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Abstract: The placenta is a temporary organ with a unique structure and function to ensure healthy
fetal development. Placental dysfunction is involved in pre-eclampsia (PE), fetal growth restriction,
preterm birth, and gestational diabetes mellitus (GDM). A diabetic state affects maternal and fetal
health and may lead to functional alterations of placental metabolism, inflammation, hypoxia, and
weight, amplifying the fetal stress. The placental molecular adaptations to the diabetic environment
and the adaptive spatio–temporal consequences to elevated glucose or insulin are largely unknown
(2). We aimed to identify gene expression signatures related to the diabetic placental pathology of
placentas from women with diabetes mellitus. Human placenta samples (n = 77) consisting of healthy
controls, women with either gestational diabetes mellitus (GDM), type 1 or type 2 diabetes, and
women with GDM, type 1 or type 2 diabetes and superimposed PE were collected. Interestingly, gene
expression differences quantified by total RNA sequencing were mainly driven by fetal sex rather
than clinical diagnosis. Association of the principal components with a full set of clinical patient data
identified fetal sex as the single main explanatory variable. Accordingly, placentas complicated by
type 1 and type 2 diabetes showed only few differentially expressed genes, while possible effects of
GDM and diabetic pregnancy complicated by PE were not identifiable in this cohort. We conclude
that fetal sex has a prominent effect on the placental transcriptome, dominating and confounding
gene expression signatures resulting from diabetes mellitus in settings of well-controlled diabetic
disease. Our results support the notion of placenta as a sexual dimorphic organ.

Keywords: diabetes mellitus; human; placenta; pregnancy; RNA sequencing

1. Introduction

The placenta is a temporary mammalian organ with the vital function of fetal nutrient
supply and waste removal. Its unique structure, with tissue emerging from both embryonic
and maternal origin, is necessary for healthy fetal development [1]. The rapid placental
growth includes proliferation, differentiation and invasion of trophoblasts, implantation,
remodeling, and angiogenesis, all of which are decisive factors for healthy pregnancies and
outcomes [2]. Placental maldevelopment and dysfunction are involved in the major, often
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co-occurring obstetric syndromes, including preeclampsia (PE), fetal growth restriction,
preterm birth and gestational diabetes mellitus (GDM) [3–5].

In a diabetic environment, a variety of structural and functional changes take place
in the placenta. Besides heavier placentas, inflammation and DNA methylation, altered
expression of genes regulating for growth, glucose metabolism, cytoskeletal structure,
oxidative stress and apoptosis have been described [6,7]. The extent of structural and
functional changes depends on multiple variables, including the type of diabetes mellitus
(DM) and glycemic control [6].

DM can be present before, and throughout, gestation as in DM type 1 (DM1) or type 2
(DM2). In both cases, placentation takes places under the complex diabetic milieu, although
the pathophysiology of DM1 and DM2 differs. During the first trimester, the placental
growth rate is highest and the placenta is therefore extremely sensitive to environmental
influences [6]. Secondly, DM can occur during gestation (gestational diabetes mellitus;
GDM) and resolve postpartum in most cases [8]. In women with GDM, impaired glucose
tolerance develops and leads to more short-term molecular alterations [2].

Both pregestational and gestational diabetes imply a well-described and significantly
increased risk of adverse maternal and offspring pregnancy outcomes, as well as long-term
diseases such as obesity and cardiovascular disease [5,9]. Central to short-term associa-
tion is the placental pathology, most likely due to maternal metabolic and inflammatory
changes in a diabetic milieu. The long-term consequences are likely explained by in utero
programming impacting on health or disease later in life, independent of the DNA se-
quences that are inherited in a person’s genetic code (i.e., developmental origins of health
and disease) [10].

One potential complication to pregestational and gestational diabetes during preg-
nancy is PE [11], which is also closely linked to a dysfunctional placenta [6]. PE super-
imposed on a diabetic condition is a major risk factor for preterm delivery, maternal and
offspring morbidity and future health [3,12].

The precise mechanisms by which pregestational or gestational diabetes contribute
to placental dysfunction are unknown [1,6]. Besides the effects of glucose and insulin on
the placenta, reactive oxygen species production in first trimester trophoblasts, insulin
resistance of trophoblasts, and altered oxygen tension in the intervillous space have been
addressed [13]. It is likely that pregestational and gestational diabetes may have different
adaptation mechanisms, including differential effects on placentation, as GDM is usually
not present during the most important placentation period [14].

The aim of this study is to unravel novel pathways related to the contribution of
diabetes to pregnancy pathologies, including diabetic pregnancies complicated by PE, by
transcriptome analysis of placenta tissues. Various studies suggest that placental inflam-
matory pathways, stress response and gene expression patterns are related to maternal
pregnancy complications. Understanding the contribution of the placental transcriptome
profile to placental differences responsible for fetal and maternal health—such as fetal
growth, preterm birth and survival—is essential. By gene expression analysis, we aimed to
identify differentially expressed genes (DEGs) and associated signaling pathways among
GDM, pregestational DM, or diabetic pregnancies complicated with PE. Here we present,
to our knowledge, the first RNA sequencing dataset of the placental transcriptome from
women with GDM, DM1, or DM2, and in DM pregnancies with superimposed PE, to gain
a profound understanding of transcriptional placental profiles during the various forms of
a diabetic pregnancy.

2. Results
2.1. Clinical Characteristics of the Study Cohort

The study cohort consisted of healthy and diabetic women, while other diabetic
patients developed superimposed PE during pregnancy. Clinical characteristics of these
healthy and diabetic pregnant women (subgroups) are shown in Table 1. Characteristics
of diabetic women with a pregnancy complicated with PE are shown in Table 2. Further,
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the characteristics of all women with the different types of DM or DM superimposed with
PE are shown in Table 3. The BMI of women with GDM and DM2 was higher at the
beginning of pregnancy and at delivery (GDM: 33.2 ± 6.77; DM2: 38.57 ± 2.89; Table 1)
compared to healthy CTL (CTL: 28.79 ± 3.98), even when complicated with PE (Table 2).
The diabetic pregnant women superimposed with PE not only developed hypertension
(Table 2), but also proteinuria (Table 3) during pregnancy. Early-onset PE appeared in
37.5% of pregnant women. HbA1c was higher during pregnancy in pregestational diabetic
women compared to women who developed GDM, independent of PE. All subgroups
of women with DM without superimposed PE in pregnancy had, as expected, heavier
babies and higher birthweight percentiles compared to CTL (Table 1). Pregnancies with DM
superimposed with PE had, as expected, an earlier delivery than CTL (Table 3). Women with
GDM + PE had consequently lower birth weight and smaller newborn weight percentiles
than CTL, a proxy of placental dysfunction. While DM1 + PE had higher birthweight
percentiles but similar birthweights as CTL, the birthweight and newborn weight percentile
were not different in pregnancies of DM2 + PE compared to CTL (Table 2).

2.2. Placentas of Patients with Diabetes Reveal Differentially Expressed Genes

The gene expression between diabetic and healthy CTL placentas using DESeq2 [15]
with fetal sex as covariate did not show any DEGs at adj. p-value < 0.05 (see MA-plot
in Figure 1).
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Figure 1. The effect of diabetes on the placental transcriptome in comparison to healthy controls.
MA-plot showing the log2-fold change over mean expression for all genes for the diabetes group
(DIAB) without PE (n = 32) versus CTL (n = 29). DIAB = patients with DM1, DM2 and GDM;
CTL = healthy controls.

Subsequently we analyzed the diabetic subgroups and found relatively few signif-
icant gene expression differences between placentas from DM1 (n = 17), DM2 (n = 3),
GDM (n = 12) and CTL (n = 29) patients (Figure 2). Most DEGs (75 up-regulated and
18 down-regulated at adj. p-value < 0.05) were observed when comparing DM2 to CTL
(Figure 2a), summarized in Supplementary Table S1. Figure 2b shows the comparison
between DM2 and GDM, where we identified four up- and 23 down-regulated genes
(Supplementary Table S1). Pathway analysis showed that several DEGs in the comparison
of DM2 with either CTL or GDM were associated with metabolism (such as SELENBP1 [16],
CNNM [17], and SOXS3 [18]) and placental metabolism (such as ACSL6 [19] and ARID5A [20]).
DM1 versus DM2 (Figure 2c) showed 4 up-regulated genes (Supplementary Table S1), and
GDM versus DM1 showed only two up-regulated genes (SMCO3 and NQO1), both linked
to DM [21,22] (Figure 2d). In contrast, DM1 versus CTL (Figure 2e) and GDM versus
CTL (Figure 2f) did not show significant DEGs. Our results show that gene expression
differences in DM1 and DM2 showed similar patterns to each other (Pearson’s R = 0.47
between log2-fold changes), whereas GDM was more similar to CTL.
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Table 1. Clinical characteristics of study group participants for diabetic subgroups without PE (n = 61, including 29 CTL and 32 DM).

Characteristics CTL
(n = 29)

GDM
(n = 12)

p-Value
CTL vs. GDM

DM1
(n = 17)

p-Value
CTL vs. DM1

DM2
(n = 3)

p-Value
CTL vs. DM2

maternal characteristics <20 weeks gestation
BMI 23.68 ± 4.06 28.03 ± 5.65 0.02 25.22 ± 3.95 0.81 34.58 ± 1.20 0.00
SBP, mmHg 111.03 ± 9.41 113.08 ± 9.27 0.99 113.81 ± 8.42 (16) 0.98 127.67 ± 19.14 0.15
DBP, mmHg 66.21 ± 7.04 70.42 ± 7.35 0.48 70.06 ± 5.92 (16) 0.48 75 ± 1.73 0.29
HbA1c 2. Trimester, % NA 5.2 ± 0.62 (4) NA 6.17 ± 0.62 (15) NA 5.87 ± 0.09 NA
smoking, % (n) 13.79 (4) 16.67 (2) NA 5.88 (1) NA 33.3 (1) NA
height, m 1.70 ± 0.06 1.67 ± 0.06 0.87 1.67 ± 0.05 0.75 1.68 ± 0.05 0.99
weight, kg 68.17 ± 11.96 78.34 ± 14.77 0.13 70.53 ± 11.48 0.99 98 ± 5.29 0.00
maternal characteristics at delivery
BMI at delivery 28.79 ± 3.98 33.2 ± 6.77 (11) 0.05 29.7 ± 4.03 0.99 38.57 ± 2.89 0.00
pre-operative SBP, mmHg 124.42 ± 12.22 (26) 132 ± 10.89 (9) 0.72 138.93 ± 14.35 (15) 0.02 144.5 ± 0.70 (2) 0.35
pre-operative DBP, mmHg 72.96 ± 10.78 (26) 80.44 ± 15.48 (9) 0.42 79.13 ± 9.95 (15) 0.44 73.0 ± 2.83 (2) >0.99
proteinuria, % (n) 4 (1) 10 (1) NA 13,32 (1) NA 0 (0) NA
HbA1c 3. Trimester, % NA 5.79 ± 0.55 (11) NA 6.27 ± 0.57 (15) NA 6.2 ± 0.22 NA
medication, % (n) [insulin, metformin] 0 (0) 41.67 (5) NA 88.24 (15) NA 100 (3) NA
gestational age, days 271.93 ± 7.94 267.67 ± 13.03 0.94 260.65 ± 17.19 0.06 269.67 ± 4.16 >0.99
age, years 32.66± 4.50 34.58 ± 3.61 0.77 33.59 ± 3.76 0.98 31.0 ± 6.56 0.99
parity, count 0.93 ± 0.88 1.08 ± 0.90 0.99 0.71 ± 0.59 0.93 0.33 ± 0.58 0.78
gravidity, count 2.72 ± 1.25 3.25 ± 1.42 0.77 2.29 ± 1.16 0.83 2.00 ± 1.00 0.91
blood sugar, mmol/l 3.98 ± 0.48 (9) 4.78 ± 1.05 (9) 0.72 6.57 ± 1.56 (13) 0.00 6.53 ± 1.45 0.03
birth outcome
fetal sex, female/male, count 15/14 7/5 NA 8/9 NA 1/2 NA
birth weight, g 3342 ± 450 3697 ± 844 0.72 3611 ± 864 (16) 0.85 4515 ± 788 0.09
birth length, cm 50.05 ± 1.49 (21) 50.55 ± 3.55 (10) 0.99 49.57 ± 4.09 (14) 0.99 53.67 ± 2.89 0.34
percentile birthweight 51.04 ± 27.68 73.18 ± 33.06 0.22 78.87 ± 30.69 (16) 0.03 97.19 ± 2.99 0.09
placental + umbilical cord weight, g 584.23 ± 107.9 (26) 680.11 ± 114.4 (9) 0.51 653.53 ± 198.7 (15) 0.67 906.33 ± 164.5 0.00

Data are shown as mean ± standard deviation (SD) or percentage (absolute numbers). Absolute numbers are shown in parentheses if the characteristic was not available for all
participants of the group. CTL = healthy controls; GDM = gestational diabetes mellitus; DM1 = type 1 diabetes mellitus; DM2 = type 2 diabetes mellitus; NA = not available; BMI = body
mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure; HbA1c = hemoglobin A1c. Comparison of a single group to CTL was assessed by one-way ANOVA with
multiple comparisons.
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Table 2. Clinical characteristics of study group participants, including 29 CTLs and DM superimposed by PE (n = 16).

Characteristics CTL
(n = 29)

GDM + PE
(n = 4)

p-Value
CTL vs.
GDM + PE

DM1 + PE
(n = 8)

p-Value
CTL vs.
DM1 + PE

DM2 + PE
(n = 4)

p-Value
CTL vs.
DM2 + PE

maternal characteristics <20 weeks gestation
BMI 23.68 ± 4.06 31.91 ± 4.47 0.00 24.68 ± 2.85 0.99 28.07 ± 5.69 0.30
SBP, mmHg 111.03 ± 9.41 118.5 ± 11.21 0.82 125.88 ± 16.3 0.02 124 ± 29.02 0.25
DBP, mmHg 66.21 ± 7.04 76.25 ± 8.96 0.08 72.25 ± 6.5 0.25 69.25 ± 16.4 0.97
HbA1c 2. Trimester, % NA 5.5 ± 0.1 (2) NA 6.63 ± 0.66 NA 5.67 ± 0.12 (2) NA
smoking, % (n) 13.79 (4) 25 (1) NA 25 (2) NA 0 (0) NA
height, m 1.70 ± 0.06 1.61 ± 0.11 0.06 1.69 ± 0.04 >0.99 1.57 ± 0.14 0.00
weight, kg 68.17 ± 11.96 83.5 ± 20.76 0.16 68.75 ± 7.15 >0.99 70.25 ± 20.76 0.99
maternal characteristics at delivery
BMI at delivery 28.79 ± 3.98 38.05 ± 3.55 0.00 32.07 ± 3.65 0.39 31.54 ± 7.39 0.85
pre-operative SBP, mmHg 124.42 ± 12.22 (26) 153 ± 16.92 (3) 0.03 169.38 ± 25.05 0.00 152.67 ± 13.65 (3) 0.02
pre-operative DBP, mmHg 72.96 ± 10.78 (26) 90.33 ± 8.51 (3) 0.08 99.13 ± 10.91 0.00 88.0 ± 8.66 (3) 0.17
proteinuria, % (n) 4 (1) 100 (4) NA 100 (8) NA 100 (4) NA
HbA1c 3. Trimester, % NA 6.25 ± 0.05 (2) NA 6.6 ± 0.56 NA 6.65 ± 0.25 (2) NA
medication, % (n) [insulin, metformin] 0 (0) 25 (1) NA 100 (8) NA 100 (4) NA
gestational age, days 271.93 ± 7.94 247.25 ± 18.77 0.00 248.38 ± 13.75 0.00 249.25 ± 31.10 0.02
age, years 32.66± 4.50 29.0 ± 4.08 0.57 32.13 ± 6.11 0.98 34.25 ± 5.38 0.98
parity, count 0.93 ± 0.88 0.75 ± 0.50 0.99 0.5 ± 0.76 0.70 0.5 ± 1.00 0.90
gravidity, count 2.72 ± 1.25 1.75 ± 0.50 0.60 2.0 ± 1.07 0.60 1.75 ± 1.50 0.60
blood sugar, mmol/l 3.98 ± 0.48 (9) 4.28 ± 0.50 0.99 6.32 ± 1.8 (7) 0.00 3.9 ± 0.30 (2) >0.99
birth outcome
fetal sex, female/male, count 15/14 3/1 NA 4/4 NA 3/1 NA
birth weight, g 3342 ± 450 2422 ± 671 0.17 3305 ± 830 >0.99 2989 ± 1845 0.95
birth length, cm 50.05 ± 1.49 (21) 46.75 ± 2.06 0.33 48.8 ± 0.84 (5) 0.96 38 ± 11.30 (2) 0.00
percentile birthweight 51.04 ± 27.68 28.29 ± 26.60 0.68 76.97 ± 31.06 0.21 51.6 ± 55.17 >0.99
placental + umbilical cord weight, g 584.23 ± 107.9 (26) 494.25 ± 111.7 0.86 615.75 ± 201.3 0.99 577.75 ± 218.0 >0.99

Data are shown as mean ± standard deviation (SD) or percentage (absolute number). Total numbers are shown in parentheses if the characteristic was not available for all participants of
the group. CTL = healthy controls; GDM + PE = gestational diabetes mellitus superimposed with preeclampsia; DM1 + PE = type 1 diabetes mellitus superimposed with preeclampsia;
DM2 + PE = type 2 diabetes mellitus superimposed with preeclampsia; NA = not available; BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure;
HbA1c = haemoglobin A1c. Comparison of a single group to CTL was assessed by one-way ANOVA with multiple comparisons.
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Table 3. Clinical characteristics of study groups with all diabetes subgroups combined (n = 77).

CTL
(n = 29)

Diabetes
(n = 32)

p-Value
CTL vs. Diabetes

Diabetes + PE
(n = 16)

p-Value
CTL vs. Diabetes + PE

maternal characteristics <20 weeks gestation
BMI 23.68 ± 4.06 27.15 ± 5.21 0.01 27.33 ± 4.87 0.03
SBP, mmHg (n) 111.03 ± 9.41 114.87 ± 10.47 (31) 0.40 123.56 ± 18.09 0.00
DBP, mmHg (n) 66.21 ± 7.04 70.68 ± 6.28 (31) 0.04 72.50 ± 9.81 0.02
HbA1c 2. Trimester, % (n) NA 5.95 ± 0.69 (22) NA 6.23 ± 0.73 (13) NA
smoking, % (n) 13.79 (4) 12.50 (4) NA 18.75 (3) NA
height, m 1.70 ± 0.06 1.76 ± 0.05 0.33 1.64 ± 0.10 0.01
weight, kg 68.17 ± 11.96 76.03 ± 14.58 0.06 72.81 ± 15.40 0.49
maternal characteristics at delivery
BMI at delivery 28.79 ± 3.98 31.80 ± 5.69 (31) 0.04 33.43 ± 5.22 0.00
pre-operative SBP, mmHg 124.42 ± 12.22 (26) 136.96 ± 13.02 (26) 0.00 161.93 ± 22.15 (14) 0.00
pre-operative DBP, mmHg 72.96 ± 10.78 (26) 79.12 ± 11.66 (26) 0.09 94.86 ± 10.65 (14) 0.00
Proteinuria, % (n) 4 (1) 6.25 (2) NA 100 (16) NA
HbA1c 3. Trimester, % NA 6.08 ± 0.58 (29) NA 6.55 ± 0.49 (12) NA
medication metformin, % (n) 0 (0) 9.38 (3) NA 18.75 (3) NA
insulin, % (n) 0 (0) 68.75 (22) NA 68.75 (11) NA
early-onset PE % (n) 0 (0) 0 (0) NA 37.5 (6) NA
age, years 32.66± 4.50 33.72 ± 3.96 0.59 31.88 ± 5.50 0.82
parity, count 0.93 ± 0.88 0.81 ± 0.74 0.81 0.56 ± 0.72 0.26
gravidity, count 2.72 ± 1.25 2.63 ± 1.31 0.94 1.88 ± 1.03 0.06
blood sugar, mmol/l 3.98 ± 0.48 (9) 5.92 ± 1.59 (25) 0.00 5.32 ± 1.74 (13) 0.08
birth outcome
fetal sex, female/male, count 15/14 16/16 NA 10/6 NA
birth weight, g 3342 ± 450 3732 ± 863 (31) 0.12 3005 ± 1110 0.32
birth length, cm 50.05 ± 1.49 (21) 50.39 ± 3.87 (27) 0.94 46.09 ± 5.59 (11) 0.01
percentile birthweight 51.04 ± 27.68 78.44 ± 30.31 (31) 0.00 58.46 ± 40.48 0.70
placental + umbilical cord weight, g 584.23 ± 107.9 (26) 690.48 ± 183.2 (27) 0.03 575.88 ± 183.1 0.98

Data are shown as mean ± standard deviation or percentage (total number). Absolute numbers are shown in parentheses if the characteristic was not available for all participants of the
group. CTL = healthy controls; Diabetes = includes patients with DM1, DM2 and GDM; Diabetes + PE = includes patients with diabetes superimposed with preeclampsia (DM1 + PE,
DM2 + PE, GDM + PE); NA = not available; BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure; HbA1c = hemoglobin A1c. Comparison of one group
to healthy controls was performed by one-way ANOVA with multiple comparisons.
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in these contrasts. The adjusted p-value is color-coded and the AUC statistic is displayed as the dot 
size. GDM = gestational diabetes mellitus; DM1 = type I diabetes mellitus; DM2 = type II diabetes 
mellitus; CTL = healthy controls. 

Since only few informative DEGs were observed in the analysis of 77 placental tran-
scriptomes, we next conducted gene-set enrichment analysis using HALLMARK tran-
scriptional gene sets on the estimated log2-fold changes for all genes in the comparisons 
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but no uniform dysregulated pathway between the different subtypes of diabetic preg-
nancy and CTL was observed. Genes involved in the epithelial–mesenchymal transition, 
hypoxia, angiogenesis or inflammation were consistently altered when comparing the 
placental transcriptome of DM2 versus GDM or CTL. DM1 versus GDM or CTL showed 
similar patterns, including in pathways involved in unfolded protein response, oxidative 
phosphorylation, and proliferation, but the differences were less pronounced.  

When investigating the data of placentas from diabetic pregnancies complicated by 
PE (n = 16) in comparison to CTL (n = 29), we observed a similar pattern. The comparison 
of PE against CTL gave only one DEG (Figure 3a, Supplementary Table 1) and gene-set 
enrichment analysis mainly showed alterations of genes involved in the epithelial–mes-
enchymal transition and inflammatory response (Figure 3b). 

  

Figure 2. Diabetes subgroups show an altered placental transcriptome in comparison to healthy
controls. (a–f) MA-plots showing log2-fold change as a function of mean expression for the diabetes
subgroups DM1 (n = 17), DM2 (n = 3), GDM (n = 12) versus CTL (n = 29). DEGs (adj. p-value < 0.05)
are marked in red. (g) Gene-set enrichment analysis with tmod for up- and down-regulated genes
in these contrasts. The adjusted p-value is color-coded and the AUC statistic is displayed as the dot
size. GDM = gestational diabetes mellitus; DM1 = type I diabetes mellitus; DM2 = type II diabetes
mellitus; CTL = healthy controls.

Since only few informative DEGs were observed in the analysis of 77 placental tran-
scriptomes, we next conducted gene-set enrichment analysis using HALLMARK transcrip-
tional gene sets on the estimated log2-fold changes for all genes in the comparisons of
different diabetic conditions in pregnancy (Figure 2g). Several gene sets were altered but
no uniform dysregulated pathway between the different subtypes of diabetic pregnancy
and CTL was observed. Genes involved in the epithelial–mesenchymal transition, hypoxia,
angiogenesis or inflammation were consistently altered when comparing the placental tran-
scriptome of DM2 versus GDM or CTL. DM1 versus GDM or CTL showed similar patterns,
including in pathways involved in unfolded protein response, oxidative phosphorylation,
and proliferation, but the differences were less pronounced.

When investigating the data of placentas from diabetic pregnancies complicated by
PE (n = 16) in comparison to CTL (n = 29), we observed a similar pattern. The comparison
of PE against CTL gave only one DEG (Figure 3a, Supplementary Table S1) and gene-
set enrichment analysis mainly showed alterations of genes involved in the epithelial–
mesenchymal transition and inflammatory response (Figure 3b).
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2.3. Placental RNA Sequencing Samples Group Mainly According to Fetal Sex

We next performed principal component analysis (PCA) to identify what factors could
confound the differences between the clinical subgroups. In the first principal component
with almost 11% explained variance, the data set clustered into two groups according to
the fetal sex (Figure 4a), driven by sex-specific genes such as XIST, UTY, USP9Y, DDX3Y
and KDM5D. The other PCA components were not clearly related to clinical parameters or
driven by systematic gene groups. The second PC (7.76% explained variance, driven by
TAC3, AADACL3, DIO2, NOTUM and HTRA4) showed an even distribution of samples
without obvious clustering according to the clinical diagnosis (Figure 4a). Similarly, other
components contributed little to the explained variance (Figure 4b) and did not induce a
clustering of samples.
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highest (7.76%) in PC2. Placental samples cluster according to the fetal sex. (b) PC4 and PC3 do not
cluster subjects into groups in the PCA. Black border: CTL (n = 29, circle); GDM (n = 12, square); DM1
(n = 17, triangle pointed top); DM2 (n = 3, triangle pointed bottom). Green border: GDM + PE (n = 4,
square); DM1 + PE (n = 8, triangle pointed top); DM2 + PE (n = 4, triangle pointed bottom). Fetal sex
is indicated in blue = male and red = female. (c) Percentage of explained variance by each PC from
PC1 to PC10. Diabetes types are indicated with symbols. CTL = healthy control; GDM = gestational
diabetes mellitus; DM1 = Diabetes mellitus type 1; DM2 = diabetes mellitus type 2.

2.4. Of All Gene Sets and Clinical Data, the Fetal Sex and Diagnosis Contribute Most to
Principal Components

We next analyzed which gene sets contributed most to the PCA and used gene-
set enrichment analysis of the gene loadings. PC 1 and, to a lesser extent, PC 2 were
strongly associated with Y-chromosomal genes. Higher components showed much weaker
association with chromosomal locations or functions such as epithelial–mesenchymal
transition, mitochondria, cell cycle or heme-metabolism (Figure 5a).
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Figure 5. Association of principal components to Y-chromosome linked genes and fetal sex.
(a) Gene-set enrichment analysis shows how principal components (PC) are associated with par-
ticular gene sets. PC1 and PC2 are strongly influenced by Y-chromosome genes. The effect size
(AUC) is shown as dot size and the color indicates significance (adjusted p-value). (b) The heat map
shows the contribution of clinical (meta data) and quality control parameters to the PCs. The impact
(“importance”) is color-coded with low contribution in grey and high contribution in red. Fetal sex
clearly contributes to PC1. The figure is based on all CTL (n = 29) and diabetic placenta samples
without PE (n = 32).

As none of the gene sets convincingly explained the variation in PC2 and below, we
next investigated whether PCs were associated with clinical data (meta data) or technical
quality-control parameters. We used random forest regression to determine the contribution
of each clinical parameter to a particular PC. Again, fetal sex contributed overwhelmingly
to the first PC, while the diagnosis prior to delivery and other parameters, such as BMI,
Hba1c, blood pressure during pregnancy as well as RNA quality (RIN value), contributed
much less to the PCs (Figure 5b).

2.5. Comparison between Placentas of Male or Female Fetus Display Several DEGs

We next performed differential expression analysis between placentas from female
fetus (n = 41) and male fetus (n = 36) pregnancies with clinical diagnoses (diabetes subtypes
and PE) as covariates. The comparison revealed 78 up-regulated and 76 down-regulated
genes (Supplementary Table S2) that are highlighted in the MA-plot (Figure 6). Genes
with increased expression in placentas with male fetuses (e.g., DDX3Y, ZFY, KDM5D and
UTY) were mainly located on the Y-chromosome, but other DEGs such as CTFR, SPP1 and
ZNF711 were located on the X-chromosome or autosomal chromosomes.
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(adj. p-value < 0.05) are marked in red. Positive log2-fold change indicates male-specific expression;
negative log2-fold changes indicate female-specific expression.

The 76 genes with higher expression in placentas with female fetuses were mostly
located on the X-chromosome; among them XIST, FTX, ZFX, SMC1A, STS and FMR1.
Some DEGs were not located on the X-chromosome but were associated with placentation.
For example, PLAU has been associated with trophoblast invasion [23] and SWAP70 has
been associated with placentation [24]. We performed analyses of up-regulated and down-
regulated genes from the comparison of male and female placenta samples. There were no
KEGG terms associated with the gene sets. In addition, no relevant gene ontology terms
were present.

Finally, we compared our results to a study by Gonzales et al. on sex differences in the
late first trimester in the human placenta transcriptome (GSE109120) [25] and found a good
overlap: 33 male and 15 female genes were significantly different in both studies; six male
and two female genes were discovered only in our data; and 13 male and 11 female genes
were detected only in their study.

3. Discussion

In the present study, we show that the placental transcriptome signature from healthy
CTL is similar to pregnancies complicated by DM. When diabetic pregnancy was compli-
cated with PE, again only mild differences in the placental transcriptome were observed
compared to healthy CTL. At the transcriptome level, the placentas from women with GDM
were more similar to CTL than DM1 or DM2, while the latter two were relatively similar to
each other. Genes linked to pregnancy complications or metabolic diseases contributed little
to the observed variance, and no defined gene set or pathway could be directly attributed as
the main contributor to the observed differences. The analysis of clinical data showed only
minor contribution of the clinical diagnosis to the variances between diabetic subgroups.
Remarkably, we identified fetal sex to be the strongest contributor to differences in the
transcriptome profile. Our study has two unexpected results, which warrant further studies
and follow up. Firstly, even though the placenta is heavily affected by the various forms
of DM and by superimposing PE, the transcriptome profile appears to be only marginally
altered. However, the transcriptome does neither fully reflect the profound metabolic and
pro-inflammatory alterations in the pregnant mother, nor does it fully explain the adverse
maternal or fetal morbidity and mortality. Our second remarkable finding is that fetal
sex has a profound influence on the placental transcriptome, indicating that sex-specific
alterations in placental function are more important than previously expected and supports
that the sexual dimorphism of the placenta should not be ignored in scientific practice.
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RNAseq is a powerful method to quantify transcriptomes [26]. It allows identification
of pathologic alterations that are linked to clinical diagnosis, which can help to develop
new biomarkers for future prediction, diagnosis, and therapy.

Several pregnancy complications have been linked to altered gene expression via
studies on specific genes and transcriptome analysis using microarray or RNAseq [27–29].
Sõber et al. highlighted differences in gene expression pattern with RNAseq analysis
(n = 8/group) of placentas from women with PE, while GDM or small- and large-for-
gestational age showed less intensive expression differences [30]. Although the sample
number was relatively small, the researchers found that the GDM placenta transcriptome
differed the least from healthy CTL placentas, while placentas from preeclamptic women
showed the strongest differences in gene expression pattern, followed by those small- or
large-for-gestational-age. Lekva et al. did not find altered genes in the transcriptome
profile of placentas from women with GDM, and only five DEGs in term placentas from
women with PE [31]. The observations on GDM placental transcriptome of Sõber et al.
and Lekva et al., along with our findings, suggest that gene expression in the placenta is
not sufficiently altered during a diabetic pregnancy to produce observable effects beyond
inter-individual variability, possibly due to well-treated disease. In our study cohort, 35.7%
of women with GDM were treated with insulin and/or metformin (Tables 1 and 2). The
lack of an effect on the placental transcriptome could result from relatively mild BMI at
delivery (GMD: 33.2; GMD + PE: 38.5) in our study, which serves as an indicator for morbid
obesity, and is related to inflammation and dysregulated placental function [32].

Multiple other studies highlight the transcriptome profile of placentas from women
with GDM compared to controls. While two microarray studies identified seven [33]
and 66 [34] DEGs, respectively, which were associated with apoptosis and inflammation,
another RNAseq study found 281 DEGs [35]. Since GDM is a time-restricted disease during
pregnancy (although the risk of DM2 is increased long-term), the question arises as to
whether the placental transcriptome reflects the metabolic changes of that period. This
question is so far unresolved, as some studies found no or only minor changes in placental
gene expression [30,31] when comparing GDM to healthy controls, while other studies
identified DEG patterns in placentas of women with GDM and assigned dysregulated
genes to pathways of glucose metabolism and immunology [36–38].

Only few studies have considered pregestational diabetes subtypes. The published
analyses include small sample numbers (n = 3 and n = 6, respectively), which makes
expression differences difficult to be identified [39,40].

Limiting to our study design is the relatively small sample size in some subgroups,
which is attributed to the limited number of women suffering from multiple pregnancy-
related complications. Therefore, careful interpretation of the data is necessary. Nonetheless,
the variety of subgroups characterized gives a rare insight into the placenta transcriptome
and results should be judged wisely. These limitations go along with a low number of
studies focusing on transcriptome analysis of placentas from women with DM2 because
of limited numbers of pregnant women suffering from DM2 [41]. In one study, placentas
from women with GDM (n = 14) and DM2 (n = 3) were analyzed by RNAseq and DNA
methylation [39]. The authors report differences in methylation and transcriptome level
in placentas from male and female offspring to be more pronounced than the difference
between clinical diagnosis. In our transcriptome analysis, placentas from women with DM2
showed the most distinct pattern compared to both healthy CTL placentas and placentas
from women with GDM, however the number was also small. These findings are reasonable
as the placenta is exposed to a diabetic surrounding. While some studies focus on the
analysis of pre-selected genes in placenta tissues from women with DM1 [42,43], global
transcriptome analysis is lacking.

In contrast to our results, other studies have identified multiple DEGs in placentas
from women with PE, yet these women did not have additionally diagnosed DM [44].
Buckberry et al. identified gene sets in the human placenta that were preserved at differ-
ent timepoints of gestation, with altered expression patterns in placenta samples from
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women with PE [45]. In another study with previously identified gene expression-based PE
subtypes, the severity of histopathological placental lesions matched the PE subtypes [46].

Although various studies suggest that placental inflammatory pathways, stress re-
sponse and gene expression patterns are related to maternal pregnancy complications, we
could not strengthen these observations with our study [38,47,48]. In our RNAseq data,
fetal sex contributed most to the observed transcriptome pattern. The impact of fetal sex on
the placental transcriptome had previously been observed in a microarray analysis study.
Placentas from women with PE complicated with either HELLP (= hemolysis, elevated
liver enzymes, low platelet), IUGR (= intrauterine growth restriction) or SGR (= small for
gestational age), showed DEG patterns that varied due to fetal sex [49]. A RNAseq analysis
of first trimester human placentas from healthy women highlighted early differences in
the transcriptome with 58 DEGs between placentas from female and male fetuses [25].
Gonzales et al. identified genes located on Chromosome 19 contributing most to DEGs,
followed by genes on the Y-chromosome [25]. Also, in our data set, some DEGs were
located on Chromosome 19, while a larger number were located on gonosomes. Besides
X-chromosomal-linked genes, Sood et al. detected some autosomal genes, suggesting that
the difference in expression might be due to underlying differences in male and female
physiology [50]. Another study analyzed placental transcriptomes of women with PE or
fetal growth restriction using RNAseq; this found strong placental transcriptome clustering
according to fetal sex and identified sex-biased pathways [51]. The meta-analysis of mi-
croarray data highlighted 88 autosomal genes that were differentially expressed between
placentas bearing a male or female fetus [45]. Altogether, these observations are in agree-
ment with our findings and verify that the fetal sex strongly contributes to the placental
transcriptome profile.

Our findings comply with other specific features related to fetal sex. Sex-specific
placental differences are relevant for fetal growth, preterm birth, and survival [52]. In
addition, sex-specific alterations of gene expression have not only been reported in genes
located on either the X- or Y-chromosome, but also on autosomal genes that encode immune
and hormonal pathways [52].

Our data contribute to the concept of the placenta as a sexual dimorphic organ. It
also suggests that the transcriptional signature of the placenta is not very informative for
understanding maternal–placental–fetal health in the context of well-treated diabetic preg-
nancies and superimposed PE. Our data is in line with previous findings that emphasize the
important influence of fetal sex on the placental transcriptome. In our analysis, the effect
on variance by fetal sex is stronger than the clinical diagnosis. Thus, we feel confident to
advise all researchers who aim to investigate the placental transcriptome profiles not only
to adjust for fetal sex, but to consider fetal sex in their experimental planning, including for
sample size calculation.

In summary, our data underlines the concept that the placenta is a sexual dimorphic
organ with gonosomal genes strongly contributing to the transcriptome signature of the pla-
centa. Future studies are needed to clarify which adjustments to a pathological pregnancy
are sex-specific and which are not. Furthermore, the role of epigenetic alterations in the
placenta as the result of exposure to the diabetic milieu in pregnancy should be explored.

4. Materials and Methods
4.1. Study Population and Sample Collection

The placenta samples were collected between 2001–2013 at the Oslo University Hos-
pital, Norway as a part of the Oslo Pregnancy Biobank. The study was approved by
the Regional Committee of Medical Research Ethics in South East Norway (Oslo Preg-
nancy Biobank REK: 2010/1850/REK South East C). The population used in this study
includes 77 placenta samples from women with either healthy or complicated pregnancy.
The set consists of 29 healthy controls (CTL), 12 women with gestational diabetes (GDM),
17 women with type I diabetes mellitus (DM1) and three women with type II diabetes mel-
litus (DM2). The DM patients were grouped according to the World Health Organization
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criteria [53,54]. PE was diagnosed on the basis of new-onset hypertension (>140/90 mmHg)
and proteinuria during pregnancy [55]. A written informed consent was provided by
all patients.

The placenta was delivered following caesarean section as previously described [56,57].
Briefly, following the delivery of the baby, 3–5 IU oxytocin was given to the mother in-
travenously. The placenta was separated spontaneously from the uterine wall and gently
removed. Placental plus umbilical cord weight was noted. The placental villous biopsies
were taken from macroscopically normal-appearing cotyledons, avoiding the decidual layer
as previously described [54,58]. After collection, tissue samples were immediately frozen
and stored at −80 ◦C until further analyzed. Blood sample biochemistry, blood pressure
and BMI were analyzed as previously described [59]. The newborn weight percentiles were
calculated according to Norwegian fetal growth curves as previously described [60].

4.2. RNA Isolation

RNA was isolated from 77 placenta samples using Qiagen RNeasy Kit (Qiagen).
After homogenization of the placental tissue sample, the RNA extraction was performed
following the manufacturer’s protocol. Only 160 µL of the watery phase was combined
with an equal amount of 70% ethanol and loaded onto the RNeasy Mini Column. The
RNA was eluted with 40 µL RNase-free water. The RNA concentration, size range and
quality were measured using Agilent Bioanalyser 2100, Eukaryote Total RNA Nano Series
II according to the manufacturer’s protocol (Agilent RNA 6000 Nano Kit Guide). A Qubit
Fluorometric Quantitation Assay was used to validate RNA concentration. Samples used
for RNA sequencing data analysis had a mean RIN of 5.1 (±1.09 SD).

4.3. RNA Sequencing

The Illumina TruSeq stranded total RNA Library Prep Kit was used for library prepa-
ration and RNA samples were diluted in water to 1000 ng/µL. The sequencing was done
on the Illumina HiSeq4000 system at the Scientific Genomics Platforms at the Max Delbrück
Centre for Molecular Medicine, Berlin. A loading concentration of 200 pM, paired-end
run-type mode and a read length of 75 bp was used.

4.4. Sequencing Data Processing

Sequencing reads were aligned to the human genome (GRCh38) using STAR (v2.6.1a,
Dobin et al., USA) [61]. Gene expression was quantified using featureCounts (v1.6.3,
online available at www.bioconductor.org, Liao et al., USA) [62] and the Gencode v25
reference, including non-coding genes. We then used DESeq2 (v1.18.1, online available
at www.bioconductor.org, Love et al., USA, DE) [15] to detect differentially expressed
genes for comparisons between groups (DM/CTL/PE) and subgroups (DM1/DM2/GDM
with and without PE), using fetal sex as a covariate. Gene-set enrichment on estimated
log2-fold change values was performed using tmod [63] and Hallmark gene sets from
MSigDB (version 7, Broad institute, San Diego, CA, USA). For the principal component
analysis (PCA) we used regularized log2-transformed counts for the top 5000 variable genes.
Gene-set enrichment on PC gene scores was performed using tmod [63] and Hallmark
and positional gene sets from MSigDB (version 7, Broad institute, San Diego, CA, USA).
We used random forest regression with the randomForest package v4.7-14 [64] to infer
the contribution of each clinical parameter to the principal components of the analysis,
imputing missing values with the roughfix method.

4.5. Statistics

The sequencing data was statistically analyzed using R software (v3.4.4, R core team,
online available www.r-project.org), SPSS (v1.2.0, IBM, USA), GraphPad Prism (v6, Graph-
Pad Software, US) and Microsoft Excel (v2211, Microsoft 365, USA). Clinical parameters are
displayed as mean ± standard deviation or a percentage. Group differences were tested
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with one-way ANOVA with Sidak’s multiple comparisons, adjusted p-values are indicated
and significant when p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https://
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