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Abstract

Human-based organ models can provide strong predictive value to investigate the tropism,

virulence, and replication kinetics of viral pathogens. Currently, such models have received

widespread attention in the study of SARS-CoV-2 causing the COVID-19 pandemic. Appli-

cable to a large set of organoid models and viruses, we provide a step-by-step work instruc-

tion for the infection of human alveolar-like organoids with SARS-CoV-2 in this protocol

collection. We also prepared a detailed description on state-of-the-art methodologies to

assess the infection impact and the analysis of relevant host factors in organoids. This pro-

tocol collection consists of five different sets of protocols. Set 1 describes the protein extrac-

tion from human alveolar-like organoids and the determination of protein expression of

angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2)

and FURIN as exemplary host factors of SARS-CoV-2. Set 2 provides detailed guidance on

the extraction of RNA from human alveolar-like organoids and the subsequent qPCR to

quantify the expression level of ACE2, TMPRSS2, and FURIN as host factors of SARS-

CoV-2 on the mRNA level. Protocol set 3 contains an in-depth explanation on how to infect

human alveolar-like organoids with SARS-CoV-2 and how to quantify the viral replication by

plaque assay and viral E gene-based RT-qPCR. Set 4 provides a step-by-step protocol for

the isolation of single cells from infected human alveolar-like organoids for further process-

ing in single-cell RNA sequencing or flow cytometry. Set 5 presents a detailed protocol on

how to perform the fixation of human alveolar-like organoids and guides through all steps of

immunohistochemistry and in situ hybridization to visualize SARS-CoV-2 and its host fac-

tors. The infection and all subsequent analytical methods have been successfully validated

by biological replications with human alveolar-like organoids based on material from differ-

ent donors.
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Introduction

The current outbreak of the COVID-19 pandemic caused by the severe acute respiratory syn-

drome coronavirus type 2 (SARS-CoV-2) has once again highlighted the need for appropriate

and rapidly available model systems with high predictive value towards clinical translation [1].

The SARS-CoV-2 exposure of most animal models either did not lead to infection, or only

partly reflect relevant human aspects of disease [2–4]. Hence, human-based organ models pro-

vide promising opportunities for the rapid study of pathogens and their impact on the human

system [5–10]. To investigate the effects of a viral pathogen on our respiratory system, human

alveolar-like organoids serve as an excellent tool to gain insights on virulence mechanisms and

viral tropisms [11]. However, standard infection methods used in classical 2D cell culture sys-

tems are not transferable to 3D human alveolar-like organoids [12].

Therefore, we are providing a detailed protocol collection on the infection of human alveo-

lar-like organoids as well as their preparation for associated readouts. The protocol collection

includes an in-depth instruction on the handling and preparation of human alveolar-like orga-

noids for infection with SARS-CoV-2 under biosafety level 3 conditions, followed by the mea-

surement of viral replication by plaque assay and viral quantitative reverse transcription PCR

(RT-qPCR) [13].

This protocol collection also provides the thorough work instructions to determine the

expression of host factors in 3D organ models on the protein and mRNA level. Exemplarily,

the expression of ACE2, TMPRSS2, and FURIN as key host factors of SARS-CoV-2 is

described by Western blotting and real-time quantitative PCR (qPCR) [14, 15]. Novel technol-

ogies such as single-cell RNA sequencing (scRNA-seq) have tremendous impact on current

COVID-19 research. Applied on human alveolar-like organoids, scRNA-seq can increase our

understanding on the pathophysiological signature, and the cell-mediated immune response

after SARS-CoV-2 infection. Therefore, this protocol collection includes a detailed description

of single cell preparation from human alveolar-like organoids for further processing in single-

cell technologies. Imaging techniques such as immunohistochemistry and in situ hybridization

allow a detailed analysis of viral distribution, tissue damage and host factor location in the

human alveolar-like organoids. We provide elaborate instructions on sample preparation and

staining procedures to provide sections for high resolution imaging [16].

Given the urgency of the pandemic, researchers worldwide need to coordinate their activi-

ties and support collaborative efforts in COVID-19 research. Thereby, the distribution of

transparent and detailed protocols is an essential tool towards high reproducibility rates and

scientific rigor [17–19].

Materials and methods

The protocol collection described in this peer-reviewed article is published on protocols.io

(doi.org/10.17504/protocols.io.5jyl89pw6v2w/v2) and is attached to this article as S1–S6 Files

for printing. Informed written consent was obtained from all volunteers and the study was

approved by the Charité Ethics Committee (project 451, EA2/079/13).

Expected results

The presented protocols enabled us to screen mature human alveolar-like organoids [11] for

three important currently known host factors of SARS-CoV-2.

We analyzed ACE2, TMPRSS2 and FURIN in human alveolar-like organoids (n = 3) as

exemplary host factors by Western blot and used Calu-3 cells as positive control (Fig 1). All
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three host factors were expressed in the alveolar-like organoids. The TMPRSS2 blot showed

two characteristic bands described as full-length TMPRSS2 (54kDa) and the cleaved form

(25kDa). The mRNA expression level of SARS-CoV-2 host factors ACE2, TMPRSS2, and
FURIN were analyzed by qPCR in human alveolar-like organoids (n = 4) (Fig 2). The figure

shows the basic expression of the host factors by using Ct values and two different reference

genes (GAPDH, β-ACTIN).

Fig 1. Analysis of SARS-CoV-2 host factor expression by Western blot. Representative Western blots for ACE2,

TMPRSS2, and FURIN of protein lysates from human alveolar-like organoids of three different donors (P8-P10). Calu-

3 cells served as positive control.

https://doi.org/10.1371/journal.pone.0276115.g001

Fig 2. Analysis of ACE2, TMPRSS2, and FURIN expression in human alveolar-like organoids. Expression of ACE2, TMPRSS2, FURIN and GAPDH and β-
ACTIN as housekeeping genes measured by qPCR on bulk RNA of human alveolar-like organoids. Shown are Ct values of four different donors (P4-P7) and two

technical replicates.

https://doi.org/10.1371/journal.pone.0276115.g002
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The successful infection of human alveolar-like organoids with SARS-CoV-2 was shown by

the increasing number of infectious particles over the time course of 96 hours for seven differ-

ent donors via plaque assay (Fig 3A). Additionally, the number of viral genomic copies was

quantified in the cell culture supernatant via viral E gene-based RT-qPCR, as described in the

protocol collection (Fig 3B). The viral RNA that is produced indicates whether viral replication

occurs and virions are formed. However, it is not possible to say whether these viral particles

are complete and infectious. Therefore, it is of particular importance to also generate a replica-

tion curve via the plaque assay approach, which shows the number of infectious particles over

time. Especially when it comes to drug screening, the indication of viral RNA is not sufficient.

In that sense, the two values are not comparable, but together they give a good indication of

the overall replication dynamics.

After enzymatic digestion of human alveolar-like organoids into single cell suspension,

scRNA-seq can be performed to allow dissection of gene expression at single-cell resolution

(Fig 4). In this exemplary case, scRNA-seq data from human alveolar-like organoids of six

donors were annotated according to Travaglini et al. [20] and the following cell clusters were

identified: AT2, basal and secretory cells (Fig 4A). The markers used for cell type identification

are shown in Fig 4D and 4E. The used protocol generates organoid cultures of the alveolar epi-

thelium from bipotent progenitors excluding at least in part bronchial cells. AT1 cells were not

found in the model, the mechanism underlying their differentiation is not completely under-

stood and needs further elucidation. Fig 4B shows the specific cell cycle phases. Most of the

cells are in the G1-phase which is believed to serve as a window of opportunity to initiate cell

differentiation [21]. The UMAP in Fig 4C shows the different donors combined in this study.

ScRNA-seq enables an in-depth analysis of the effect of SARS-CoV-2 infection on the different

cell types and allows validation of their host factor expression levels as shown in Fig 4F for

ACE2, TMPRSS2, and FURIN. These expression patterns are consistent with those already

observed at the protein and mRNA levels (Figs 1 and 2). All data are available at: https://ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE197949 and https://ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE198864.

Fig 3. Replication kinetics of SARS-CoV-2-infected human alveolar-like organoids. Human alveolar-like organoids were infected with SARS-CoV-2 (MOI = 1)

and viral replication was assessed by plaque assay (A) and via viral E gene-based RT-qPCR (B). Data of seven (plaque assay) and four (RT-qPCR) biological

replicates are shown as individual data points. The mean is visualized by a horizontal black line.

https://doi.org/10.1371/journal.pone.0276115.g003
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Fig 4. Single-cell RNA sequencing displays the proportion of three different cell types and SARS-CoV-2 host factors

present in uninfected human alveolar-like organoids. UMAP embedding of human alveolar-like organoids (n = 6; P1-P3 and

P10-P12) shows AT2, basal, and secretory cells present in the organoids (A). Cell cycle phase of each cell in either G2M, S or G1

phase (B) and individual donor composition (C) is displayed. The marker genes needed for cell type identification are shown (D

and E) as well as the expression of the SARS-CoV-2 host factors ACE2, TMPRSS2, and FURIN (F).

https://doi.org/10.1371/journal.pone.0276115.g004

Fig 5. Spectral imaging of mock- and SARS-CoV-2-infected and immunostained human alveolar-like organoids and in situ
hybridization. (A) Representative immunostainings for exemplary mock- (left panel) and SARS-CoV-2-infected (right column) human

alveolar-like organoids. Shown are immunostainings for SARS-CoV-2 (N-protein, red), ACE2 (green) and via in situ hybridization

visualized ACE2 mRNA expression (red dots) 24 h post infection (MOI = 1). Arrows indicate either cells positive for SARS-CoV-2 (red

arrows) or areas of particularly high ACE2 expression (protein: green arrows, mRNA: red dotted arrows). Cell nuclei are visualized by

DAPI stain (blue). Scale bars = 20 μm. (B) In situ hybridization of human alveolar-like organoids shows SARS-CoV-2 mRNA expression

(left column). DapB and EF1a served as negative respectively positive control. Red arrows indicate cells positive for SARS-CoV-2. Scale

bars = 20 μm.

https://doi.org/10.1371/journal.pone.0276115.g005
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In order to visualize the expression patterns of host factors and the virus, we utilized immu-

nohistochemistry (n = 3) and in situ hybridization (n = 3) and acquired high-resolution imag-

ing data showing viral particles that have migrated into human alveolar-like organoids as well

as ACE2 expression (Fig 5). In situ hybridization also shows viral particles present in alveolar-

like organoids and ACE2 expression (Fig 5). In context of this protocol collection, we present

exemplary data, however, experiments should be performed on at least three biological repli-

cates of human alveolar-like organoids derived from different donors.
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