam’s
default mode).

We minimize the total loss:
For Multiome data: {08Stota; = 108Srna + 108Satac + l0SSK T + a0 X 1085440
For CITE-seq data: 10SStotai = 108Srna + 108Sqqr + l0sskr, + a X 10SSqqs

If the batch classifier gets better at predicting the correct batch, this gets
fed back to the encoder as negative feedback during the backward pass of
model training through a gradient reversal layer (Ganin et al, 2016).

4.3.3 CVAE variant

For the CVAE variant of liam, we remove the batch classifier network. In
addition to feeding the one-hot encoded batch variable to the decoder, we feed
it to the encoder layers (except for the bottleneck layer) (conditional encoder).

4.3.4 Single-modality model variant

Liam can also be run in a single-modality mode. For this model variant, only
the leg of the encoder corresponding to the modality in question is used, and
the other is disabled. For the decoder, only the decoder for the respective
modality is used.

4.3.5 Model training

For training all variants of liam, we chose a mini-batch size of 128 and split
the data into a training set comprising 95% of the data and a validation set
comprising 5% of the data. We use Adam for optimizing our model parameters,
with a learning rate of le-3 and weight decay of 1le-6. We employ early stopping
with a patience of ten epochs with respect to the validation loss, using the best
model for our analyses. We chose 20 dimensions for the latent space for all
models, except for the single-modality models used for the concat baseline, for
which we used ten. Models for the competition use case were trained using a
Tesla-T4 graphic card with CUDA 11.3. Models for the DOGMA-seq use case
were trained using a Tesla-V100-SXM2-32GB graphic card with CUDA 11.3.
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4.3.6 Model implementation

Liam is implemented in Python. It employs the scvi-tools library (version
0.14.3) (Gayoso et al, 2022), and we used the scvi-tools-skeleton repository
(version 0.4.0) as a starting template for package development. It is avail-
able as a readily installable Python package with documentation on GitHub
(https://github.com/ohlerlab/liam).

4.4 Evaluation
4.4.1 Baselines

Horizontal integration

To analyze the contribution of individual modeling choices to the model’s
horizontal integration capabilities, we systematically ablate individual model
components with all models having batch-specific size factors and dispersion
parameters (except for VAE). We compare a:

VAE: no batch correction at all

batchVAE: VAE + batch-specific cell size factors and dispersion parameters
AVAE x1: batch adversarial term only (o = 1)

CEVAE: conditional encoder only

CDVAE: conditional decoder only

CVAE: conditional encoder and decoder

AVAE x1, x50, x100, x1000*; scaled batch adversarial terms

BAVAE x1 (default), x50, x100, x1000*; scaled batch adversarial terms +
conditional decoder

* numbers indicate scaling parameter « for the adversarial loss

Vertical integration

We compare liam, in which we employ early-stage joint modeling, to simpler
baselines. In particular, we compare liam to two single-modality variants of
liam with the same dimensionality of the latent space each and a ”concat”
model. For the concat model, we train two single-modality variants of liam
with a latent space dimensionality of half the size of the default model. We
concatenate the embeddings obtained from the independently trained single-
modality models such that the latent space of the ”concat” model space has
an equal number of dimensions as liam (default).

e BAVAE rna only (same dimensionality as joint/default; k = 20)

e BAVAE atac/adt only (same dimensionality as joint/default; k = 20)

® BAVAE concat (concatenation of latent spaces of BAVAE rna + atac/adt
only (half dimensionality as joint each; k = 10, each)


https://github.com/ohlerlab/liam)
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4.4.2 Other models

Models for multimodal data

MultiVI

We ran MultiVI (scvi-tools version 0.14.3) with default parameters following
a tutorial provided by the authors (https://docs.scvi-tools.org/en/stable/
tutorials/notebooks/MultiVI_tutorial.html, as of April 15th, 2022). Of note,
this includes a feature preselection step before training the model (also applied
in the preprint (Ashuach et al, 2021)). In particular, features present in less
than 1% of the cells are removed before training. For comparability with liam,
we also run a model without feature preselection. The dimensions of the latent
space are determined automatically by the model and are dependent on the
number of input features. For the model with feature preselection, the latent
space has 16 dimensions, for the model without feature preselection, 18.

totalVI

We ran totalVI (scvi-tools version 0.14.3.) with default parameters following
a tutorial provided by the authors (https://docs.scvi-tools.org/en/stable/
tutorials/notebooks/totalVI.html, as of April 15th, 2022). Of note, this
includes total count normalization to 10,000 reads per cell, followed by loga-
rithmization and a feature preselection step before running the model (scanpy
version 1.8.2). In particular, for the gene expression modality, the top 4000
highly variable genes were determined with the parameter ”flavor: seurat_v3”.
The latent space dimensionality defaults to 20 dimensions.

LSL_AE
Best performing model in original competition framework for task 3 Mul-
tiome online category according to competition evaluation criteria (Team
name: Living-Systems-Lab; method name: LSL_AE). We adapted the
publicly available code from the submissions to the competition (https:
//github.com/openproblems-bio/neurips2021_multimodal_topmethods/blob/
main/src/joint_embedding/methods/Isl_ae/run/script.py) to be compatible
with our analyses. The embedding generated by the model has 64 dimensions.

Guanlab-dengkw

Best performing model in original competition framework for task 3
CITE-seq online category according to competition evaluation criteria
(Team name: Guanlab-dengkw; method name: Guanlab-dengkw (GD)). We
adapted the publicly available code from the submissions to the competition
https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/
blob/main/src/joint_embedding/methods/Guanlab-dengkw/run/script.py to
be compatible with our analyses. The embedding generated by the model has
100 dimensions.


https://docs.scvi-tools.org/en/stable/tutorials/notebooks/MultiVI_tutorial.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/MultiVI_tutorial.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/totalVI.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/totalVI.html
https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/blob/main/src/joint_embedding/methods/lsl_ae/run/script.py
https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/blob/main/src/joint_embedding/methods/lsl_ae/run/script.py
https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/blob/main/src/joint_embedding/methods/lsl_ae/run/script.py
https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/blob/main/src/joint_embedding/methods/Guanlab-dengkw/run/script.py
https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/blob/main/src/joint_embedding/methods/Guanlab-dengkw/run/script.py
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Models for unimodal data
scVI
We set up two variants of scVI (scvi-tools version 0.14.3). One with default
parameters, and one with layer norm instead of the default batch norm for the
encoder and decoder. For training, we selected the same user-defined parameter
we used for liam.

4.5 Stability and subsampling analysis
4.5.1 Treatment/control use case

For the treatment/control use case, we trained one model each with a random
seed of 0.

4.5.2 Competition use case

For the competition use case, we compare the performance in the joint inte-
gration task of liam to variants of liam and several other models. To account
for stochasticity in the training processes, we trained five models each, setting
a random state component of the respective frameworks to 0, 994, 236, 71,
and 415. All UMAPs show the embedding obtained with a random seed of 0.
An exception is the baseline model liam VAE, which was only trained with a
random seed of 0.

Subsampling analysis
For the subsampling analysis, we fix the random seed of the training process
to 0 but introduce stochasticity by using five distinct random subsets of the
chromatin accessibility data, dropping 75% and 90% of the binarized ATAC
observations each (random seeds for subsampling: 8831, 234, 11, 9631, 94).
The UMAPS in the corresponding figures show the embedding obtained with a
random training seed 0 using the random ATAC subsample obtained with the
seed 8831. This implies that for the concat variant of liam in the subsampling
analysis, the 10-dimensional RNA-only data representation is constant (trained
with random seed 0), and only the ATAC-only representation has varying input
obtained with different random seeds but is trained with a random seed of 0.

4.5.3 Metrics - Competition use case

To evaluate the removal of batch effects and the preservation of biological
variation, we use the same six metrics used in the NeurIPS competition.
Those metrics are implemented in the scib Python package (comprehensively
described in (Luecken et al, 2022)) (scib version 1.0.1). We use the full com-
petition metric name here and denote the shorthand used in the manuscript
figures and text in brackets. Four of these metrics score the conservation of bio-
logical variance. Two of them depend on cell type annotations provided by the
competition organizers, namely NMI cluster/label (nmi) and cell type ASW
(asw_label). The other two are cell cycle conservation (cc_cons) and trajectory
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conservation (ti_cons_batch_mean). We also use the two metrics scoring batch
effect removal from the competition, batch ASW (asw_batch_sample), using
the sample id as the batch variable, and graph connectivity (graph_conn).
As the metric graph_conn was not sufficiently discriminative and the metric
asw_batch_sample using the sample id was confounded by the nested batch
effect structure of the data (Lance et al, 2022), we use additional batch removal
metrics less prone to confounding. In particular, we use a complementary batch
removal metric- iLISI (graph iLISI as implemented in scib v1.0.1 (Luecken
et al, 2022)) on the site (iLISI_site), and the sample id when subsetting the
data to data from d1 (iLISI.d1). Additionally, we compute the metric batch
ASW on the site (asw_batch_site) and on sample id when only considering
data from donor 1 (asw_batch.-dl). For donor 1, samples were measured at
each site (one technical dropout for Multiome data). We compute the batch
effect removal metrics only on data from donor 1, as we presume that bio-
logical variation between samples from the same donor should be minimal.
We reckon that subsetting the data to data from the same donor is a good
proxy for scoring technical batch effect removal, not penalizing the retention
of potential remaining inter-donor variation.

4.5.4 Metrics - Treatment/Control use case

For quantitatively evaluating horizontal integration success, we computed the
iLIST metric (graph iLIST as implemented in scib v1.0.1 (Luecken et al, 2022))
on distinct variables available as meta-information - sample, condition, and
replicate (lysis condition). For visualization purposes, we show CLR trans-
formed, scaled ADT counts not used during model training, and raw gene
expression values to color cells in UMAP representations.

4.6 Code availability

For reproducibility: Analysis scripts https://github.com/ohlerlab/liam_
manuscript_reproducibility). Software: Legacy version used for presented anal-
yses: https://github.com/ohlerlab/liam_challenge reproducibility). Software
under development: liam https://github.com/ohlerlab/liam).
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Appendix A Extended Analyses

A.1 Layer normalization leads to favorable performance
over batch normalization

Early during model development, we tested different normalization strate-
gies in the scVI framework (Lopez et al, 2018) (an RNA-only model) using
the DOGMA-seq data set (using only the RNA modality, results not shown).
Our analyses suggested that using layer normalization instead of batch nor-
malization (scVI default) leads to better horizontal integration results. This
observation led us to use layer normalization in liam. Post hoc, we were able
to reproduce this observation with the competition data set, for which we have
reference cell type labels available. We compare scVI with its default settings
(batch normalization) to a variant of scVI using layer normalization, seeing a
clear improvement in the metrics measuring batch effect removal and also for
bio-conservation, except for cell cycle conservation (cc-cons) (Figure A5).

A.2 Effect of feature preselection on performance of
MultiVI and convergence comparison

For the analyses including MultiVI, we followed the example of the corre-
sponding preprint (Ashuach et al, 2021) and a tutorial (https://docs.scvi-tools.
org/en/stable/tutorials/notebooks/MultiVI_tutorial.html) which entail a fea-
ture preselection step recommending to use only features present in more than
1% of the cells for modeling. We wanted to rule out that this feature pre-
selection step is a major contributing factor to the observed differences in
model performance. Hence, we trained a MultiVI model without feature pre-
selection (abbreviated as fp in figures) but otherwise identical settings. Note
that the number of dimensions of the resulting embedding is different, as it is
automatically determined by MultiVI and dependent on the number of input
features. Figure A5 shows how omitting feature preselection affects the per-
formance metrics. All trends observed with MultiVI with feature preselection
are preserved for MultiVI without feature preselection. Liam outperforms both
MultiVI variants on bio-conservation and does better on the asw-based batch
removal metrics. The MultiVI variants do better on the iLISI-based batch
removal metrics.

While MultiVI (Ashuach et al, 2021) models chromatin accessibility data
with a Bernoulli distribution, we use a negative multinomial distribution (Kopp
et al, 2022). We observe that MultiVI needed substantially more epochs to
converge. For liam, the average number of epochs until early stopping was:
54.8£4.090, for MultiVI with default settings: 212.4+27.110, and for MultiVI
no feature preselection: 189.8 4+ 9.47¢.


https://docs.scvi-tools.org/en/stable/tutorials/notebooks/MultiVI_tutorial.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/MultiVI_tutorial.html
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A.3 Limitations of current benchmarks concerning
vertical integration evaluation

As part of our method evaluation, we sought to compare the performance
of liam jointly modeling both modalities of the paired NeurIPS competition
data sets to variants of liam that use only one of the individual modalities
each (baseline). Surprisingly, this obvious baseline crucial for understanding
the advantages of a method is rarely computed. Figure A2 shows that the
RNA-only model performs on a par with, if not slightly better than the joint
model with which we participated in the competition for the Multiome data.
Given that the competition was set up to score multimodal data integration, it
may appear discouraging that a model trained on a single modality seemed to
perform best in the framework. The small difference in performance between
the joint and the RNA-only model highlights an important limitation in the
expressiveness of the benchmark for evaluating vertical integration: While it
is possible that the RNA-only model indeed performs best, another possibil-
ity is that the RNA-only model’s superior performance is an artifact of our
(RNA) gene expression-centric prior knowledge affecting the definition of cel-
lular states. The cell identity labels used for evaluation (nmi and asw_label)
were derived independently per data set and modality by the competition orga-
nizers and harmonized afterward. Luecken et al (2021) did this in an attempt
to capture data set-specific substructure in the final cell type annotations.
Regardless, the annotations for the Multiome data set are gene expression-
centric, as the chromatin accessibility data was converted to gene activity
(GA) scores, thus largely ignoring information from intergenic cell type-specific
regulatory elements, and the subsequent annotation is based on known GEX
markers. In fact, it has been shown that reducing chromatin accessibility signal
to GA matrices before dimensionality reduction results in a substantial infor-
mation loss (discussed in (Rautenstrauch et al, 2022)). The on par performance
of an RNA-only model with the joint model on the Multiome data on cell type
label-dependent metrics also suggests that we cannot recover more information
on the provided cell type level with a joint than with an RNA-only model for
the Multiome data set. For the Multiome data, any existing substructure that
a joint model might better recover seems to be less than the overall uncertainty
and noise in the labels, leading to all models hitting a maximal performance at
around 0.6 for the metric asw_label. Pre-trained models seem to have been able
to achieve slightly higher scores (Lance et al, 2022), but the incompleteness of
the annotations mentioned earlier (e.g., the missed MAIT cell population) let
us question the meaningfulness of these results. Additionally, we currently still
lack expressive metrics capturing modality-specific information, as the GEX-
based cc_cons metric (Rautenstrauch et al, 2022), on which the ATAC-only
model performed notably worse. This is in line with Ma et al (2020b), who
observed a less localized cell cycle signature in an embedding derived from
scATAC-seq data compared to an embedding derived from scRNA-seq data
when treating modalities from paired data from the same cell independently.
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The observed limitations are alleviated slightly for CITE-seq data, where
the joint model performed better on capturing the harmonized reference cell
type annotations. This is in line with previous observations of some populations
being better discernible with ADT than GEX and vice versa, but may be
different for other biological systems with less well defined cell surface markers
and antibody availability.

We tried to circumvent these limitations by exploring alternative ways
to use the benchmark data, simulating challenging (real-world) conditions of
differing coverage across modalities to test different modeling choices. Our
results suggest that, in practice, joint modeling may be beneficial. In any case,
all our model variants do well on horizontal integration and seem to capture
the overall biological information contained in the data, especially the RNA-
only model for Multiome data, and the joint models. It will be interesting to
use the embeddings derived with liam as a starting point to explore one of
the main benefits of the paired data, ground truth on relationships between
modalities.
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Fig. 2 Exploiting replicates, liam preserves selected treatment effects in the
data representation and can enhance replicate integration with its adversarial
training strategy. Data for all figure panels stems from a treatment/control experiment
(T cell stimulation) with replicate (Mimitou et al, 2021). Panel (f) shows the experimental
design. Panels (a) and (b) show UMAP representations of the low-dimensional data repre-
sentations of two models trained with different factors assigned as the batch variable to be
removed from the latent representation; one uses “replicate” (left columns) and the other
“sample” (right columns). Cells are colored by (a) sample (top) and replicate (bottom),
arrows highlight the separation of cells by treatment for the model removing differences
between replicates; (b) scaled CLR-normalized cell surface protein counts of the T cell acti-
vation marker CD69 (top) and another marker predictive of the treatment, CD3-2 (bottom),
different dashed circles highlight cell populations of interest, values outside the p1-p99 per-
centile range get assigned the min/max value, respectively. (¢c) UMAP representations of
models for which we up-weighted (a: x50, x1000) the contribution of the adversarial term
in the models loss functions and assigning distinct variables as batch variable; top row cor-
responds to models in panel (a). (d) and (e) the diversity score iLISI computed for distinct
target variables (sample, replicate and condition) for the different variants of liam. The
larger the iLISI score, the more mixed samples are with respect to the chosen variable.
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Fig. 3 Liam preserves biological variation while removing complex batch effects
for multiple data types. Data for all figure panels stems from the NeurIPS 2021 Multi-
modal Single-Cell Data Integration competition. Panel (e) shows the experimental design.
Panels (a) and (c¢) show UMAP representations of embeddings obtained with liam and com-
petitors for (a) Multiome and (c¢) CITE-seq data; Cells are colored by provided cell type
annotation (Cell type), sample id (sample) and sequencing site (site). Panels (b) and (d)
show selected performance metrics (bio-conservation: nmi, cc_cons, batch effect removal:
asw_batch_d1, iLISI_d1) with the horizontal line indicating the mean for (b) Multiome and
(d) CITE-seq data. All computed metrics, including all competition metrics are shown in
figures A5 and A6. For panels (a) and (c) the embedding obtained from a single training run
is shown. Panels (b) and (d) show the results of five training runs per model (see Methods).
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Fig. 4 Examining modeling choices exploiting the competition data set. Data
for all figure panels stems from the NeurIPS 2021 Multimodal Single-Cell Data Integration
competition Multiome data set. Panel (f) shows the experimental design. (a) UMAP rep-
resentations obtained with liam on competition data set with default setting (a: x1) and
up-weighting the contribution of the adversarial term by a factor of x50 and x1000; cells are
colored by provided cell type annotations and the sequencing site (site). (b) Selected perfor-
mance metrics (bio-conservation: nmi, cc_cons, batch effect removal: asw_batch_d1, iLISI_d1)
with the horizontal line indicating the mean. (c¢) Evaluation of influence of modeling choices
on batch effect removal. Performance metrics (as in (b)) for variants of liam with selected
model components for batch effect removal ablated. (d) UMAP representations of embed-
dings obtained with distinct models. Left: a variant of liam trained on rna data only, using
the entire rna data. Right: Models using 100% of the rna data and 25% and 10% of tha atac
data, respectively. Liam (default, trained on both modalities), Liam concat (concatenation
of embeddings from an rna only (10 dims) and atac only model (10 dims)), Liam atac only
(10 dims), and MultiVI. (e) Performance metrics (as in (b)) for models in (d) and Liam
trained on the full data for reference (Liam (default)). All computed metrics, including all
competition metrics are shown in figure A5. For panels (a) and (d) the embedding obtained
from a single training run is shown. All other panels show the results of five training runs
per model, except for Liam VAE and Liam rna only (10 dims) for which the result of a single
training run is shown (see Methods).
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Fig. A1 Liam captures cellular subpopulations missed in the NeurIPS compe-
tition reference annotation. Data for all figure panels stems from the NeurIPS 2021
Multimodal Single-Cell Data Integration competition Multiome data set. Shown are UMAP
representations of the embeddings obtained with liam, MultiVI and LSL_AE with cells col-
ored by - first row: per cell silhouette scores with respect to provided cell type annotations;
second and third row: raw gene expression values for the MAIT cell markers KLRB1 and
SLC4A10 (Park et al, 2019), values outside the pl-p99 percentile range get assigned the
min/max value, respectively. The embedding obtained from of a single training run is shown
(see Methods).
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Fig. A2 Performance of variants of liam using only single modalities of the
multimodal data from the NeurIPS competition framework. Data for all figure
panels stems from the NeurIPS 2021 Multimodal Single-Cell Data Integration competition.
Panel (e) shows experimental design. Panels (a) and (c) show UMAP representations of
embeddings obtained with variants of liam using the individual modalities of (a) Multiome
and (c) CITE-seq data, respectively; Cells are colored by provided cell type annotation
(Cell type), sample id (sample) and sequencing site (site). Panels (b) and (d) show selected
performance metrics (bio-conservation: nmi, cc_cons, batch effect removal: asw_batch_d1,
iLISI_d1) with the horizontal line indicating the mean for (b) Multiome and (d) CITE-seq
data. All computed metrics, including all competition metrics are shown in figures A5 and
A6. For panels (a) and (c) the embedding obtained from a single training run is shown.
Panels (b) and (d) show the results of five training runs per model (see Methods).
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Fig. A3 Comparable performance of liam and baseline variants of it on the
competition Multiome data. Data for all figure panels stems from the NeurIPS 2021
Multimodal Single-Cell Data Integration competition Multiome data set. Panel (a) shows
UMAP representations of embeddings obtained with distinct variants of liam; Cells are
colored by provided cell type annotation (Cell type), sample id (sample) and sequencing site
(site). Panel (b) shows selected performance metrics (bio-conservation: nmi, cc_cons, batch
effect removal: asw_batch_d1, iLISI_d1) with the horizontal line indicating the mean of those
models. All computed metrics, including all competition metrics are shown in figure A5. For
panel (a) the embedding obtained from a single training run is shown. Panel (b) shows the
results of five training runs per model (see Methods).
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Fig. A4 Adversarial training alone (liam AVAE) can perform well on the com-
petition data set for suitable adversarial scaling paramters. Data for all figure
panels stems from the NeurIPS 2021 Multimodal Single-Cell Data Integration competition
Multiome data set. (a) UMAP representations obtained with liam AVAE with distinct con-
tributions of the adversarial term to the overall loss function (a: x1, x50, x1000); cells are
colored by provided cell type annotations and the sequencing site (site). (b) Selected perfor-
mance metrics (bio-conservation: nmi, cc_cons, batch effect removal: asw_batch_d1, iLISI_d1)
with the horizontal line indicating the mean for liam AVAE models. All computed met-
rics, including all competition metrics are shown in figure A5. For panel (a) the embedding
obtained from a single training run is shown. Panel (b) shows the results of five training
runs per model (see Methods).
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Fig. A5 All evaluation metrics for all presented models and the NeurIPS 2021 Multimodal
Single-Cell Data Integration competition Multiome data set. Shown are the results of five
training runs per model, except for Liam rna only (10 dims) and Liam VAE for which the
result of a single run are shown (see Methods). The horizontal line indicates the mean.
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Fig. A6 All evaluation metrics for all presented models on the NeurIPS 2021 Multimodal
Single-Cell Data Integration competition CITE-seq data set. Shown are the results of five
training runs per model; the horizontal line indicates the mean. GD: Guanlab-dengkw. Shown
are the results of five training runs per model (see Methods).



	Introduction
	Results
	The model liam
	Exploiting replicates for selected treatment effect retention and enhanced batch mixing
	Liam excels in a comprehensive benchmark across distinct data types
	Examining modeling choices

	Discussion
	Methods
	Data sets
	NeurIPS competition data set
	Treatment/Control data sets from DOGMA-seq

	Data preprocessing
	Competition data sets
	Treatment/Control data sets from DOGMA-seq

	Liam: model and software
	Model description
	Loss function
	CVAE variant
	Single-modality model variant
	Model training
	Model implementation

	Evaluation
	Baselines
	Other models

	Stability and subsampling analysis
	Treatment/control use case
	Competition use case
	Metrics - Competition use case
	Metrics - Treatment/Control use case

	Code availability
	Acknowledgments


	Extended Analyses
	Layer normalization leads to favorable performance over batch normalization
	Effect of feature preselection on performance of MultiVI and convergence comparison
	Limitations of current benchmarks concerning vertical integration evaluation


