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SUMMARY
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe COVID-19
in some patients and mild COVID-19 in others. Dysfunctional innate immune responses have been
identified to contribute to COVID-19 severity, but the key regulators are still unknown. Here, we present
an integrative single-cell multi-omics analysis of peripheral blood mononuclear cells from hospitalized
and convalescent COVID-19 patients. In classical monocytes, we identified genes that were potentially
regulated by differential chromatin accessibility. Then, sub-clustering and motif-enrichment analyses
revealed disease condition-specific regulation by transcription factors and their targets, including an
interaction between C/EBPs and a long-noncoding RNA LUCAT1, which we validated through loss-of-
function experiments. Finally, we investigated genetic risk variants that exhibit allele-specific open chro-
matin (ASoC) in COVID-19 patients and identified a SNP rs6800484-C, which is associated with lower
expression of CCR2 and may contribute to higher viral loads and higher risk of COVID-19 hospitalization.
Altogether, our study highlights the diverse genetic and epigenetic regulators that contribute to
COVID-19.
Cell Genomics 3, 100232, February 8, 2023 ª 2022 The Authors. 1
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INTRODUCTION

COVID-19 is caused by severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2),1 and clinical symptoms of patients with

SARS-CoV-2 infection range from asymptomatic to severe

pneumonia and acute respiratory distress syndrome.2 Although

vaccines reduce the risk of major illness and mortality, the mo-

lecular mechanisms underlying the heterogeneous outcome in

disease presentation remain unclear.3

A number of studies have examined the complex interplay be-

tween peripheral blood leukocytes in COVID-19 and linked im-

mune activation and specific cell subsets to disease severity.4,5

The adaptive immune system is clearly linked to disease presen-

tation, because prominent lymphopenia is a hallmark of severe

disease.6 Alterations in T cell function have also been observed,

with T cells from severe patients showing increased signs of

migration to inflamed site and apoptosis7 and excessive or sub-

optimal CD4+ and CD8+ T cell responses detected in severe dis-

ease.8 The innate immune system has also been reported to be

dysregulated in severe disease, which is characterized by high

neutrophil counts,9 likely contributing to tissue damage and hy-

perinflammation, dysfunctional monocytes with low expression

of HLA-DR and interferon (IFN)-stimulated genes (ISGs),4 and

functionally impaired NK cells.10 Additionally, long noncoding

RNAs are reported to be involved in the regulation of antiviral im-

mune responses in COVID-19 and subsequent disease states.11

These studies have shed light on the detrimental immune

responses that contribute to immunopathology in severe

COVID-19.

In addition to studies of molecular signatures, several

genome-wide association studies (GWASs) of severe COVID-

19 have been performed.12–14 These revealed the impact of ge-

netic variations on disease severity, improving our understand-

ing of COVID-19 pathology. Moreover, although an epigenetic

study on individuals convalescing from COVID-19 revealed re-

modeling of the chromatin accessibility landscape that estab-

lished immunological memory,15 a recent study shows the im-

mune responses and cytokine production capacity generally

recover without major sequelae after COVID-19.16 More impor-

tantly, because the majority of these risk factors were identified

in noncoding regions, they are predicted to have functional ef-

fects on gene expression via transcription factor (TF) binding

and interaction with regulatory elements.17 These regulatory ef-

fects are highly cell type specific18,19 and are not yet understood

in relation to COVID-19 risk factors.

Bridging the existing gaps requires an integrative approach

that connects genetic variations, epigenetic factors, and immune

responses at the cellular level.20 For this reason, we captured

both the transcriptome and epigenome of individual peripheral

blood mononuclear cells (PBMCs), as well as genome-wide

genotypes, from hospitalized and convalescent COVID-19

samples. We identified C/EBP-motif-enriched open chromatin

profiles in classical monocytes and illustrated their interaction

with the immune-regulatory LUCAT1 RNA locus using single-

cell omics and loss-of-function experiments. Additionally, we

demonstrate that COVID-19 GWAS risk variants contribute to

the disease by regulating chromatin accessibility through

allele-specific open chromatin (ASoC) effects. Our ASoC anal-
2 Cell Genomics 3, 100232, February 8, 2023
ysis reveals that the COVID-19 GWAS risk SNP rs6800484 is

associated with the expression of CCR2 via chromatin accessi-

bility of an enhancer in monocytes. Together, these data indicate

that altered chromatin accessibility and ASoC both result in

impaired epigenetic regulation that contributes to COVID-19

pathogenesis, while the complex co-action of these factors

could lead to heterogeneous and individualized disease out-

comes. Our study further provides a broad resource for exploring

cell-type-specific genetic and epigenetic regulatory effects that

contribute to COVID-19.

RESULTS

Study overview and patient population
Using single-cell RNAsequencing (scRNA-seq), single-cell assay

for transposase-accessible chromatin using sequencing (scA-

TAC-seq), and genotype array, we examined the transcriptomics

and epigenomics of PBMCs, as well as individual genotypes,

across 46 hospitalized COVID-19 and 32 convalescent samples

from 48 individuals, including 20 individuals from whom we

have samples from multiple time points (Figures 1A, 1B, and

S1). Hospitalized COVID-19 patients were further allocated

to mild or severe patient categories using World Health

Organization (WHO) scores (severe: 5–7,mild: 3–4). Clinical char-

acteristics of all study participants are summarized in Table S1.

In total, after quality control, we obtained scRNA-seq data for

165,054 cells from 64 samples (n = 37 active, n = 27 convalescent

samples) taken from 41 individuals and scATAC-seq for 46,690

cells from 49 samples (n = 25 hospitalized, n = 24 convalescent

samples) taken from 39 individuals (Figure S2). We characterized

these cells with unsupervised clustering and, based on themarker

genes or gene activity scores in each cluster (Table S2), identified

10majorcell types in thescRNA-seqdatasetand8majorcell types

in the scATAC-seq dataset (Figures 1C, 1D, and S3). The relative

percentage of cell types in the PBMC fractions of each sample

reveals a higher abundance of classical monocytes and a lower

abundance of non-classical monocytes, as well as CD4+ and

CD8+ T cells, in hospitalized COVID-19 compared with convales-

cent patients in both datasets (Figures 1E and S4A, Dirichlet

regression test, false discovery rate [FDR] adjusted p < 0.05), in

line with a recent publication.21 Additionally, a high proportion of

CD163+ classical monocytes was found in five hospitalized

COVID-19 patients (four severe and one mild) exclusively in the

scRNA-seq dataset (Figures 1C and 1E).

Severe and mild COVID-19 patients show different
magnitudes of transcriptional responses
Differential expression (DE) tests per cell type between hospital-

ized and convalescent samples revealed that a large number

of differentially expressed genes (DE-Gs) were in NK cells,

classical monocytes, and non-classical monocytes (Table S3;

Figure S4B), suggesting that these cell types respond most

prominently during COVID-19. Within these cell types, a large

proportion of DE-Gs were shared between the mild versus

convalescent and the severe versus convalescent comparison,

especially for classical monocytes (Figure 1F). This suggests

that similar transcriptional changes occur in mild and severe

COVID-19, and that the difference between mild and severe
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Figure 1. Study overview and single-cell multi-omics

(A) Workflow of the study. Sample numbers in each data layer and disease condition are indicated.

(B) Schematic overview of all patients enrolled in the study. Sampling dataset, disease conditions, and convalescent days are indicated.

(C and D) UMAP showing the cell distribution of hospitalized and convalescent conditions in scRNA-seq (C) and in scATAC-seq (D); see also Figure S3 and

Table S2 for annotation details.

(E) Boxplots showing cell proportion of hospitalized and convalescent samples in main cell types of scRNA-seq and scATAC-seq.

(F) Scatterplots showing the log-fold-change (log2FC) of DE-Gs identified in monocytes between the comparison of severe versus convalescent and the

comparison of mild versus convalescent. More details on DE-Gs can be found in Figure S4 and Table S3.

(G) Scatterplots showing the log2FC of DE-Gs and log2FC of differentially accessible peaks (DAPs) identified in classical monocytes between comparison of

severe versus convalescent and comparison of mild versus convalescent. Details of the matched DE-Gs and DAPs can be found in Table S4.

See also Figure S1 and Table S1.
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COVID-19 is due to a difference in the magnitude of the

response, rather than different transcriptional programs. For

example, we observed several ISGs, such as IFI6, IFI27, IFI30,

and IFI44L, to be significantly upregulated in both severe and

mild samples compared with convalescent samples, whereas

a significantly higher expression of IFI27 and IFITM3 was de-

tected in mild patients compared with severe patients, reminis-

cent of the results of a previous study.4 Gene-enrichment

analysis using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway database showed a clear upregulation of

oxidative phosphorylation, across different immune cells, in

both mild and severe COVID-19, as well as an enrichment of im-

mune-related pathways, such as antigen processing and pre-

sentation and phagosome (Figure S4C).

Differential open chromatin accessibility contributes to
transcriptional differences between hospitalized and
convalescent COVID-19 patients
To reveal epigenetic alterations at the level of chromatin accessi-

bility in COVID-19, we explored open chromatin signatures of

PBMCs across the different disease conditions. Among all 49

samples, 15% of the 157,330 reproducible peaks are in promoter

regions, while 32% and 45% are located in intergenic and intronic

regions, respectively. When comparing across cell types and

conditions, we observed no general enrichment of cell-type- or

condition-specific peaks in the promoter or enhancer region (Fig-

ure S5A).We noticed that among all cell types, the number of open

chromatin peaks is highest in classical monocytes, where it is

significantly higher in samples from hospitalized than from conva-

lescent COVID-19 patients (chi-square test, p < 2.22 3 10�16).

When comparing peaks fromone cell typewith all other cell types,

a large number of cell-type-specific peakswere identified. This in-

cludes 17,105 peaks specific for classical and/or non-classical

monocytes (FDR-adjusted p < 0.05 and log-fold-change

[log2FC] > 0.5, compared with other cell types), which comprise

10.9% of all peaks in our data. Next, we investigated the condi-

tion-specific peaks by comparing open chromatin peaks between

disease conditions (hospitalized versus convalescent, mild versus

convalescent, and severe versus convalescent) within each cell

type. The lack of genome-wide significant condition-specific

peaks (FDR-adjusted p < 0.05) suggests that cell types contribute

more than disease conditions to variation in open chromatin

accessibility.

To test the regulatory impact of open chromatin marks on

transcriptional responses, we integrated the significant DE-Gs

(Bonferroni-corrected p < 0.05) described above with the nominal

differential peaks (p < 0.05) through peak-to-gene linkages,

i.e., correlating the gene expression from scRNA-seq and peak

accessibility from scATAC-seq (Table S4; for details, see STAR

Methods). Interestingly, we observed an enrichment of open

chromatin peaks that associated DE-Gs in classical monocytes

in both severe and mild patients (Fisher exact test, FDR-adjusted

p = 6.03 3 10�4 and 4.08 3 10�4, respectively), which includes

in total 977 out of 2,367 (41.3%) genes that are upregulated in

either severe or mild comparing with convalescent patients

(Figures 1G and S5B). These results illustrate that there is a

large overlap of changes in chromatin accessibility and gene

expression in the monocyte compartment during COVID-19, sug-
4 Cell Genomics 3, 100232, February 8, 2023
gesting the underlying epigenetic regulation on transcriptional

responses.

Motif enrichment reveals different transcriptional
regulation between hospitalized and convalescent
COVID-19 in classical monocytes
To further characterize the epigenetic regulation of gene expres-

sion in COVID-19, we performed TF motif-enrichment analysis

for the open chromatin peaks identified in each cell type and

condition. In total, we found 60 TFs with significantly enriched

motifs among the identified peaks. This included SPI1 (PU.1),

JUN/FOS, and C/EBP motifs, which were enriched in classical

monocytes in both hospitalized and convalescent COVID-19 pa-

tients. Of note, C/EBPmotifs (CEBPA,CEBPB,CEBPD,CEBPE,

and CEBPG) are even more significantly enriched in hospitalized

patients than in convalescent patients (Figure 2A). Given their

important role in monocyte differentiation and pro-inflammatory

activation,22,23 we further investigated the interaction between

these TFs and their targets, which were identified based on the

genes with motif-binding peaks in classical monocytes. In total,

4,681 genes were associated with peaks harboring either SPI1,

JUN/FOS, or C/EBPmotifs, of which 1,514 were also DE-Gs be-

tween hospitalized and convalescent COVID-19 in classical

monocytes (Table S5).

Interestingly, we found that the long noncoding RNA LUCAT1

was associated with monocyte-specific accessible peaks

harboringSPI1, JUN/FOS, andC/EBPmotifs (Figure2B), suggest-

ing a monocyte-specific influence of the SPI1, JUN/FOS, and

C/EBP TFs onLUCAT1. Because LUCAT1haspreviously been re-

ported as a negative regulator of IFN responses,24 we determined

the co-expressionpatternsof LUCAT1, the TFs, and the twohighly

expressed ISGs, IFI27and IFI30, inclassicalmonocytes.Asshown

in Figure 2C, the expression of LUCAT1 is positively correlated

with the expression of SPI1, JUN/FOS, and CEBPD/CEBPE TFs

but negatively correlated with IFI27 and IFI30 expression in active

COVID-19 patients. A similar co-expression correlation was

observed in convalescent individuals, although the correlations

between LUCAT1 and CEBPE or IFI30 were no longer significant

(FigureS5C). Furthermore, in theDEcomparisonbetweendisease

conditions,SPI1 and LUCAT1 showed significantly higher expres-

sion in severe and mild samples compared with convalescent

samples in classical monocytes (Bonferroni-corrected p < 0.05;

Table S3; Figure 2C), whereasCEBPD showed significantly higher

expression in severe samples compared with both mild and

convalescent ones (Bonferroni-corrected p=3.643 10�10 [severe

versusmild] and 4.153 10�43 [severe versus convalescent]). IFI27

and IFI30, as mentioned above, were significantly upregulated

in mild samples compared with severe samples (Bonferroni-

corrected p = 9.23 3 10�71 [IFI27] and 3.00 3 10�15 [IFI30];

Table S3; Figure 2C). Together, these findings indicate a complex

interaction of these genes at the expression level through epige-

netic regulation that results in their altered expression under

different disease conditions.

To validate the interactions between LUCAT1 and C/EBPs in

monocytes of COVID-19 patients, we measured the expression

of LUCAT1 in isolatedmonocytes after inhibitingC/EBP using ce-

lastrol and betulinic acid (Figure 2D). In unstimulated monocytes,

theC/EBP inhibitorsenhancedLUCAT1expressionat lowerdoses
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Figure 2. TF regulation via motifs in the open chromatin peaks

(A) Heatmap showing the significantly enriched TF motifs in the open chromatin peaks of each cell type and condition. Colors represent �log10 p value of

enrichment. Rows are significantly enriched TF motifs.

(B) Track plots showing the peaks around the LUCAT1 gene. Blue lines indicate inferred linkages between peaks and LUCAT1 expression.

(C) Heatmap showing the expression correlation of LUCAT1, IFI27, and IFI30 and TF genes in classical monocytes of hospitalized patients with a dot plot showing

the expression of these genes in different conditions.

(D) Boxplots showing the molecular responses after knockdown of SPI1 and LUCAT1 or inhibition of C/EBP proteins.

(E) Schematic plot summarizing the potential regulating program in LUCAT1, SPI1, and C/EBP, as well as ISG, and COVID-19 severity.

See also Figure S5 and Table S5.
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but suppressed LUCAT1 expression at higher doses. In mono-

cytes activated with a cocktail of interleukin (IL)-1a, IFNa, and

3p-hairpin RNA (viral mimic), both inhibitors suppressed LUCAT1

expression. In addition, in a stable LUCAT1 knockdownmonocyte

cell line, we observed increased CEBPE expression (Figure 2D),

which indicates strong negative feedback of LUCAT1 to upstream

regulatoryC/EBP TFs. Because LUCAT1was previously reported

to suppress inflammatory and ISGs,24 and ISGs are suppressed in

severe COVID-19 patients,4 we speculate that the interaction of

LUCAT1, SPI1, and C/EBPs inhibits ISG responses, resulting in a

more severe condition in COVID-19 patients (Figure 2E).

Single-cell RNA and ATAC profiles revealed altered
C/EBP regulation in a monocyte subset associated with
oxygen supply of COVID-19 patients
To further investigate the heterogeneity of gene regulation in

the monocyte compartment of COVID-19 patients, we
explored disease condition-specific subsets. Subsampling

the monocytes and sub-clustering them revealed eight tran-

scriptionally distinct cell clusters (R1–R8; Figure 3A), from

which R3, R4, and R8 were largely contributed by hospitalized

COVID-19 patients. Through the DE tests comparing expres-

sion of gene between one cluster with the rest of the clusters

and visualization of selected marker gene expression by

Uniform Manifold Approximation and Projection (UMAP)

(Table S6; Figure 3B), we identified R1 as CD14�CD16+

non-classical monocytes and R2–R8 as CD14+CD16� clas-

sical monocytes. In the classical monocytes, CEBPD and

SPI1 TFs were expressed similarly among all clusters. Howev-

er, a more distinctive expression pattern was observed for the

previously mentioned TF target genes. LUCAT1 was signifi-

cantly higher expressed in R2 and R8 compared with the other

clusters (Bonferroni-corrected p < 2.22 3 10�16; Table S6),

while ISGs such as IFI27, IFI30, and IFITM3 showed
Cell Genomics 3, 100232, February 8, 2023 5
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Figure 3. RNA and ATAC profiles in monocyte sub-clusters in hospitalized and convalescent COVID-19 patients

(A) UMAP showing the cell distribution of hospitalized and convalescent conditions in monocyte sub-clusters of scRNA-seq.

(B) Expression of marker genes in monocyte sub-clusters. See also Table S6 for all the markers.

(C) Violin plots showing the AUCell-based gene signature scores for each sub-cluster from HLA-DRloS100Ahi monocytes in PBMCs (Schulte-Schrepping et al.4)

and infiltrating monocytes (FCN1-Mono) in bronchoalveolar lavage (BAL) fluid (Wendisch et al.25).

(D) UMAP showing the monocyte sub-clusters of scATAC-seq.

(E) Dot plots and heatmap showing the expression and imputed activity scores of shared marker genes identified in monocyte sub-clusters of scRNA-seq and

scATAC-seq, respectively.

(F) Boxplots showing the cell proportion of severe, mild, and convalescent patients, as well as oxygen supply needed, not needed, and convalescent patients in

each monocytes sub-cluster of scRNA-seq. See the cell distributions in Figure S8.

(G) Heatmap showing the significantly enriched TF motifs in the open chromatin peaks of each monocytes sub-cluster; TFs that were also enriched as regulon in

R4 cluster cells by SCENIC (single-cell regulatory network inference and clustering) are marked with red asterisks.

See also Figures S6–S8 and Table S7.
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expression predominantly in the R3 cluster (Bonferroni-cor-

rected p < 2.22 3 10�16) (Figure 3B; Table S6).

To validate our findings, we compared our monocyte sub-clus-

terswith thepreviouslypublished transcriptionalmarkersofmono-

cytes from COVID-19 patients.4 By applying the AUCell scores

based on the top 30 marker genes from the PBMC datasets, we

confirmed that R1 is non-classical monocytes, whereas R2–R5

shouldbeclassicalmonocytes (FigureS6A). Additionally, we iden-

tified that the hospitalizedCOVID-19-specificR4andR8sub-clus-

ters were similar to HLA-DRloS100Ahi monocytes (Figure 3C),

which are previously found as dysfunctional CD14+ monocytes

in severe COVID-19 patients. Moreover, the ISG-predominated

R3 sub-cluster was also found similar to another reported severe

COVID-19 patient-specific HLA-DRloCD163hi monocyte (Fig-

ureS6A).4 In response toSARS-CoV-2 infection,circulatingmono-

cytes could be recruited to the lung tissue and participate in tissue

immune responses by further differentiating into macrophages.26

We therefore assessed the transcriptional similarity between the

monocyte sub-clusters and monocytes/macrophages reported

in bronchoalveolar lavage (BAL) fluid samples fromCOVID-19 pa-

tients.25 By applying AUCell scores again to the BAL dataset

markers, we identified that the hospitalized COVID-19-specific

R3 and R4 were similar to FCN1-Mono in BAL (Figure 3C), which

was reported25 as infiltrating monocytes that would later differen-

tiate towardmacrophages,whereas themacrophages themselves

were not identified in any of our clusters (Figure S6B). These

together suggest that both R3 and R4 sub-clusters were associ-

ated with COVID-19 severity and play an important role in the im-

mune responses by infiltrating to the patients’ lungs.

Next, we performed sub-clustering on themonocytes from the

scATAC-seq data. Unsupervised clustering revealed six epige-

netically distinct cell clusters (C1–C6; Figures 3D, S7A, and

S7B). Of these, the C4 cluster is specific to hospitalized

COVID-19 patients, and the C2 cluster is specific to convales-

cent patients. Through a multi-omics alignment of the transcrip-

tomic and epigenomic profiles across monocyte sub-clusters

(see STAR Methods for details), we confidently matched C1 to

R1 as non-classical monocytes, as well as C2 to R2 and C4 to

R4 as classical monocytes (with >90% of aligned cells matched;

Figures S7C and S7D). This can be confirmed by the shared

pattern between gene expression levels of marker genes and

estimated gene activity scores of the same marker genes based

on peak data (Table S6; Figure 3E).When comparing the cell pro-

portions across different disease conditions, the non-classical

monocytes (C1/R1) had a higher abundance in convalescent

COVID-19 patients (Figures 3F and S8A) that could be seen

even before sub-clustering (Figure 1F). More interestingly, the re-

maining classical monocytes displayed high heterogeneity of cell

proportions, with the C2/R2 and C4/R4 sub-clusters varying

dramatically across disease conditions. C2/R2, which expresses

LUCAT1 and harbors a strong antigen-presentation capacity

with high expression of MHC class II components (including

HLA-DQA and HLA-DPA), was largely contributed by convales-

cent patients (Figure 3F). In contrast, the C4/R4 cluster, which is

annotated as HLA-DRloS100Ahi monocytes and shows a reverse

expression pattern of MHC class II components and suppressed

expression of ISGs, is mainly contributed by hospitalized

COVID-19 patients (both mild and severe) and has a higher pro-
portion in patients requiring oxygen supply than in those without

(Figure 3F), suggesting a potential correlation between these

monocytes and impaired lung function in patients.

To disclose the epigenetic regulation that underpins the tran-

scriptional differences of these monocyte subsets, especially the

condition-specific ones, we performed TF motif enrichment for

marker peaks identified in each monocyte subset. The results

demonstrate a distinct pattern of enriched motifs in different sub-

sets. SPI1 is enriched in the convalescent-specific R2/C2 subset,

together with RUNX1/2, IRF4, STAT2, and BCL11 A/B, whereas

C/EBP motifs (CEBPA, CEBPB, CEBPD, CEBPG, and CEBPE)

are enriched in the hospitalized patient-specific R4/C4 subset,

together with an ATF4 motif (Figure 3G). From the scRNA-seq

data, we found that among these TFs, CEBPD, CEBPB, and

ATF4werealsowidelyexpressed inR4cells (FigureS8B). Through

an independent TF regulon enrichment analysis in R4 cluster

cells,27 we have confirmed that the identified C/EBPs and ATF4

were also high-confidently enriched TFs, together with IRF4,

FOS, JUNB, JUND, BACH1, etc. (red asterisks in Figure 3G; see

all enriched TFs in Table S7). This result indicates a shift of the reg-

ulatory elements between convalescent and hospitalized COVID-

19 patients. Additionally, the suppressed expression of IFI27 and

IFITM3 in R4 in comparison with R3 (Figure 3B) corresponds to

its matched C4 cluster, which was enriched with C/EBP motifs.

These results again suggest that altered TF motif accessibility

may contribute to the dysregulation of IFN responses in COVID-

19, and further indicate a potential correlation with the need for

oxygen supply of COVID-19 patients.

COVID-19 GWAS variants are overrepresented in open
chromatin regions of classical monocytes
PreviousGWASshave revealedanumberofgenomeregionsasso-

ciatedwithCOVID-19conditions. Therefore,we testedwhether the

identified GWAS hospitalization risk variants (‘‘Hospitalized covid

vs. population’’, release 6)14 have an impact on open chromatin

peaks in specific immune cell types. Our data reveal that these var-

iants aresignificantlyenriched inopenchromatinpeaksof classical

monocytes fromhospitalizedCOVID-19patients (Fisherexact test,

p=2.98310�12) andofCD4+Tcells fromconvalescent individuals

(Fisher exact test, p = 2.683 10�6) comparedwith the other condi-

tions and cell types. In classical monocytes, risk variants on chro-

mosomes (chr) 3, 12, 17, and21were found tobe located in several

open chromatin peaks that were highly accessible in hospitalized

patients (Figures 4A, 4B, andS9).When looking at thegenes linked

to the risk variant peaksmappedusing theaforementionedmethod

of peak-to-gene linkage (see STARMethods), we identified signif-

icantly elevated expression (Wilcoxon rank-sum test, Bonferroni-

corrected p < 0.05) of CCR1 and CCR2 (chr3), OAS3 (chr12), and

IFNAR1 and IFNGR2 (chr21) in hospitalized patients compared

with convalescent individuals in classical monocytes (Figure 4C).

These results suggest that several GWAS risk variants may impact

the expression of linked immune response genes through epige-

netic regulation.

ASoC analysis reveals epigenetic effects of genetic
variants
To further investigate the epigenetic effects of genetic variants,

we evaluated the ASoC, which represents the imbalance of
Cell Genomics 3, 100232, February 8, 2023 7
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Figure 4. GWAS risk variants associated with peaks and genes

(A) Schematic plot showing the potential regulatory role of a GWAS risk variant located in an open chromatin peak that is bound by the TF motif and associated

with gene expression.

(B) Heatmap showing chromatin accessibility of peaks detected with hospitalized COVID-19 risk variants. More details can be found in Figure S9.

(C) Dot plots showing the expression of DE-Gs associated with peaks from (B).
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chromatin accessibility between alleles, at heterozygous SNPs

by integrating scATAC-seq and SNP data from the same

individuals. In total, 292 and 86 ASoC SNPs were identified in

hospitalized and convalescent COVID-19 individuals, respec-

tively (FDR-adjusted p < 0.05; Figures 5A and S10A–S10C). Of

these identified ASoC SNPs, about 5%were shared by hospital-

ized and convalescent conditions, which is in contrast with the

fact that the majority of heterozygous SNPs (89.18%) available

for testing the ASoC effect were shared by participants between

conditions. This result suggests there is distinct allele-specific

regulation in open chromatin regions between hospitalized and

convalescent COVID-19 patients.

As shown in Figure 5B, the majority of ASoC SNPs were

located in enhancer (>25%) or promoter (>65%) regions, sug-

gesting that epigenetic regulations occur in regulatory DNA se-

quences. In whole-blood samples, more than 55% of ASoC

SNPs were reported to be associated with the expression of

nearby genes (expression quantitative trait loci or eQTL),28 which

indicates that these ASoC SNPs potentially affect gene expres-
8 Cell Genomics 3, 100232, February 8, 2023
sion by controlling allele-specific chromatin accessibility. In

addition, in our scRNA-seq analysis for about 10% of ASoC

SNPs, the nearby genes (of which promoters overlap with at

least one ASoC SNP) were identified to be differentially ex-

pressed in at least one cell type (i.e., cell-type-dependent DE-

Gs identified by comparisons between conditions). Further

enrichment analysis revealed an over-representation of ASoC

SNPs assigned to DE-Gs in COVID-19 patients (Fisher exact

test, FDR-adjusted p < 0.05; Figure 5C), suggesting that the ge-

netic risk variants have an impact on the transcriptional re-

sponses to SARS-CoV-2 infection through allele-specific chro-

matin accessibilities. Of note, we also observed that the ASoC

SNPs were enriched in enhancer regions in hospitalized patients

(Fisher exact test, p = 0.047), but not in the convalescent ones,

showing the alteration of transcriptional profiles/activities in hos-

pitalized COVID-19 patients compared with convalescent ones.

When zooming in on cell subsets, the ASoC SNPs we identi-

fied show significant over-representation in open chromatin re-

gions (Figure S10D) and TF binding sites (TFBSs) (Figure S10E).
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Figure 5. ASoC analysis reveals the epigenetic effect of COVID-19 GWAS variants

(A) Venn diagram of ASoC SNPs identified in six cell types from hospitalized and convalescent participants. ASoC SNPs were merged per disease condition.

ASoC SNPs identified in more than one cell type were counted once.

(B) Upset plot showing functional annotation of identified ASoC SNPs. Regulatory element annotations were determined based on 25-state models from the

Roadmap Epigenomics Project. ASoC SNPswere assigned to eQTL genes and DE genes based on significant variant-gene pairs (GTEx V8) and positions (25 kbp

up/downstream of ASoC SNPs), respectively. Numbers at the top of each bar indicate the exact number of ASoC SNPs belonging to the annotation or the gene

group.

(C) Bar plot showing the enrichment of ASoCs assigned to our DE-Gs. The x axis represents cell types, and the y axis represents odds ratio that ASoCs are

assigned to the DE-Gs (i.e., ASoC SNP is located in the promoter of the DEG). Color indicates disease conditions: red for hospitalized COVID-19 and blue for

convalescent COVID-19. The numbers on the bar are FDR-adjusted p values and number of ASoC SNPs assigned to DEG out of the number of ASoC SNPs

identified for the cell type.

(D) Heatmap of correlations between allelic imbalance and TFmotif disruption. For each ASoC SNP, the allelic imbalance was represented by log2(reference read

counts/alternative read counts), while the motif disruption was the difference between altScore and refScore by motifbreakR. Colors of the heatmap are

Spearman’s rho, and multiplication symbols (3) indicate significant correlations (FDR-adjusted p < 0.05).

(legend continued on next page)
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Given that the genetic variants can perturb TF binding affinities

by breaking the corresponding TF motifs, resulting in dysregula-

tion of target genes,29 we calculated motif disruption scores

(MDSs) for each ASoC SNP.30 We found that the allelic chro-

matin accessibilities were significantly correlated with MDSs

for several TF motifs in classical monocytes from hospitalized

COVID-19 patients (Spearman’s rank rho, FDR-adjusted

p < 0.05; Figure 5D), suggesting that ASoC SNPs can play regu-

latory roles by disrupting TF motifs (i.e., affecting TF binding

affinities).

ASoC of COVID-19 GWAS variants
Next, we intersected our ASoC SNPs with the above-mentioned

COVID-19 GWAS hospitalization risk variants.14 We found that

ASoC SNPs identified in classical monocytes from hospitalized

COVID-19 patients were also associated with COVID-19,

comparedwith randomlyselectedSNPswithmatchedminor allele

frequency (Figures 5E and S10G). Among them, rs6800484

(COVID-19 GWAS p = 6.58 3 10�9) showed an imbalance of

chromatin accessibility in classical monocytes in hospitalized

COVID-19 patients (binomial test, p < 0.05), but not in convales-

cent individuals (Figure 5F). Of note, this SNP is located in a clas-

sical monocyte-specific open chromatin peak that was annotated

as an EnhA1 enhancer (Roadmap Epigenomics Project)31 close to

the CCR gene family.

This observation led us to further explore this locus by

combining our results (ASoC SNPs, scRNA-seq, and scATAC-

seq) with publicly available data, including promoter capture

Hi-C of monocytes (PCHiCs),32 eQTL of whole-blood samples,33

and COVID-19 GWAS summary statistics.14 As shown in Fig-

ure 5G, we illustrated a potential regulatory program showing

the effect of this variant underlying the COVID-19 context. Spe-

cifically, the publicly available monocyte PCHiC data and our

peak-to-gene linkage analysis (see STAR Methods) suggest

that the expression of CCR2 is correlated with the regulatory el-

ements pinpointed by rs6800484 in classical monocytes from

hospitalized COVID-19 patients. In addition, rs6800484-C is

significantly associated with both COVID-19 (p = 6.58 3 10�9)

and decreased CCR2 expression (p = 4.293 10�13). Meanwhile,

in classical monocytes, homozygous risk allele (C/C) carriers

show significantly lower CCR2 levels compared with other

COVID-19 patients (Wilcoxon test, Bonferroni-corrected p =

3.2 3 10�3; Figure S10H), validating the inhibiting role of the

risk allele on CCR2 expression.

As summarized in Figure 5H, the COVID-19 risk allele

rs6800484-C identified in hospitalized patients is associated

with decreased chromatin accessibility of an enhancer at the lo-

cus, which further inhibits the CCR2 expression. Of note, a

recent study using a mouse-adapted SARS-CoV-2 strain has

shown that mice lacking Ccr2 demonstrate higher viral loads
(E) Q-Q plot of COVID-19 GWAS p values for identified ASoC SNPs. The y axis

cMono of hospitalized (red), convalescent COVID-19 (green) participants, and ra

(F) Allelic reads depth of ASoC SNP rs6800484 at the COVID-19-related CCR loc

(G) Integration of gene-to-peak link, single-cell ATAC-seq, promoter capture Hi-C

(H) Schematic plot showing the potential epigenetic and genetic regulating prog

(I) CCR2 expression in the differentiation trajectory of monocytes and macropha

<NA>, no valid estimation available. See also Figure S10.
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and increased lung viral dissemination.34 In addition, our

scRNA-seq data of classical monocytes confirms the impor-

tance of CCR2 because it was significantly upregulated in

classical monocytes both in hospitalized COVID-19 patients

(compared with convalescent ones, Bonferroni-corrected

p < 2.22 3 10�16) and the disease-related R4 sub-cluster

(compared with other monocyte sub-clusters, Bonferroni-cor-

rected p < 2.22 3 10�16). In the public BAL samples from

COVID-19 patients,25 CCR2 was also highly expressed in the

infiltrating monocytes that would later differentiate toward

macrophages (Figure 5I).

Another interesting example of potential regulation programs

for DPP9, a candidate gene for COVID-19 severity, is depicted

in Figures S10I–S10K. The DPP9 gene harbors SNPs associated

with COVID-19 (p < 53 10�8) and was prioritized as a candidate

gene that is involved in host-driven inflammatory lung injury in

severe patients.13 Also, this locus has been previously reported

to be associated with fibrotic idiopathic interstitial pneumo-

nias,35 which suggests the potential role of dipeptidylpeptidase

9 (the enzyme encoded by DPP9) in severe COVID-19 patients.

Moreover, early studies reported the enzyme is involved in anti-

viral signaling pathways,36 antigen presentation,37 and the acti-

vation of inflammasome.38 Taken together, these data depict

an epigenetic regulation effect of risk allele of DPP9 locus in

severe COVID-19 patients.

DISCUSSION

Both host response and genetic predisposition affect the course

and outcome of COVID-19, although the interplay between the

two is not yet fully understood. Our single-cell multi-omics study

has revealed numerous insights into the (epi)genetic mecha-

nisms that regulate immune cells in COVID-19. First, we

observed that COVID-19 has a pronounced effect on the tran-

scriptional signature of classical monocytes, which was shown

to be epigenetically regulated, and that the difference between

mild and severe COVID-19 is due to a difference in the magni-

tude of response rather than differing transcriptional programs.

Second, we depicted the regulatory properties of the long

noncoding RNA LUCAT1 on the C/EBPs TFs, linking it to

COVID-19 severity, and we experimentally validated the regula-

tory relationships. Finally, we identified a number of ASoC SNPs

with potential regulatory effects in hospitalized COVID-19

patients. Interestingly, among these ASoC SNPs, rs6800484-C

was associated with COVID-19 risk and linked to decreased

chromatin accessibility, as well as reduced expression of

CCR2, specifically in classical monocytes from hospitalized

COVID-19 patients. Together, these findings shed light on the

genetic, epigenetic, and transcriptional regulation of immune

cells in COVID-19 (Figure 6).
represents observed GWAS p values (converted by �log10) of ASoC SNPs in

ndom selected SNPs (blue) with matched minor allele frequency.

us.

, eQTL SNPs, and COVID-19 GWAS SNPs around ASoC SNP rs6800484.

ram at CCR2 locus under COVID-19 scenario.

ges of BAL fluid samples of COVID-19 patients (Wendisch et al.25).



Figure 6. Schematic plot summarizing the

genetic and epigenetic dysregulation of

innate immunity in COVID-19

Article
ll

OPEN ACCESS
In our study, we observed a number of changes in cell propor-

tions between hospitalized and convalescent COVID-19 pa-

tients, but fewer between severe and mild patients. Lymphope-

nia has been linked to COVID-19, as is also observed in our data,

with hospitalized COVID-19 patients having a lower percentage

of CD4+ T cells. We also saw an increased proportion of classical

monocytes in hospitalized COVID-19 patients, as also observed

earlier.7 In addition, we observed an upregulation of type I IFN

signaling, which is crucial for antiviral immunity, in variousmono-

cyte subsets in COVID-19 patients compared with recovered in-

dividuals, e.g., IFI27, ISG15, and IFI6, which was also observed

earlier in monocytes from COVID-19 patients compared with

healthy controls.7 Interestingly, most of the observed differences

were shared between mild and severe COVID-19 patients

compared with convalescent individuals. This suggests that

the difference in immunity between mild and severe COVID-19

is amatter of degree rather than reflecting distinct transcriptional

profiles. This is in line with a previous observation that there are

no immunological endotypes within the spectrum of COVID-1939

like those seen, for example, in sepsis.40

With open chromatin profiles, we observed enrichment of

C/EBP, JUN, FOS, and SPI1motifs in classical monocytes, which

are also reported as critical TFs to monocyte development in

sepsis.23 Because a subgroup of severe COVID-19 patients also

developeda sepsis-like syndrome,40–42 there could besomeover-

lapping immune-regulatory mechanisms at play. Examining co-

expression of genes and peak-to-gene linkages, we found that

the long noncoding RNA LUCAT1 interacts with all these SPI1,

JUN, FOS,CEBPD, andCEBPE TFs.We applied knockout and in-

hibitor experiments to decode the regulatory and feedbackmech-

anism among these molecules. The sub-clustering of monocytes

further illustrated C/EBP motif-enriched classical monocyte sub-

sets specific to hospitalized COVID-19 patients. These results

together led us to envision a dysregulated cascade where

increased C/EBP regulation enhanced LUCAT1 expression and

further suppressed IFN responses to SARS-CoV-2 infection,

which finally led to dysfunctional immune responses of COVID-

19. Activation ofC/EBPTFswas also reported to license the differ-
Ce
entiation of profibrotic macrophages and

trigger lung fibrosis in COVID-19.25 In our

study, we observed the enrichment of

open chromatin regions with C/EBP motifs

in an oxygen-supply-associated monocyte

sub-cluster, suggesting the activation of

C/EBP regulation programs in circulating

monocytes may also be associated with

lung fibrosis and contribute to the need for

oxygen in COVID-19 patients.

Finally, we identified ASoC SNPs in regu-

latory elements that potentially disrupt regu-

lation and consequently affect gene expres-

sion.43,44 Of note, we observed that the
COVID-19 riskallele rs6800484-Ccorresponds to lower chromatin

accessibility and lower expression of CCR2 in classical mono-

cytes,13 suggesting thepotential genetic andepigenetic regulatory

function of rs6800484 in COVID-19 patients. The CCR2 gene en-

codes the chemokine receptor for monocyte chemoattractant

protein-1 (MCP-1/CCL2), which promotes the migration of mono-

cytes to sites of inflammation.45,46 MCP-1/CCL2 was reported to

be enriched in BAL samples collected from severe COVID-19 pa-

tients, indicating active recruitment of CCR2+monocytes and high

inflammation in lung tissues.47 This suggests that the ASoC in the

observed variant may impact monocyte recruitment to tissue by

reducingCCR2expressionand thereby further influence the innate

immune responses in COVID-19 patients. Although the down-

regulation of CCR2 expression corresponds to higher viral loads

and increasedviral dissemination inanimalmodels,34weobserved

a significant down-regulation of CCR2 expression only in patients

with C/C alleles comparedwith others, but not in the comparisons

between hospitalized/severe COVID-19 patients and

convalescent.

In summary, our data have improved the understanding of the

genetic and transcriptional regulation of dysregulated immune

responses in COVID-19 and identified LUCAT1 and CCR2 as

key regulators of detrimental immunity. Both factors contribute

to COVID-19 pathogenesis in a subset of patients, while the

co-action of these factors could bring heterogeneous responses

to the SARS-CoV-2 infection. These leads can be used as a

starting point for the development of personalized host-directed

therapy to treat COVID-19.

Limitations of the study
Despite our interesting findings, this study also has several

limitations. First, we focused our analysis to monocytes in

peripheral blood. This choicewasmotivated by an over-represen-

tation of significant differences in the myeloid cell compartment,

which also corresponds to our previous results.4 Although our

data provided limited observations in lymphocytes, the impor-

tance of their role in the immune response in COVID-19 should

not be ignored. Considering the large diversity and complexity of
ll Genomics 3, 100232, February 8, 2023 11
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T cell populations, it will be interesting to dissect the T cell subsets

inCOVID-19 throughTcell enrichmentcombinedwithTcell recep-

tor sequencing in future studies. Second, although we used

computational methods to link cells across scRNA-seq and scA-

TAC-seq, the sequencing libraries of the two platforms were con-

structed independently. Therefore, we were unable to simulta-

neously profile gene expression and open chromatin from the

same cell, which limited our power to characterize the full regula-

tory programs for different cells. Finally, our ASoC analyses were

limited by the number of heterozygous SNPs among our partici-

pants. A future study based on a large cohort or a cohort pre-

selected to have heterozygous alleles along the COVID-19

GWAS risk variants would address the full picture of genetic regu-

lators of immune responses in COVID-19.
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N., Visan, L., Ceccarelli, M., Poidinger, M., et al. (2019). RNA-seq signa-

tures normalized by mRNA abundance allow absolute deconvolution of

human immune cell types. Cell Rep. 26, 1627–1640.e7. https://doi.org/

10.1016/j.celrep.2019.01.041.

82. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K.,

Slichter, C.K., Miller, H.W., McElrath, M.J., Prlic, M., et al. (2015). MAST:

a flexible statistical framework for assessing transcriptional changes and

characterizing heterogeneity in single-cell RNA sequencing data. Genome

Biol. 16, 278. https://doi.org/10.1186/s13059-015-0844-5.

83. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein,

B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008).

Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137.

https://doi.org/10.1186/gb-2008-9-9-r137.

84. Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A.,

Drewe, P., Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., et al. (2014).

Determination and inference of eukaryotic transcription factor sequence

specificity. Cell 158, 1431–1443. https://doi.org/10.1016/j.cell.2014.

08.009.

85. Roadmap Epigenomics Consortium; Kundaje, A., Meuleman,W., Ernst, J.,

Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z.,

Wang, J., et al. (2015). Integrative analysis of 111 reference human epige-

nomes. Nature 518, 317–330. https://doi.org/10.1038/nature14248.
Cell Genomics 3, 100232, February 8, 2023 15

https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
http://refhub.elsevier.com/S2666-979X(22)00190-2/sref83
http://refhub.elsevier.com/S2666-979X(22)00190-2/sref83
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1038/nmeth.<?show [?tjl=20mm]&tjlpc;[?tjl]?>3582
https://doi.org/10.1038/nmeth.<?show [?tjl=20mm]&tjlpc;[?tjl]?>3582
https://doi.org/10.1186/s13059-015-0762-6
https://doi.org/10.1186/s13059-015-0762-6
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1093/bioinformatics/btu704
https://doi.org/10.1093/bioinformatics/btu704
https://doi.org/10.1038/s41586-021-03205-y
https://doi.org/10.1038/ng.3656
https://doi.org/10.1086/519795
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/s41592-020-0820-1
https://doi.org/10.48550/ARXIV.1207.3907
https://doi.org/10.48550/ARXIV.1207.3907
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1186/1471-2164-14-632
https://doi.org/10.1186/1471-2164-14-632
https://doi.org/10.3324/haematol.2013.094243
https://doi.org/10.3324/haematol.2013.094243
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1016/j.cell.2018.10.022
https://doi.org/10.1016/j.cell.2018.10.022
https://doi.org/10.1016/j.cell.2011.01.004
https://doi.org/10.1016/j.cell.2011.01.004
https://doi.org/10.1016/j.celrep.2019.01.041
https://doi.org/10.1016/j.celrep.2019.01.041
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1016/j.cell.2014.08.009
https://doi.org/10.1016/j.cell.2014.08.009
https://doi.org/10.1038/nature14248


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human peripheral blood mononuclear cell N/A N/A

Chemicals, peptides, and recombinant proteins

RPMI 1640 Medium SIGMA MDL# R0883-500ML

Fetal Bovine Serum PAN BIOTECH Cat# P30-5500

Dulbecco’S Phosphate Buffered Saline PAN BIOTECH Cat# P04-36500

Buffer EB QIAGEN Cat# 19086

SPRIselect Beckmann Coulter Cat# B23318

Critical commercial assays

Chromium Next GEM Single

Cell 30Regent Kits v3.1

10X CG000315 Rev A

Chromium Next GEM Single

Cell ATAC Regent Kits v1.1

10X CG000209 Rev D

High sensitivity DNA kit Agilent Cat# 5067-4626

Deposited data

Human reference genome

NCBI build 38, GRCh38

Genome Reference Consortium48 http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Human reference epigenomic

annotations

Roadmap Epigenomics Consortium31 https://egg2.wustl.edu/roadmap/

web_portal/index.html

Bulk RNA-seq eQTL summary

statistics (release 2019-12-11)

eQTL-Gen Consortium33 https://www.eqtlgen.org

GTEx eQTL summary statistics (v8) GTEx v828 https://www.gtexportal.org/home/datasets

Promoter capture HiC results Javierre et al.32 https://osf.io/u8tzp/

COVID-19 GWAS summary

statistics (release round 6)

The COVID-19 Host Genetics initiative12 https://www.covid19hg.org/results/r6

snRNA-seq data Wendisch et al.25 EGAS00001004928; EGAS00001005634;

https://nubes.helmholtz-berlin.de/s/

XrM8igTzFTFSoio

snRNA-seq data This paper EGAS00001006559

snATAC-seq data This paper EGAS00001006560

Genotypes This paper EGAZ00001823187

Software and algorithms

Plink v1.90b6.21 64-bit (19 Oct 2020) Chang et al.49 https://www.cog-genomics.org/plink/

R 4.1 R Core Team https://www.r-project.org/

R package Seurat version 3.2.2 Stuart et al.50 https://cran.r-project.org/web/packages/

Seurat/index.html

R package ArchR version 1.0.1 Granja et al.51 https://www.archrproject.com/

R package ggplot2 version 3.3.2 Wickham et al.52 https://cran.r-project.org/web/packages/

ggplot2/index.html

R package Bioconductor version 3.12 Gentleman et al.53 https://bioconductor.org

R package clusterProfiler version 4.0.5 Yu et al.54 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

R package ggpubr version 0.4.0 Kassambara, The Comprehensive

R Archive Network (CRAN)

https://cran.r-project.org/web/packages/

ggpubr/index.html

R package pheatmap version 1.0.12 Raivo, The Comprehensive

R Archive Network (CRAN)

https://cran.r-project.org/web/packages/

pheatmap/index.html

(Continued on next page)

e1 Cell Genomics 3, 100232, February 8, 2023

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://egg2.wustl.edu/roadmap/web_portal/index.html
https://egg2.wustl.edu/roadmap/web_portal/index.html
https://www.eqtlgen.org
https://www.gtexportal.org/home/datasets
https://osf.io/u8tzp/
https://www.covid19hg.org/results/r6
https://nubes.helmholtz-berlin.de/s/XrM8igTzFTFSoio
https://nubes.helmholtz-berlin.de/s/XrM8igTzFTFSoio
https://www.cog-genomics.org/plink/
https://www.r-project.org/
https://cran.r-project.org/web/packages/Seurat/index.html
https://cran.r-project.org/web/packages/Seurat/index.html
https://www.archrproject.com/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://bioconductor.org
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://cran.r-project.org/web/packages/ggpubr/index.html
https://cran.r-project.org/web/packages/ggpubr/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R package tidyverse version 1.3.0 Wickham et al.52 https://CRAN.R-project.org/

package=tidyverse

R package org.Hs.eg.db version 3.12.0 Carlson55 https://bioconductor.org/packages/3.12/

data/annotation/html/org.Hs.eg.db.html

R package ggrepel version 0.9.0 Slowikowski56 https://cran.r-project.org/web/packages/

ggrepel/index.html

R package data.table version 1.14.0 Dowle57 https://cran.r-project.org/web/packages/

data.table/index.html

R package GenomicInteractions

version 1.30.0

Harmston et al.58 https://bioconductor.org/packages/

release/bioc/html/GenomicInteractions.

html

R package GViz version 1.20.1 Hahne and Ivanek59 https://bioconductor.org/packages/3.15/

bioc/html/Gviz.html

R package motifbreakR version 2.10.0 Coetzee, Coetzee, and Hazelett30 https://bioconductor.org/packages/

release/bioc/html/motifbreakR.html

Python version 3.9.6 Van Rossum60 https://www.python.org

Python package MACS2 version 2.2.7 Gaspar61 https://pypi.org/project/MACS2/

Bowtie2 version 2.4.4 Langmead and Salzberg62 N/A

Python package matplotlib version 3.4 Hunter63 https://matplotlib.org

Python package pysam version 0.17.0 Github pysam-developers https://github.com/pysam-developers/

pysam

BCFtools version 1.12 Danecek et al.64 http://www.htslib.org

SAMtools version 1.12 Danecek et al.64 http://www.htslib.org

Htslib version 1.12 Danecek et al.64 http://www.htslib.org

WASP pipeline version 0.3.4 van de Geijn et al.65 https://github.com/bmvdgeijn/WASP

GATK/ASEReadCounter version 4.2.0.0 Castel et al.66 https://gatk.broadinstitute.org

VEP (online) McLaren et al.67 https://www.ensembl.org/Tools/VEP

TOPMed and Michigan Imputation server Fuchsberger, Abecasis, and Hinds;

NHLBI Trans-Omics for Precision

Medicine (TOPMed) Consortium

et al.; Das et al.68–70

https://imputation.biodatacatalyst.nhlbi.

nih.gov;

https://imputationserver.sph.umich.edu

Original codes and scripts This paper https://doi.org/10.5281/zenodo.7270242

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Yang Li

(Yang.Li@helmholtz-hzi.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All raw sequencing and genotypes generated during this study are deposited at the EuropeanGenome-phenomeArchive (EGA) under

the accession numbers EGA: EGAZ00001823187, EGAS00001006559, and EGAS00001006560, which are hosted by the EBI and the

CRG. Processed data as Seurat objects with scRNA-seq count matrices and ArchR objects with scATAC-seq peak matrices have

been deposited via Nubes: https://nubes.helmholtz-berlin.de/s/wqg6tmX4fW7pci5. Original codes and scripts used for the analyses

are available at GitHub: https://github.com/CiiM-Bioinformatics-group/MHH50_COVID19_code and Zenodo: https://doi.org/10.

5281/zenodo.7270242.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

We collected DNA and PBMCs from blood samples of COVID-19 patients. Samples taken on days when patients were hospitalized

were considered hospitalized samples and samples taken from discharged patients were considered convalescent samples. Clinical

information on age, sex, medication, active days, O2 supply, etc. is recorded for each sample and listed in Table S1. WHO scores

were used to allocate the samples tomild (WHO3–4) or severe (5–7) conditions according to theWHOclinical ordinal scale. The study

was approved by the institutional review board at Hannover Medical School (#9001_BO_K2020) and informed consent was obtained

from all patients.

METHOD DETAILS

Single-cell RNA-seq library preparation and sequencing
Cells were counted, and an equal number of cells from five or six different individuals were pooled together. In total, 16,000 cells in

total were loaded into the 10X ChromiumTMController, and libraries were prepared based on the manufacturer’s instructions (Chro-

mium Next GEM Single Cell 30 Reagent Kits v3.1 (Dual Index) User Guide, Rev A, CG000315 Rev A). Library quality per pool was

examined using the Agilent Bioanalyzer High Sensitivity DNA kit. Sequencing was carried out on NovaSeq 6000 (Illumina), with a

depth of 50,000 reads per cell.

Single-cell ATAC-seq library preparation and sequencing
Nuclei isolation was performed based on manufacturer’s instructions from 10X (CG000169 , Rev D). Briefly, cells were washed and

lysed for 3 min on ice. After discarding the supernatant, lysed cells were diluted within 13 diluted nuclei buffer (10x Genomics) and

counted using a Countess II FL Automated Cell Counter to validate lysis. An equal number of nuclei from five or six individuals were

pooled and then loaded into the Chromium Next GEM Chip H based on the user guides from 10X genomics (Chromium Next GEM

Single Cell ATAC Reagent Kits v1.1 User Guide, CG000209 Rev D). After breaking the emulsion, the barcoded tagmented DNA was

purified and amplified for sample indexing and generation of scATAC-seq libraries. The final library was quantified using the Agilent

Bioanalyzer High Sensitivity DNA kit. Sequencing was performed on NovaSeq 6000 (Illumina) with a depth of 25,000 reads per nuclei.

Genotyping
Genotyping of DNA samples isolated from subjects in the current study were performed using the GSA-MDv3 array (Infinium,

Illumina) following the manufacturer’s instructions. In total, 725,875 variants of 48 individuals were called by Optical 7.0 with default

settings.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genotype imputation
Quality control (QC) for raw variants was performed using PLINK.71 In brief, no sample was excluded initially due to failure in sex-

check (–check-sex). Then, low-quality variants and individuals were excluded by parameters –geno 0.1 –mind 0.1. Next, missingness

of genetic information and rates of heterozygosity were filtered by –missing and –het, respectively. After QC, 719,942 variants from 48

individuals were retained for the imputation procedure. The clean raw variants were uploaded to the TOPMed Imputation Server and

imputed against the TOPMed (Version R2 on GRC38) reference panel.70 The imputed variants (n = 290,971,705) were downloaded

and filtered by BCFtools,64 excluding variants with R2 < 0.5, with 14,232,029 variants retained for the downstream analysis.

Additional QC and annotation was performed to obtain the genotypes that were used in the ASoC analysis. The variants were as-

signed reference SNP id (rs) by BCFtools against common variants (b151 GRCh38) downloaded from dbSNP. Subsequently, only

variants that have rs numbers and that were heterozygous in at least three individuals were retained for the ASoC analysis.

Data pre-processing and demultiplex of 10x genomics Chromium scRNA-seq data
BCL files from each library were converted to FASTQ files using bcl2fastq Conversion Software (Illumina) using the respective sample

sheet with the 10x barcodes utilized. The proprietary 10x Genomics CellRanger pipeline (v4.0.0) was used with default parameters.

CellRanger was used to align read data to the reference genome provided by 10x Genomics (Human reference dataset refdata-cell-

ranger-GRCh38–3.0.0) using the aligner STAR,72 and a digital gene expression matrix was generated to record the number of UMIs

for each gene in each cell.

The single-cell transcriptome in each library was further demultiplexed by assigning cell barcodes to their donor. The pre-mapped

bam files of each library were loaded to Souporcell (v1.3gb)73 for a genotype-free SNP-based demultiplex with default settings,

where candidate variants were called for each library and cells from each library were clustered into different samples based on their

allele patterns. SNPs called from each sample were then matched with known genotypes of donors to assign a donor ID to each

sample. The demultiplex assignments were double-checked using the expression of Y chromosome genes (ZFY, RPS4Y1, EIF1AY,

KDM5D, NLGN4Y, TMSB4Y, UTY, DDX3Y, and USP9Y) in male samples.
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Data pre-processing and demultiplex of 10x genomics Chromium scATAC-seq data
BCL files from each library were converted to FASTQ files using bcl2fastq Conversion Software (Illumina) using the respective sample

sheet with the 10x barcodes utilized. The proprietary 10x Genomics CellRanger-ATAC pipeline (v1.2.0) was used with default param-

eters. CellRanger-ATAC was used to align read data to the reference genome provided by 10x Genomics (Human reference dataset

refdata-cellranger-atac-GRCh38–1.2.0) and a fragments matrix was generated to record the number of reads for each open chro-

matin region in each cell.

The cells in each library were further demultiplexed by assigning cell barcodes to their donor. The pre-mapped bam files of each

library were loaded to Souporcell (v1.3gb) for genotype-free SNP-based demultiplexing. To call robust SNPs from the ATAC-seq

samples, candidate variants were first called by freebayes74 with minimal mapping quality = 20, minimal base quality = 20, minimal

coverage = 6, and minimal alternative allele = 2. Next, cell allele matrices from each library were generated with vartrix with minimal

mapping quality = 20, and cells were clustered based on their allele patterns to identify different samples in one library. SNPs called

from each sample were matched with known genotypes of donors to assign the donor IDs.

Independent sample set
In our cohort, some samples with different disease statuses came from the same donor. To obtain independent samples for pairwise

comparison across conditions, we manually selected an independent sample set after QC for both scRNA-seq and scATAC-seq

based on the following criteria: one sample per donor, early-stage for multiple stages, with samples shared by scRNA-seq and

scATAC-seq data are preferred. The selected samples are marked in Table S1.

QC for scRNA-seq data
After the demultiplex, the expression matrix from PBMC was loaded to R/Seurat package (v3.2.2)50 for downstream analysis. To

control the data quality, we first excluded cells with ambiguous assignments from Souporcell demultiplex. Next, we further excluded

low-quality cells with >15%mitochondrial reads, <100 or >3,000 expressed genes, or <500UMI counts (criteria were chosen accord-

ing to the overall distribution of samples). In addition, genes expressed in less than three cells were also excluded from further

analysis.

Dimensionality reduction and clustering for scRNA-seq data
After QC, we applied LogNormalization (Seurat function) to each cell, where original gene counts were normalized by total UMI

counts, multiplied by 10,000 (TP10K), and then log-transformed by log10(TP10k+1). We then scaled the data, regressing for total

UMI counts, and performed principal component analysis (PCA) based on the 2,000 most-variable features identified using the

vst method implemented in Seurat. Subsequently, data from each sequencing batch was integrated, using the ‘harmony’ algorithm,

based on the first 20 principal components to correct technical differences in the gene expression counts of different libraries. Cells

were then clustered using the Louvain algorithm based on the first 20 ‘harmony’ dimensions with a resolution of 0.4. For visualization,

we applied UMAP based on the first 20 dimensions of the ‘harmony’ reduction.

Annotation of scRNA-seq clusters
Clusters were annotated based on a double-checking strategy: 1) checking by automatic annotation with R/SingleR package75

and 2) manually checking the expression of cluster markers or known marker genes. Specifically, automatic annotation was applied

with five pre-installed reference datasets in SingleR: HumanPrimaryCellAtlas data (HPCA),76 BlueprintEncode data,77,78

ImmuneCellExpression data,79 Novershtern Hematopoietic data,80 and MonacoImmune data.81 Cluster marker genes were identi-

fied by comparing gene expression of each cluster to all other clusters of the tested dataset using the FindAllMarkers function in

Seurat with the Wilcoxon rank-sum test. Only upregulated genes with a log-fold change >0.25 and a Bonferroni-corrected p-value

<0.05, and were expressed in at least 25% of cells were calculated for each cluster, and genes from each cluster of interest were

ranked by their log-fold changes.

In addition, T andNK cell clusters were further characterized by expression ofmarker genes related tomemory T cells (IL7R), naive/

central memory (SELL, CCR7), cell cytotoxic (CD8A, CD8B, NKG7, GZMB), interferon responses (IFI6, ISG15), and other data-

derived cluster markers (Table S2). Monocyte clusters were then characterized by classical and non-classical monocyte markers

(CD14, FCGR3A) and pro-inflammatory cytokines (TNF, IL1B), and the data-derived cluster markers, such as CD163 (Table S2).

DE-Gs across Covid-19 conditions
For pairwise comparison between COVID-19 conditions, differential expression (DE) tests were performed using the FindMarkers

functions in Seurat with the Wilcoxon rank-sum test. The non-parametric Wilcoxon rank-sum test is distribution-free, but the results

may still be biased by age effects. We therefore also performed DE tests usingMAST,82 where we fit a hurdle model to the expression

of each gene consisting of a linear regression for age as supplementary results. In both tests, genes with a log-fold change >0.05 and

a Bonferroni-corrected p-value <0.05, and were expressed in at least 10% of tested groups were regarded as significantly differen-

tially expressed.
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QC for scATAC-seq data
After alignment and demultiplex, we used ArchR,51 a full-featured scATAC-seq analysis package, with minor adaptation to analyze

our scATAC-seq data. Briefly, we created an Arrow file for the CellRanger mapped fragments file from each single-cell library and

annotated the cells with the Souporcell demultiplex assignments. For QC, we filtered out cells that had fewer than 1,000 unique frag-

ments, a transcription start site enrichment <4, or potential doublets recognized by the ArchR package. We also excluded cells with

ambiguous assignments fromSouporcell demultiplex. Finally, an ArchRProject combining all of the Arrow files was created for down-

stream analysis.

Dimensionality reduction and clustering for scATAC-seq data
After QCl, we used the ArchR function ‘addIterativeLSI’ to process iterative latent semantic indexing using the top 25,000 variable

features and top 30 dimensions. We then used the harmony algorithm to correct batch effects from different libraries and clustered

cells based on the results with a resolution of 0.8. For visualization, we applied UMAP based on the dimensions of the ‘harmony’

reduction with nNeighbors = 30 and minDist = 0.5.

Annotation of scATAC-seq clusters
To annotate the scATAC-seq clusters, gene scores were calculated and imputed for each cell, and marker genes from each cluster

were detected with functions in ArchR package. Briefly, we firstly use ‘addGeneScoreMatrix’ function to independently compute

gene activity scores per cell, then applied ‘addImputeWeights’ to impute gene scores by smoothing the signal across nearby cells

using the MAGIC algorithm. Next, we compared independent gene scores between cells from one cluster and all the other clusters

using theWilcoxon rank-sum test to detect cluster-specific genes. The ‘bias’ parameter in ‘getMarkerFeatures’ fromArchRwas used

to account for transcription start site enrichment scores and the number of unique fragments per cell during the comparison. Finally,

we visualized these genes and other cell-type-specific marker genes used for our scRNA-seq data to assign an identity to each

cluster.

Peaks calling and marker peaks detection
To generate a comparable peak matrix for cross-sample comparison of differential open chromatin accessibility, reproducible peaks

were called based on the pseudo-bulk replicates for each condition and clustered using the ‘addReproduciblePeakSet’ functions

with Macs2 algorithm.83

After adding a peak matrix based on the called reproducible peaks, we applied differential peak detection with the Wilcoxon rank-

sum test, again accounting for transcription start site enrichment scores and the number of unique fragments per cell during the

comparison. For marker peaks per cell type and disease conditions, peaks were compared between cells from the tested group

and cells from all other groups, and peaks with FDR <0.05 were considered as significant cell type- and/or condition-specific peaks.

For pairwise comparison between conditions within a cell population, peaks with p-value <0.05 were considered as nominal

differential accessible peaks and used for integrative analysis with DE-Gs.

TF motif annotation and enrichment
After calling peaks, we looked for the motifs that are enriched in peaks that are openly accessible in different cell types and condi-

tions. To do this, we first added motif annotation based on the ‘‘CIS-BP’’ database,84 then, we applied the ‘peakAnnoEnrichment’

function in ArchR to obtain overrepresented motifs in test peak sets.

Cross-platform linkage of scATAC-seq data with scRNA-seq data
To do an integrative analysis of scATAC-seq and scRNA-seq data, we performed a preliminary integration by aligning all cells from

scATAC-seq with cells from scRNA-seq by comparing the above-mentioned scATAC-seq cell-independent gene score matrix with

the scRNA-seq expression matrix using the ‘FindTransferAnchors’ function from the Seurat package and the ‘addGeneIntegration-

Matrix’ function from the ArchR package. Based on the result of this initial integration and the cell type annotation, we filtered out

undefined scATAC-seq clusters and clusters with <100 cells aligned to annotated scRNA-seq clusters. We then annotated remaining

scATAC-seq clusters based on the aligned scRNA-seq clusters. Finally, we re-ran the integration process by aligning remaining scA-

TAC-seq cells to cells from the aligned scRNA-seq clusters and created a gene-integration matrix by adding gene integration scores

to each cell.

Peak-to-gene linkage
To find potential regulation from peaks to genes, we inferred a peak-to-gene linkage by calculating the correlation between peak

accessibility and gene expression within the above-mentioned integrated scRNA-seq and scATAC-seq cells. A co-accessibility

>0.45 and FDR-adjusted p < 0.05 were regarded as regulatory links.

TF footprinting with scATAC-seq data
To calculate the TF footprint for each motif, we first obtained all the positions from one TF motif. To profile the footprint, cells were

grouped again by each condition and each cell type to create pseudo-bulk ATAC-seq profiles. To account for the insertion sequence
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bias of the Tn5 transposase, which can lead to misclassification of TF footprints, we used the ‘‘Substract’’ normalization method to

subtract the Tn5 bias from the footprinting signal.

Sub-clustering of monocyte compartments in scRNA-seq
In the scRNA-seq dataset, the monocyte subpopulations were investigated by applying sub-clustering on the three monocyte clus-

ters (cMono, CD163+ cMono, and ncMono) identified in PBMC. We first identified the 1,000 most-variable features again in mono-

cytes using the vst method implemented in Seurat. Next, we scaled the data and performed PCA based on these 1,000most-variable

features. Subsequently, the cells were clustered using the Louvain algorithm based on the top-10 PCs with a resolution of 0.3. For

visualization, we applied UMAP based on the top-10 PCs. The marker genes for each sub-cluster were calculated by the

FindAllMarkers function in Seurat and a contaminated lymphocyte cluster with CD3 gene expression was identified and removed

from further analyses.

AUCell-based gene signature scores were calculated using the AUCell method.27 We set the threshold for the calculation of the

AUC to the top 3%of ranked genes and normalized themaximumpossible AUC to 1. Top-30marker genes reported frommonocytes

andmacrophages reported in BAL fluid and PBMC4were used to calculate AUC scores for eachmonocyte sub-clusters respectively.

The resulting AUC values were subsequently visualized in violin plots.

Sub-clustering of monocyte compartments in scATAC-seq
In the scATAC-seq dataset, the two monocyte clusters (cMono and ncMono) identified in PBMCwere extracted and investigated for

sub-clustering analyses. Again, we used ArchR function ‘addIterativeLSI’ to process iterative latent semantic indexing using the top-

25,000 variable features and top-30 dimensions. We then clustered cells based on the IterativeLSI reduced dimensions with a res-

olution of 0.8 and calculated UMAP with nNeighbors = 30 and minDist = 0.5. The resulting sub-clusters were aligned to scRNA-seq

monocyte sub-clusters using the Cross-platform linkage method described above. Cells with a predicted linkage score >0.6 were

regarded as aligned cells, and a scATAC-seq sub-cluster with a percentage of aligned cells >90%matched to the same scRNA-seq

sub-cluster was regarded as the confidently matched sub-cluster.

TF gene expression and regulon enrichment analysis
In order to estimate the expression of the motif-enriched TFs in R4/C4 monocyte cluster, we ranked the genes based on their ex-

pressed percentages of R4 cells from hospitalized COVID-19 patients in scRNA-seq dataset and marked out TF genes among

them. Next, we applied a regulon enrichment analysis across genes that were expressed at least 10% of R4 cells with SCENIC.27

Then, we intersected the enriched TFs, that were marked with ’high confidence’ annotations by the algorithm, with the TF-motif

enrichment results and marked the overlap TFs on the Heatmap.

Chromatin accessibility of COVID-19 risk variants
The genetic variants with a reported p-value <5 3 10�8 from the COVID-19 GWAS summary statistics (Hospitalized covid vs.

population’’ release 6) by HGI14 were considered as risk variants of COVID-19. An open-chromatin peak was regarded to be

associated with risk variants if its genomic location overlaps with at least one significant variant. The over-representation of ‘‘risk-

variants-overlapping’’ peaks was estimated by the Fisher exact test comparing between peaks found in hospitalized patients and

convalescent samples in each cell type, respectively.

Identification of ASoC SNPs
To estimate the allelic open chromatin for each identified cell type, the ATAC-seq reads of each subject were first split into individual

BAM files per cell type using an in-house Python script according to the CB barcode which was added by CellRanger pipeline and

error-corrected. The resulting BAM fileswere then calibrated using theWASP65 pipeline with Bowtie262 as aligner (-X 2000) to remove

the mapping bias to reference allele at heterozygous sites. Afterward, the GATK/ASEReadCounter tool66 was used to count allelic

reads at each heterozygous site with the default parameters. To detect the maximum allelic imbalance, the read counts from

each subject were allelicly summed for each cell type at each heterozygous SNP, a pool approach that was justified in the previous

study.43 Finally, only biallelic SNP sites with at least 20 read counts and at least 2 read counts for either allele were retained for down-

stream statistical analyses. To alleviate possible mapping bias to the reference allele, the WASP pipeline was applied, but no

apparent bias effect was observed (Figure S10A).

Binomial p values were calculated for the allelic read counts per SNP per cell-type by the R function binom.test(), with the

alternative read counts as success trials and all read counts as total trials. Next, the R function p.adjust() was exploited to perform

a multiple testing correction using the ‘‘fdr’’ method, and an FDR-adjusted p < 0.05 was considered the significant threshold. No

obvious mapping bias to reference alleles was observed by visualizing the volcano plot of -log10(p values) and allelic read counts

ratio.

Annotation and function enrichment of ASoC SNPs
To understand the function of the identified allelic imbalances, the ASoC SNPs were annotated against the GRCh38 reference

genome using the online version of vep.67 Next, epigenomic annotations from RoadMap epigenomics projects85 were assigned
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to each identified ASoCSNPs based on their physical position and cell type. These epigenomic annotationswere further grouped into

promoters (including ‘‘TssA’’, ‘‘PromU’’, ‘‘PromD1’’, and ‘‘PromD2’’) and enhancers (including ‘‘TxReg’’, ‘‘TxEnh5’’, ‘‘TxEnh3’’,

‘‘TxEnhW’’, ‘‘EnhA1’’, ‘‘EnhA2’’, ‘‘EnhAF’’, ‘‘EnhW1’’, ‘‘EnhW2’’, ‘‘EnhAc’’, and ‘‘DNase’’). To evaluate the effects of the identified

ASoC SNPs, significant variant-gene pairs of whole blood tissue were downloaded from the GTEx Portal (V8) and allocated to the

corresponding ASoC SNPs. Further, the DE genes identified by scRNA-seq between each pair of conditions in the current study

were also attached to ASoC SNPs if the transcription start site of the gene is located in a 50Kbp-window of the ASoC SNPs. In addi-

tion, ASoC SNPs were allocated to TFs if the corresponding TF motifs were identified by chromVAR in scATAC-seq analysis of the

current study. Finally, all the enrichment estimations were performed by R function fisher.test() while the adjustment of p values from

multiple tests were done by p.adjust() using the ‘‘fdr’’ method except for those indicated in the context.

Correlation between allelic imbalance and motif disruptions
To test the effects of ASoCSNPs, i.e. a genetic perturbation, on TF bindingmotifs, we calulatedmotif break scores at each ASoCSNP

using R package motifbreakR.30 Concretely, for each cell type, we first compiled a set of ASoC SNPs that are in the TF binding foot-

prints identified in the TF binding footprints analysis. Subsequently, the disruptiveness of ASoC SNPs on TFBS were evaluated using

motifbreakR() function with parameters: threshold = 13 10�4, method = "log", bkg = c(A = 0.25, C = 0.25, G = 0.25, T = 0.25). Next,

only SNPs with a ‘‘strong’’ effect were retained, and motif break scores were represented by alleleDiff which is calculated by the dif-

ference between the scoreAlt and scoreRef in the motifbreakR results. Then, for each cell type of each condition, we estimated the

correlation between motif break scores and allelic imbalance for each TF motif using Spearman’s rank correlation using cor.test() R

function. The allelic imbalance was evaluated by the log2-transform ratio between alternative and reference ATAC-seq read counts

per ASoC SNP. Finally, the correlations measured by Spearman’s rho were plotted as a heatmap using the ggplot2 package.

Multi-omics integration from the public resource and the current study
The functions of ASoC SNPs were also evaluated in scenarios of multi-omics integration. We downloaded publicly available GWAS/

omics data, including COVID-19 GWAS summary statistics by HGI,14 whole blood eQTL summary statistics from the meta-analysis

by eQTLGen,33 and promoter capture Hi-C data from Javierre and colleagues’ study.32 After integrating with scATAC-seq read

depth, peak-to-gene links, and ASoC SNPs from the current study, the cross-omics results were visualized by the R/Gviz package59

along the genomic coordinates to show the ASoCSNP examples. Specifically, the track for promoter capture Hi-C and peak-to-gene

links were visualized by R/GenomicInteractions.58

CRISPR- and inhibitor-experiments
Cells deficient in LUCAT1 were generated using a lentiviral CRISPR interference vector (Addgene #71237). A gRNA inserts targeting

the transcriptional start site of LUCAT1 was cloned into the vector followed by lentiviral particle production. To this end, HEK293T

cells were transfected with the lentiviral vector, a VSVG pseudotyping plasmid (pVSVG) and a helper-plasmid (psPAX2), using lipo-

fectamine 2000 reagent. Viral particles were collected by passing transfected cell supernatants through a 0.45 mm filter, followed by

ultracentrifugation. For transduction, the viral pellet was resuspended in PBS and transferred to THP1 cells, followed by centrifuga-

tion at 37�C and 800 g for 2 h. Transduced cells were enriched using an Aria III cell sorter (BD), based on GFP-expression from the

lentiviral backbone.

THP1 and Hek293T cells were cultivated in RPMI 1640medium (Thermo Fisher), supplemented with 10% FCS (Biochrom) and 1%

penicillin/streptomycin solution (Thermo Fisher). Primary monocytes were isolated from Buffy coats (deidentified prior to use) using

Lymphoprep gradient centrifugation and CD14-micoboeads (Miltenyi) and cultivated in X-vivo 15medium (Lonza). All cells were kept

in a 37�C incubator with a humidified atmosphere containing 5% CO2. For inhibitor experiments, cells were pre-incubated with the

respective inhibitor for 2 h, followed by further stimulations. IL1a, IFNa were purchased from Preprotech and 3p-hairpin-RNA from

Invivogen. Stimulations were carried out for 4 h (100 ng of each factor). RNA was extracted with Trizol reagent and qRT-PCR was

done using the High Capacity cDNA Reverse Transcription kit (Thermo Fisher), LUNA Universal qPCR master mix (NEB) and a

Quantstudio 3 instrument. Fold-changes based on CT values were calculated using the 2̂ -DDCT method.
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