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Table S1: Cell lines used in the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell line Age (yrs)       Mutation Gender Status Disease severity  

H1    8 N/A Male Healthy child N/A 

H2    8 N/A Female Healthy child N/A 

H3    65 N/A Female Healthy adult N/A 

H4    36 N/A Male Healthy adult N/A 

P1    12 p.E172X and p.G195V Male Child patient    Severe developmental regression[S1] 

P2    10 p.Y173X Male Child patient Severe developmental regression[S2] 

P3    21 p.R188X Male Adult patient Severe developmental regression[S1,2] 

P4     3 p.A708Fs59 Male Child patient Mild developmental delay[S2] 



          

 

Figure S1: Comparison of IRF2BPL protein expression between NEDAMSS and healthy fibroblasts (A) 

and (B) show IRF2BPL expression levels of healthy and NEDAMSS fibroblasts by western blot and  

immunocytochemistry respectively. Only adult patient P3, shows approximately 50% lower expression 

compared to healthy lines. IRF2BPL protein smears are faintly seen in the cytoplasm of patient fibroblasts. 

Yellow dotted rectangles represent the merged image of  DAPI and IRF2BPL stained cells seen in the corner 

white boxes (dimensions of image 40 µm x 50 µm) of each fibroblast cell line. ANOVA followed by Dunnett’s 

multiple comparison test between the mean of the controls and the mean of each line was computed to derive 

the P value (p), * = p <0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Scale bar = 50µm. 

 

 

 

 

 



  

 

 



 

Figure S2: NEDAMSS patient neurons exhibit variable phenotype. Fibroblasts were directly converted to 

neurons (iNs) using seven small molecules: VPA, CHIR99021, repsox, forskolin, SP600125, GO6983 and Y-

27632 (A) Flourescent microscope imaging at 40X magnification shows directly converted iNs from H1 

fibroblasts express neuron specific markers Tuj1 and MAP2 on day 7. (B) Confocal two-dimensional imaging 

(63X/1.4 Oil magnification) shows IRF2BPL protein present as faint smears in the cytoplasm of Tuj1+ day 7 

patient iNs in comparison to healthy iNs. White arrows indicate the protein smears. A representative image 

was selected for each line from three independent culture replicates (C) Western blot of IRF2BPL expression 

levels in healthy and patient iNs reveals the most significant loss of protein in line P3. Protein lysates from 

three replicates were tested (D) Neuronal conversion rate (% Tuj1 positive cells over total DAPI stained cells) 

and their (E) neurite length on day 7 indicates a range of phenotypes among NEDAMSS patient iNs, with 

patient P3 exhibiting significantly lower conversion rate and patients P1 and P3 displaying shorter neurite 

length. A total of 15 fields captured at 20X magnification from three differentiation experiments was analyzed 

by using ImageJ software. ANOVA followed by Dunnett’s multiple comparison test between the mean of the 

controls and the mean of each line was computed to derive the P value (p), * = p <0.05, ** = p < 0.01, *** = p < 

0.001, **** = p < 0.0001.  Scale bar for (a) 50µm and for (b) 20µm. 

 

 

 

 

 

 



       
Figure S3: Characterization of differentiated astrocytes (iAs) from healthy and patient iNPCs. Healthy 

and NEDAMSS patient iAs are positive for astrocyte-specific markers GFAP and CD44. Patient iAs exhibit an 

activated phenotype compared to healthy iAs. Images from three independent experiments were captured at 

40X magnification with Nikon Eclipse Ti2-E microscope. White arrows indicate morphological differences in 

NEDAMSS patient iAs compared to healthy cell lines. Scale bar = 50µm. 

 

 



 

Figure S4: SNP genotyping analysis to detect the presence of mutant mRNA in patients. RNA from 

differentiated iAs from healthy lines (H1 and H3) and NEDAMSS patients (P1, P2, P3 and P4) was extracted 

and transcribed to cDNA. Customized SNP genotyping assay was conducted to detect the presence of the 

mutated and wildtype IRF2BPL mRNA in (A) P1 (c.514G>T and c.584G>T) (B) P2 (c.519C>G) (C) P3 

(c.562C>T) and (D) P4 (c.2122delG) compared to healthy controls. Two different cell passages from each 

patient and control were used for the SNP analysis. The assay was repeated three times. 

 

 



 

Figure S5: Overexpression of mutant IRF2BPL protein dimerizes with full length (FL) IRF2BPL and 

causes sequestration of the protein to the cytoplasm in HEK293s and in wildtype astrocyte line H1. (A) 

Schematic of constructs expressing N-terminal HA-tagged truncated IRF2BPL proteins (HA-CMV-P2 and HA-

CMV-P3). These constructs were transfected into HEK293s and pelleted down for HA pull down assay after 72 

hours. HA elute blot confirms that FL-IRF2BPL (white, anti-IRF2BPL) and HA-tagged truncated IRF2BPL P2 or 

P3 (green, anti-HA) can bind to each other, as seen in lanes 2 and 3. (B) Confocal imaging indicates mis-

localization of FL-IRF2BPL to the cytoplasm of HEK293 cells transfected with the constructs. White arrows 

point to FL-IRF2BPL protein mislocalized to the cytoplasm. Two-dimensional images were captured at 63X/1.4 

Oil magnification covering 9 random fields from three independent replicates. (C) Healthy H1 iAs was 

transduced with lenti-virus (LV) expressing FL-IRF2BPL or the patient-derived truncated proteins for 4 days 

and pelleted down for western blot. LV-FL and LV-P4 showed higher levels of total IRF2BPL protein 



expression compared to un-transduced (UT) astrocytes. Fractionation studies conducted on the same pellets 

revealed lower levels of IRF2BPL in the (D) nuclear fraction (normalized to nuclear marker H3) for iAs 

transduced with LV-P1, LV-P2 and LV-P3 and higher levels in the (E) cytoplasm fraction (normalized to 

cytoplasmic marker β-Tubulin), which further confirms sequestration of the full length to the cytoplasm by 

mutant proteins. All experiments were conducted with a minimum of three independent culture repeats. 

Unpaired t-test was conducted between un-transduced (UT) and each LV condition to derive the P value (p), * 

= p <0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, ns = not significant.  Scale bar = 50µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

Figure S6: CuATSM does not impact IRF2BPL expression levels or sequestration of the protein in 

patients. (A) Treatment with CuATSM does not change the overall expression of IRF2BPL in heathy and 

patient iAs. (B) Nuclear and (C) cytoplasmic fractions do not show any difference with drug treatment. Three 

independent culture replicates were used for the western blot. Unpaired t-test was conducted between 

untreated and treated groups to compute p value. ns= not significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S7: Knockdown of IRF2BPL protein by lentivirus expressing shRNA in H1 iAs. (A) H1 iAs was 

transduced with LV-RFP and LV-sh29 (expressing RFP and shRNA against IRF2BPL respectively) at an MOI 

of 10 and pelleted down after 4 days to assess the knockdown of protein by western blot. Experiment was 

repeated three times. Unpaired t-test was conducted between un-transduced (UT) iAs and LV-sh29 transduced 

iAs to compute P value (p). ** p<0.01. (B) Schematic of coculture assay depicts seeding of lentivirus (LV) 

transduced iAs with GFP+ mouse neurons. On day 2, CuATSM (1 µM) or DMSO was added to iAs, 5 hours 

before coculture with neurons. Illustration was created by using biorender.com.  

 

 

 

 

 

 



       

Figure S8: Condition media of NEDAMSS iAs has no effect on neuron viability. Control and patient iAs 

were seeded in triplicates in a 96 well plate (day 0) and the following day (day 1) the astrocyte media was 

replaced with neuron media. On day 1, GFP+ mouse neurons were seeded in triplicates in poly-lysine and 

laminin coated 96 well plate with fresh neuron media. For the next two days (day 2 and day 3), media of the 

neurons was replaced with 60% condition neuron media (CM) from each iAs cell line. Neg Ctl wells were 

replaced with fresh neuron media instead of CM. (A) Representative images of GFP+ mouse neurons (shown 

in black) following 48 hours in CM (day 4). (B) Quantification of neuronal survival on day 4 shows no significant 

loss of neuronal survival with patient iAs condition media compared to controls. Data was normalized to 

average neuronal survival of healthy controls and represents 3 independent culture repeats. ANOVA followed 

by Dunnett’s multiple comparison test between the mean of the controls and the mean of each line was 

computed to derive the P value (p), ns= not significant. Scale bar= 200µm. 

 



 

 

 

  

Figure S9: Mitochondrial COXIV expression remains intact in NEDAMSS iAs but the oxygen 

consumption rate shows elevated levels. (A) Differentiated iAs from healthy controls and patients were 

pelleted down after 5 days to quantify the expression levels of COXIV, a mitochondrial marker. ANOVA 

followed by Dunnett’s multiple comparison test between the mean of the controls and the mean of each line 

was computed to derive the P value (p), ns= not significant, (B) Oxygen consumption rate (OCR) of iAs 

computed from Seahorse ATP rate assay with and without treatment with CuATSM. Experiment was repeated 

with three independent culture replicates. 

 

 

 

 

 

 

 

 

 



 

Table S3: Thirty-seven common differentially expressed genes in patient iAs. [Reference] 

 

 

Log 2 FC 

 

P Adjusted 

 

Neuronal Function, Growth, Development, Support, 
Neurological Diseases 

 

Mitochondria, Metabolism, Oxidation, Apoptosis 

REG3G -8.3000 0.03787  [S3,4] 

LINC01593 -5.2000 0.01323   

SSTR2 -4.2600 0.01394 
[S5-7] [S7-9] 

ABCA8 -3.8000 0.00893 
[S10,11]  

ANKS1B -3.6400 0.00563 
[S12-18]  

LINC00639 -3.5900 0.00978   

CADPS -3.1400 0.00008 
[S19-22]  

EGR2 -3.1400 0.01323 
[S23-28] [S28,29] 

UGT1A7 -3.0300 0.00281 
[S30]  

LMOD1 -2.7100 0.00363   

AC138305.1 -2.2100 0.00746   

FAM71F1 -2.0700 0.02580   

KLF2 -1.6100 0.02705 
[S31-33] [S34-36] 

STK32C -1.2900 0.02462 
[S37-39]  

SEMA4G -1.0400 0.00056 
[S40-43]  

MOCS1 -1.0100 0.01414 
[S44-47] [S48,49] 

GRIP2 -0.6800 0.04881 
[S50-52]  

NUDT18 -0.6300 0.04849   

ADGRF5 6.4800 0.00746   

GREB1L 5.2900 0.02536 
[S53,54]  

ADGRV1 4.7600 0.00019 
[S55-58]  

CDSN 4.6800 0.03052   

NLRP2 4.6100 0.02821 
[S59,60]  

NRG2 4.4300 0.03979 
[S61-64]  

GLDC 4.2600 0.00746 
[S65,66]  

CPPED1 3.0400 0.00069   

PHACTR1 2.8500 0.02536 
[S67-69]  

C6orf141 2.7700 0.00007   

ZNF469 2.3700 0.03713   

TNFAIP8 2.2900 0.02705  [S70-72] 

DMKN 1.7300 0.03052   

EPB41L4B 1.5200 0.03713   

AKT3 1.4700 0.03713 
[S73-76] [S77,78] 

]PLCXD2 1.4600 0.03052   

BTBD3 1.1100 0.04881 
[S79,80]  

UBASH3B 1.0300 0.04013   

CYP4V2 0.9300 0.04881   

 



 

 

 

Figure S10: Overexpression of human IRF2BPL and patient-related truncation in Drosophila causes 

mislocalization of full-length IRF2BPL and causes pupal lethality. (A) Overexpression of UAS-IRF2BPL 

alone by nubbin-GAL4 driver, is primarily localized to nucleus in the wing pouch of Drosophila (anti-IRF2BPL in 

green), whereas UAS-IRF2BPLp.E172X::HA (P1::HA) alone is found mislocalized to the cytoplasm (anti-HA in 

green). When both the constructs are co-expressed, the full-length IRF2BPL is seen mislocalized to the 

cytoplasm (anti-IRF2BPL in green). ATP5a in red is a mitochondrial marker used.  Scale bar = 2µm. (B) 

Overexpression of UAS-IRF2BPL in glia using Repo-GAL4 at 29°C causes pupal lethality. Overexpression of 

UAS-IRF2BPLp.E172X::HA alone leads to viable adults, however co-expression of full-length UAS-IRF2BPL 

and truncated UAS-IRF2BPLp.E172X::HA lead to larval and pupal lethality. These data indicate that there may 

be a toxic effect when both full-length and truncated proteins are expressed.    
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Table S5: List of primers used for mutagenesis 

 

Construct       Forward primer (5’-3’)       Reverse primer (5’-3’) 

 
pCDNA-HA-P1 
 
pCDNA-HA-P2 
 
pCDNA-HA-P3 
 
UAS-P1::HA 

 
GCCACCATGTACCCATACG 
 
GCCACCATGTACCCATACG 
 
GCCACCATGTACCCATACG 
 
GACCCAGCTTTCTTGTACAAAGTTG  

 
CTAGAAGCGGCTGCGCTGTTCCA 
 
CTACTCGAAGCGGCTGCGCTGTT 
 
TCACGCGGTGTGGCTGCTGCTT 
 
GAAGCGGCTGCGCTGTTC  

   

 

Table S6: List of primers used for quantitative PCR in the study 

 

 

Gene       Forward primer (5’-3’)       Reverse primer (5’-3’) 

 
SSTR2 
 
ERG2 
 
AKT3 
 
NGR2 
 

 
CTGTGTACCAAGCCCCAGAT 
 
GTGACCATCTTTCCCAATGC 
 
CGGAAAGATTGTGTACCGTGATC 

 
CAGAAGAGGGTCCTGACCATCA 

 
GATGATCACCATGGCTGTGT 
 
TTGCCCATGTAAGTGAAGGTC 
 
CTTCATGGTGGCTGCATCTGTG 
 
GAGGTGGTTGTGCATCTGCTTC 
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