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Cultivation-independent genomes greatly 
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Abstract 

Background: Taxonomic profiling is a fundamental task in microbiome research that aims to detect and quantify the 
relative abundance of microorganisms in biological samples. Available methods using shotgun metagenomic data 
generally depend on the deposition of sequenced and taxonomically annotated genomes, usually from cultures of 
isolated strains, in reference databases (reference genomes). However, the majority of microorganisms have not been 
cultured yet. Thus, a substantial fraction of microbial community members remains unaccounted for during taxo‑
nomic profiling, particularly in samples from underexplored environments. To address this issue, we developed the 
mOTU profiler, a tool that enables reference genome‑independent species‑level profiling of metagenomes. As such, it 
supports the identification and quantification of both “known” and “unknown” species based on a set of select marker 
genes.

Results: We present mOTUs3, a command line tool that enables the profiling of metagenomes for >33,000 species‑
level operational taxonomic units. To achieve this, we leveraged the reconstruction of >600,000 draft genomes, most 
of which are metagenome‑assembled genomes (MAGs), from diverse microbiomes, including soil, freshwater systems, 
and the gastrointestinal tract of ruminants and other animals, which we found to be underrepresented by reference 
genomes. Overall, two thirds of all species‑level taxa lacked a reference genome. The cumulative relative abundance 
of these newly included taxa was low in well‑studied microbiomes, such as the human body sites (6–11%). By con‑
trast, they accounted for substantial proportions (ocean, freshwater, soil: 43–63%) or even the majority (pig, fish, cattle: 
60–80%) of the relative abundance across diverse non‑human‑associated microbiomes. Using community‑developed 
benchmarks and datasets, we found mOTUs3 to be more accurate than other methods and to be more congruent 
with 16S rRNA gene‑based methods for taxonomic profiling. Furthermore, we demonstrate that mOTUs3 increases 
the resolution of well‑known microbial groups into species‑level taxa and helps identify new differentially abundant 
taxa in comparative metagenomic studies.
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Background
Identifying and quantifying the abundance of taxa (i.e., 
taxonomic profiling) is a critical step in linking the 
composition of microbial communities to environmen-
tal functions and host health-related phenotypes [1, 2]. 
Metagenomic sequencing of DNA directly extracted from 
an environmental or host-derived sample has enabled 
researchers to taxonomically profile microbial communi-
ties in an unbiased and cultivation-independent manner. 
The development of tools to generate accurate taxonomic 
profiles from metagenomic data has therefore become 
important to our understanding of microbial communi-
ties [3]. However, existing tools rely on the availability of 
informative sequences (such as k-mers or marker genes 
[4, 5]), which are predominantly extracted from taxo-
nomically annotated reference genomes (RefGs).

In recent years, high-throughput culturing of microor-
ganisms coupled with RefG sequencing (known as cul-
turomics) [6] has substantially expanded the proportion 
of microbial taxa with whole genome sequences in data 
repositories (e.g., NCBI RefSeq) benefitting taxonomic 
profiling tools. However, there is a strong bias toward 
microorganisms from well-studied habitats (e.g., human 
body sites) and/or those that can be readily cultivated 
using standard laboratory methods. Thus, most microbes 
on Earth remain uncultivated and lack a representative 
RefG [7, 8], although they can be both globally prevalent 
[9] and numerically dominant in many environments 
[10–13]. As a result, the incorporation of RefGs from 
newly isolated microbes into taxonomic profiling tools 
can be slow and disproportional across environments. 
This poses an additional challenge for accurate taxo-
nomic profiling, given that microorganisms that remain 
undetected bias the abundance estimates of those that 
are detected [14, 15].

To close the gap between the detectable and actual 
diversity present in microbial community samples, we 
developed mOTUs [14, 16], a software tool that uses 
universal, protein-coding, single-copy phylogenetic 
marker gene (MG) sequences to quantify the taxonomic 
composition of microbial communities from metagen-
omic sequence data (for further applications, see also 
Ruscheweyh et al. 2021 [17]). As these MGs are present 

in all organisms, they can be identified not only in RefGs, 
but also in metagenomic assemblies. Conceptually, 
mOTUs is based on clustering sets of MGs representing 
individual organisms by sequence similarity into species-
level units. In the absence of a generalizable species con-
cept for prokaryotes [18, 19], we refer to these units as 
MG-based operational taxonomic units (abbreviated as 
“mOTUs”).

As an alternative to RefG sequencing, draft genomes 
are increasingly reconstructed by computational binning 
of metagenomic assemblies into metagenome-assembled 
genomes (MAGs [20]) or by sequencing amplified DNA 
from individual cells, resulting in single cell genomes 
(SAGs [21]). These cultivation-independent methods 
have provided genomic access to microbial diversity in 
previously underexplored environments. Several MAGs 
have been produced by different studies (>150,000 MAGs 
available in NCBI GenBank), and recently, some profil-
ing tools had their databases extended with large-scale 
MAG collections from the human gut [22, 23]. The ben-
efit of this approach was however limited to a single 
environment, for which comprehensive MAG datasets 
have recently been established [24]. Here, in addition 
to MGs found in RefG and metagenomic data, we now 
incorporate those found in MAGs and SAGs from vari-
ous environments to more than double the number of 
taxa represented, adding >20,000 new mOTUs compared 
to the previous major release [14]. Our evaluations show 
that mOTUs3 outperforms other methods as assessed 
using metrics for taxonomic tool benchmarking devel-
oped independently from our study [3, 25]. Furthermore, 
we found mOTUs3 to provide an unprecedented view 
of the species-level diversity within the most dominant 
heterotrophic bacterial clade in the ocean and to greatly 
extend the number of detected and differentially abun-
dant species in cross-sectional studies, as exemplified in 
a comparison between rumen microbiomes of high- and 
low-level methane-emitting sheep.

Results
Taxonomic profiling of diverse environments with mOTUs3
We developed mOTUs3 to facilitate the metagenomic 
profiling of 33,570 mOTUs, which is a 4.3-fold increase 

Conclusions: We developed mOTUs3 to enable accurate species‑level profiling of metagenomes. Compared to 
other methods, it provides a more comprehensive view of prokaryotic community diversity, in particular for currently 
underexplored microbiomes. To facilitate comparative analyses by the research community, it is released with >11,000 
precomputed profiles for publicly available metagenomes and is freely available at: https:// github. com/ motu‑ tool/ 
mOTUs.

Keywords: Metagenomics, Microbial community, Benchmarking, Taxonomic profiling, Marker gene, Metagenome‑
assembled genome, Single‑cell genome, Reference genome
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compared to mOTUs2 (Fig. 1a). Among all mOTUs, 35% 
were represented by a RefG (n=11,915; ref-mOTUs), 
while an additional 21,655 were derived using MGs from 
either metagenomic contigs (n=2297; meta-mOTUs) or 
extended sources, such as MAGs (de novo-assembled 
or imported) and a smaller number of SAGs and isolate 
genomes (n=19,358; ext-mOTUs), to substantially extend 
the database coverage for reference genome-independent 
taxonomic profiling of diverse environments (Fig.  1a). 
MGs not assigned to any mOTU were additionally added 
to the database and merged into a single “unassigned” 
group to improve the quantification accuracy of taxo-
nomic profiles, as previously demonstrated [14].

The newly established database allowed us to determine 
and systematically compare the fraction of taxa currently 
not represented by RefGs in various environments. These 
environments include extensively studied human-asso-
ciated ones, for which metagenomic studies are comple-
mented by several culturomics efforts (e.g., Lagier et  al. 
[27]). Furthermore, we included data from >20 environ-
mental and animal-associated microbiomes (Supplemen-
tary Tables 1 and 2) that have been primarily studied by 
metagenomic approaches. Overall, we found that more 
than half (11,882) of all meta/ext-mOTUs (i.e., mOTUs 
not represented by any RefG) could not be assigned to 
any known family (Supplementary Table  3; Methods), 
illustrating the taxonomic novelty covered by mOTUs3. 
The distribution of the newly included data into ref/

meta/ext-mOTUs was highly variable across the differ-
ent environments (Supplementary Fig.  1). As expected, 
97% of the ~400,000 MAGs from human microbiome 
samples (Supplementary Table 1) had already been rep-
resented by 2360 pre-existing (i.e., ref/meta-)mOTUs 
(Supplementary Table 4). Notably, the remaining 3% rep-
resented 2750 new ext-mOTUs, showing that novel spe-
cies can still be uncovered by studying underrepresented 
populations, dietary habits, and/or disease states [28, 
29]. By contrast, we found that only ~25% of the 6479 
MAGs from mouse gut metagenomes (Supplementary 
Table  1) corresponded to pre-existing mOTUs (n=72, 
68 ref-mOTUs and 4 meta-mOTUs), despite ongoing 
cultivation efforts [6]; the remaining 75% were grouped 
into 587 ext-mOTUs (Supplementary Table 4), meaning 
that 90% of the mOTUs represent novel species, which 
is in accordance with recently published studies [11, 30]. 
However, the vast majority of ext-mOTUs (n=16,021) 
resulted from the inclusion of other animal-associated 
(e.g., ruminants, fish, chicken, pig, bee, dog, cat) and 
environmental (e.g., soil, freshwater, wastewater, ocean, 
air) microbiomes (Supplementary Table 1) for which the 
generation of representative RefGs is lagging.

We used mOTUs3 to profile 10,541 available shot-
gun metagenomic data sets across the 23 environments 
covered by its database (Supplementary Table  1). For 
comparative analyses, we subset the data to 5756 high-
quality samples (Methods; Supplementary Table  5) 

Fig. 1 The mOTUs3 database enables species‑level profiling across diverse environments. a The database of the previous major release of mOTUs 
(version 2) [14] was updated to version 2.5 to account for the current release of the progenomes2 database [26]. Based on version 2.5, the mOTUs3 
database was constructed by adding universal, single‑copy phylogenetic marker genes (MGs) from 605,653 genomes (metagenome‑assembled 
genomes (MAGs) and a smaller number of isolate and single amplified genomes (SAGs)). This addition resulted in the extension of the database by 
19,358 new species‑level, MG‑based operational taxonomic units (ext‑mOTUs). Genomes already represented by ref‑ and meta‑mOTUs in version 
2.5 were not added (gray lines). b Breakdown by the three types of mOTUs shows that mOTUs3 enables the reference genome‑independent 
profiling of a substantial fraction of microbial diversity across different environments. The numbers below the ring charts represent: First, the 
number of metagenomes analyzed (with “n=”), second the total number of mOTUs that were detected per environment considering only species 
with a prevalence of 0.1% and finally the median number of mOTUs per sample that were detected after downsampling to 5000 inserts



Page 4 of 12Ruscheweyh et al. Microbiome          (2022) 10:212 

from 16 environments and found the overall number of 
detected mOTUs to range from 247 (honey bee) to >6000 
(ocean, wastewater and cattle microbiomes). To illustrate 
the proportion of quantifying taxa currently not rep-
resented by RefGs (Fig.  1b), we summarized the cumu-
lative relative abundances of unassigned taxa and the 
different types of mOTUs (ref-mOTUs, meta-mOTUs, 
ext-mOTUs). The fraction of unassigned taxa was high-
est for soil samples (33%; s.d. 8%), which reflects the high 
microbial diversity in soil as well as challenges in recon-
structing genomes from this environment [31] (Supple-
mentary Fig. 2). By contrast, more than 87% (s.d. 0.7%) of 
the relative abundance was represented by ref-mOTUs in 
human skin samples (in agreement with previous reports 
[32]) mainly due to the dominance of few taxa with cul-
tivated representatives [33]. Similarly, the fraction of 
relative abundance assigned to ext-mOTUs varied con-
siderably between environments: on average, only ~6% 
of the bacterial abundance in human-associated samples 
was assigned to newly added taxa, while this fraction was 
as high as ~80% in cattle rumen microbiomes.

Comparison with other taxonomic profilers
As in other fields of bioinformatics, there is broad con-
sensus that the performance of analysis tools needs to be 
carefully evaluated. However, best practices (e.g., balanc-
ing precision and recall, selecting criteria for “best” per-
formance) are often debated [34, 35], and in microbiome 
research, an agreement on some fundamental concepts 
(e.g., sequence vs. taxonomic abundance, representa-
tion of unknown taxa in ground truth data) is still lack-
ing [36, 37]. In an attempt to address some of these issues 
in a community-driven effort, modeled after successful 
examples in other fields [38, 39], the Critical Assessment 
of Metagenome Interpretation (CAMI) has provided 
curated ground truth datasets along with a tool (OPAL) 
to reproducibly evaluate metagenomic analysis tools [3, 
25].

Using the latest CAMI datasets with disclosed results 
[40], we compared mOTUs3 to its prior major release 
version (mOTUs2) [14] and other selected metagen-
omic profiling tools (MetaPhlAn3 [5] and Bracken [4, 
41], Methods) representing conceptually different, well-
performing approaches to taxonomic profiling [36]. 
Using the OPAL tool for scoring and evaluation, we first 
evaluated presence/absence  (F1-score) and relative abun-
dance predictions (L1 norm error) at the species level. 
For the different datasets, which represented samples 
from five human body sites and the mouse gut microbi-
ome, mOTUs3, and MetaPhlAn3 performed generally 
better than Bracken and mOTUs2 (Fig. 2a/b). At higher 
taxonomic ranks, mOTUs3 had similar or higher scores 
than the other tools. For some datasets, taxonomic ranks, 

and tools, there was little to no room for improvements 
of the  F1-score or L1 norm error. This may be due to the 
simulated datasets being mainly based on taxa for which 
RefGs are available and/or result from incongruencies 
of taxonomic annotations used by the different profil-
ers compared to the ground truth. In addition to the L1 
norm error, OPAL computes additional metrics for pro-
filing quality (completeness, purity, weighted UniFrac 
error) and summarizes them across taxonomic ranks 
into a composite score. Based on this evaluation crite-
rion, mOTUs3 outperformed the other tools (Fig. 2c), as 
well as additional tools assessed in the CAMI challenge 
(Methods; Supplementary Fig. 3).

In the absence of independent ground truth data sets to 
benchmark taxonomic profiling tools for less well-studied 
environments, we correlated taxonomic profiles obtained 
by mOTUs3 and other tools to those obtained by analyz-
ing 16S rRNA gene (16S) fragments. This approach lever-
ages both the availability of comprehensive 16S databases 
for taxonomic classification [43] and the possibility of 
estimating taxonomic abundances based on 16S-based 
data from metagenomes [44]. Briefly, we extracted 16S 
fragments from the same datasets we used for metagen-
omic profiling and generated relative abundance profiles 
for them (Methods). To ensure comparability between 
16S and metagenomic profiles, the analysis was per-
formed at the genus and higher taxonomic ranks (for dis-
cussion, see Salazar et al. [44]). We found that mOTUs3 
had consistently higher correlations with 16S profiles 
than the other tools across all environments, except for 
the human gut for which MetaPhlAn3 showed correla-
tion coefficients similar to those of mOTUs3 (Fig. 3).

Resolving the diversity of Pelagibacterales with mOTUs3
In addition to the broader taxonomic coverage by 
mOTUs3 across environments, we sought to investigate 
the capability of mOTUs3 to resolve microbial clades 
into more fine-grained taxonomic units. To this end, 
we focused on Pelagibacterales (also referred to as the 
SAR11 clade), which is the most abundant heterotrophic 
bacterial group in the global oceans [45]. Members of the 
Pelagibacterales have previously been shown to display 
high genomic variability while maintaining highly con-
served 16S sequences [46]. This prompted us to evaluate 
the species-level resolution of mOTUs3 and to compare 
the diversity represented by mOTUs to the diversity rep-
resented by operational taxonomic units (OTUs) defined 
by 16S sequence similarity.

For this analysis, we selected from all mOTUs anno-
tated as Pelagibacterales (n=1029; 2063 genomes) 
those that were represented by genomes with complete 
16S sequences (n=602; 1105 genomes). The number of 
mOTUs was comparable to the number resulting from 
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Fig. 2 Comparison of mOTUs to other taxonomic profilers. The performance of mOTUs3 was compared to other taxonomic profiling tools based 
on the dataset from the second Critical Assessment of Metagenome Interpretation (CAMI) challenge (see Methods). The F1 score (a) and L1 norm 
error (b) are shown as reported by the OPAL tool [25] for each taxonomic rank (x‑axis). High L1 norm error values at the family and genus levels of 
GI samples mostly derive from an updated taxonomy of the highly abundant Oscillospiraceae (previously Ruminococcaceae) [42]. c Each method 
was ranked across all samples and for each taxonomic rank using four measures (completeness, purity, L1 norm error and weighted UniFrac error), 
and the OPAL sum of scores was calculated as a sum of these ranks (lower rank indicates better performance). OR oral cavity, SK skin, AI airways, UT 
urogenital tract, GI gastrointestinal tract, MG mouse gut

Fig. 3 Comparison of metagenomic profiling tools using 16S rRNA‑based taxonomic profiles. Spearman correlations between relative abundances 
generated by different metagenomic profiling tools and 16S rRNA gene‑based profiles from the same samples. The correlations were calculated at 
different taxonomic ranks (x‑axis; c class, o order, f family, g genus) and showed that mOTUs3 generally had the highest values for the different body 
sites tested, except for human gut samples with similar values for mOTUs3 and MetaPhlAn3
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a 95% average nucleotide identity (ANI)-based cluster-
ing of the 1105 genome sequences into species-level 
groups (n=700; Fig.  4a), which is common practice in 
the field of microbial phylogenomics [7, 47]. Moreo-
ver, we found sequence identities of mOTU-repre-
senting MGs to linearly correlate with those of whole 
genomes across the whole range of observed values 
(r2=0.71; Fig.  4b). By contrast, 16S sequence-based 
OTUs using a 97% or 99% sequence similarity cutoff 
resulted in a 31.7-fold (n=19) or 5.8-fold (n=104) lower 
number of taxonomic units, respectively, compared 
to mOTUs (Fig.  4a). This discrepancy is also reflected 
by a weaker correlation (r2=0.45; Fig.  4b) of identi-
ties between 16S sequences and corresponding whole 
genome sequences. The minimum 16S identities were 
ca. 87% and started saturating at approximately 97% 
at which point genome identities were still as low as 
~70–80% (Fig. 4b). Similar findings were reported pre-
viously albeit on smaller datasets [46]. Finally, compar-
ing the grouping of genomes by mOTUs and ANI into 

species-level clusters, we found almost perfect congru-
ence (Fig. 4c, Methods).

Differential abundance of novel archaea in low‑/
high‑methane‑emitting sheep rumen metagenomes
High-resolution taxonomic profiling of metagenomes 
from underexplored environments can be achieved by 
custom-made marker gene or genome databases selected 
for the microbial community under study [12, 48]. How-
ever, this approach is often labor- and resource-intensive 
and requires specialized expertise, and its results cannot 
easily be compared across studies and communities. To 
demonstrate the utility of mOTUs3 to address these chal-
lenges, we reanalyzed rumen metagenomes from high- 
and low-methane-emitting (HME and LME) sheep [48]. 
Importantly, these data were not used for the database 
construction of mOTUs3.

Based on mOTUs3 taxonomic profiles, we identified 
131 microbial species that differed significantly in abun-
dance between HME and LME samples and showed an 

Fig. 4 Species‑level diversity of Pelagibacterales as resolved by mOTUs3. a The number of taxonomic units within the Pelagibacterales order varies 
depending on the clustering method used, which was based on using marker gene (MG) sequences (used by mOTUs), average nucleotide identity 
(ANI) of whole genomes, and full‑length 16S rRNA gene sequences. b mOTU marker gene distances better capture whole‑genome distances 
compared to full‑length 16S, explaining the patterns observed in a. In particular, 16S rRNA gene sequence identity saturates while whole‑genome 
similarity can be as low as 70–80%. c The different clustering approaches vary in their agreement with each other as determined by the V‑measure, 
which captures both the completeness and homogeneity of the clusterings. The highest agreement was found between mOTUs and with whole 
genome clustering by ANI
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at least tenfold increase or decrease in relative abundance 
(corresponding to a generalized fold change of ≥ 1 [49]). 
Among these differentially abundant species, 92% were 
represented by ext-mOTUs. These were therefore not 
expected to be detectable by reference-based profilers. 
To test this, we applied the same workflow using Met-
aPhlAn3 and Bracken (see Methods), which yielded only 
10 and 30 differentially abundant species for the respec-
tive tools (Fig. 5a).

Given the metabolic importance of methanogenic 
archaea in ruminants as well as previous evidence of 
uncharted archaeal diversity in the sheep rumen [12], 
we further investigated the species-level diversity of 
known and unknown archaeal species. To this end, 
we reconstructed a phylogenetic tree of the archaeal 
mOTUs detected in the sheep rumen metagenomes 
(n=15) and contextualized them with reference genomes 
from members of the genera Methanobrevibacter and 

Methanosphaera (Fig. 5b). This analysis revealed that all 
six differentially abundant archaea in the sheep rumen 
corresponded to ext-mOTUs. Two of them, which were 
significantly more abundant in high-methane emit-
ters, were most closely related to Methanobrevibacter 
gottschalkii, which itself was not detected. Notably, the 
MG sequence similarity between these ext-mOTUs and 
M. gottschalkii was <85% (Fig.  5b), which is well below 
the species-level cutoff of 96.5% used by mOTUs [16] and 
therefore suggests that these ext-mOTUs represent novel 
Methanobrevibacter spp.

Discussion
With mOTUs3, we have developed a taxonomic profiler 
that combines state-of-the-art accuracy, as demonstrated 
in competitive benchmarks based on simulated data-
sets, with an innovative database construction approach 
to detect and quantify underrepresented microbes from 

Fig. 5 Detection of differentially abundant taxa in low‑/high‑level‑methane‑emitting sheep rumen microbiomes. a A comparison between 
metagenomic profilers shows that mOTUs3 detected 131 differentially abundant species (q value <0.05 and an absolute generalized fold change 
> 1; indicated by dotted lines) between low‑ and high‑level methane‑emitting sheep, while MetaPhlAn3 and Bracken detected nine and two 
species, respectively. Most of the species detected by mOTUs were represented by ext‑mOTUs only, demonstrating the added value of reference 
genome‑independent profiling enabled by mOTUs3. b Archaeal mOTUs present in the sheep rumen microbiome (highlighted in gray) were 
phylogenetically contextualized with Methanobrevibacter spp. and Methanosphaera spp. represented by ref‑mOTUs. All differentially abundant 
ext‑mOTUs (middle panel) correspond to distinct yet undescribed Methanobrevibacter spp. as supported by all MG sequence identities (“MG 
identity [%]”, right panel) to the closest known reference genome being below the species‑level cutoff of 96.5% (dotted vertical line)
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diverse environments at high (i.e., species-level) taxo-
nomic resolution. Its core database will be updated with 
high-quality genomes (e.g., from proGenomes 3). Fur-
thermore, the possibility to incorporate MG sequences 
from any MAG and SAG to generate mOTUs de novo 
and independently from the availability of RefGs and/or 
prior existence of taxonomic annotations (such as NCBI 
or GTDB species names) allows users to continuously 
extend the core database of mOTUs to represent micro-
bial diversity from newly explored microbiomes. Such 
future extensions could also target eukaryotic microor-
ganisms, as these are an integral part of many microbial 
communities, but are not well represented in databases 
of existing taxonomic profiling tools.

However, the flexibility in defining operational taxo-
nomic units de novo comes with a need for taxonomic 
annotation, as is also the case for 16S rRNA-based de 
novo clustered OTUs. Despite the calibration of MG 
sequence identity cutoffs to maximize congruence with 
the NCBI taxonomy [16], this procedure can lead to con-
flicts with existing taxonomies. Irrespective of the ongo-
ing debate on whether prokaryotic species should be 
consistent with genomic similarity-based criteria, delin-
eating species by sequence identity puts mOTUs at a 
disadvantage in benchmarks, such as CAMI, which rely 
on rigid matching of taxonomic labels. The high perfor-
mance of mOTUs [40] despite this disadvantage is likely 
due to the higher number of quantified taxa and the 
resulting reduction in compositionality-related biases.

Conclusions
The present work introduces mOTUs3 as a reference-
genome independent tool that allows for charting the 
taxonomic landscape of many environments at species-
level resolution. Its independence from taxonomically 
annotated reference genomes makes it generally appli-
cable also beyond well-studied environments to quan-
tify and reveal yet uncharacterized microbial species of 
potential biological relevance. To support the research 
community, mOTUs3 is documented and available as 
open source software at https:// github. com/ motu- tool/ 
mOTUs.

Methods
Collection and processing of data to compile the mOTUs3 
database
To extend the taxonomic coverage of the mOTUs3 data-
base, 4531 publicly available metagenomic datasets from 
23 environments (Supplementary Table  1) were pro-
cessed to generate 150,880 MAGs as previously described 
[50]. Briefly, BBMap (v.38.71) was used to quality control 
sequencing reads from all samples by removing adapters 
from the reads, removing reads that mapped to quality 

control sequences (PhiX genome) and discarding low-
quality reads (trimq=14, maq=20, maxns=1, and min-
length=45). For metagenomic data of human origin, 
human genome-derived reads were removed using the 
masked human reference genome provided by BBMap. 
Quality-controlled reads were merged using bbmerge.
sh with a minimum overlap of 16 bases, resulting in 
merged, unmerged paired, and single reads. The reads 
were assembled into scaffolded contigs (hereafter scaf-
folds) using the SPAdes assembler (v3.14 or v3.12) [51] 
in metagenomic mode. Genes were predicted on length-
filtered (≥ 500 bp) scaffolded contigs (hereafter scaffolds) 
using Prodigal (v2.6.3) [52]. Universal single-copy phylo-
genetic marker genes (MGs) were extracted using fetch-
MGs (v1.2; -m extraction) [16].

Scaffolds were length-filtered (≥ 1000 bp) and within 
each study, quality-controlled reads from each sample 
were mapped against the scaffolds of each sample. Map-
ping was performed using BWA (v0.7.17-r1188; -a) [53]. 
Alignments were filtered to be at least 45 bp in length, 
with an identity of ≥ 97% and a coverage of ≥ 80% of the 
read sequence. The resulting BAM files were processed 
using the jgi_summarize_bam_contig_depths script 
of MetaBAT2 (v2.12.1) [20] to compute within- and 
between-sample coverages for each scaffold. The scaf-
folds were binned by running MetaBAT2 on all samples 
individually (--minContig 2000 and --maxEdges 500 for 
increased sensitivity). Metagenomic bins were annotated 
with Anvio (v5.5.0) [54], quality-controlled using the 
CheckM (v1.0.13) [55] lineage workflow (completeness 
≥ 50% and contamination < 10%) to generate 150,880 
MAGs. Complete genes were predicted using Prodigal 
(v2.6.3; -c -m -g 11 -p single), and MGs were extracted 
using fetchMGs (v1.2) (-m extraction -v -i). These MAGs 
were complemented with 454,773 external genomes 
(~96% MAGs; ~4% isolate and single-cell genomes) 
from previous work (Supplementary Table 1), for which 
MGs were extracted using the same settings we used for 
MAGs.

All genomes containing at least six out of the 10 MGs 
used by mOTUs [16] were kept to produce the data-
set of MGs from a total of 499,512 de novo-generated 
MAGs and external genomes for the construction of 
the mOTUs3 database. To evaluate the quality of these 
genomes, we calculated the agreement of the taxonomic 
annotation of the marker genes within each genome 
(Supplementary Fig. 4).

Construction of the mOTUs3 database
MGs from 499,512 genomes were mapped against the 
latest mOTUs database (v2.5.1), which was an update of 
version 2.0 to account for a more recent release of the 
progenomes2 database [26] (Fig.  1a) using vsearch [56] 

https://github.com/motu-tool/mOTUs
https://github.com/motu-tool/mOTUs


Page 9 of 12Ruscheweyh et al. Microbiome          (2022) 10:212  

(v2.14.1; --usearch_global --strand both --id 0.8 --max-
accepts 10000 --maxrejects 10000). MGs from a total of 
283,250 and 136,429 genomes were assigned to exist-
ing ref-mOTUs and meta-mOTUs, respectively. These 
genomes were removed since they were already repre-
sented. The remaining 79,833 genomes resulted in an 
extension of the mOTUs database by 19,358 new mOTUs 
(ext-mOTUs). For consistency with the taxonomic anno-
tation of ref-mOTUs, ext-mOTUs were annotated using 
the STAG classifier (https:// github. com/ zelle rlab/ stag, 
version 0.7; default parameters) trained on genomes in 
the proGenomes2 database [26] (NCBI taxonomy, ver-
sion: 8 January 2019). MGs identified on scaffolds that 
were not binned into MAGs were used to update the 
“unassigned” mOTU, which contain unbinned MGs that 
are used to estimate the quantity of unknown species, by 
aligning these MGs against the extended database using 
vsearch (v2.14.1; usearch_global --maxaccepts 1000 
--maxrejects 1000 --strand both). MGs that did not align 
within MG-specific cutoffs [57] were clustered using 
vsearch (v2.14.1; --cluster_fast) using MG-specific cutoffs 
and the representative sequence was added to the unas-
signed mOTU.

Computation of mOTUs3 profiles for comparative analyses
A total of 11,164 metagenomic and metatranscriptomic 
samples (Supplementary Tables  1 and 2) were quality 
controlled and merged as described above and profiled 
with mOTUs3 using default parameters and the -c option 
to build a community resource of taxonomic profiles. For 
comparative analyses across environments, 5756 of these 
samples were used after removing all (n=623) metatran-
scriptomic samples, metagenomic samples from environ-
ments with too few samples (termite, panda, aerosols, 
and bioreactor) or from studies comprising samples 
from different environments and samples with less than 
5000 mapped inserts. To calculate the total number of 
detected mOTUs for a given environment, we counted 
the number of mOTUs with a prevalence greater than 
0.1% (Supplementary Table  5). To compare the median 
number of detected mOTUs across different environ-
ments, we downsampled the insert counts to 5000 using 
the rrarefy function of the vegan package [58].

Comparison of taxonomic profilers using the CAMI 
framework
The performance of mOTUs3 was evaluated and com-
pared to mOTUs2 and other taxonomic profilers by 
analyzing 113 publicly available samples (49 human-
associated, 63 mouse gut metagenomes) provided 
by the second CAMI challenge (https:// cami- chall 
enge. org/ parti cipate). The samples were profiled with 
mOTUs3 (v3.0.1; -C precision), mOTUs2 (v2.1.1; -C 

precision), MetaPhlAn3 (v3.0.7; --CAMI_format_out-
put --index mpa_v30_CHOCOPhlAn_201901) [5], and 
Kraken/Bracken (v2.1.2; --db=k2_standard_20201202 
--paired / v2.6.1; --db=k2_standard_20201202 -r 100 
-l S|G|F|O|C|P|D) [4, 41]. Kraken/Bracken reports were 
further translated into the CAMI format ed files using the 
tocami.py script provided at https:// github. com/ hzi- bifo/ 
cami2_ pipel ines. For comparative analyses, the OPAL 
framework (v1.0.9) [25] was used with default parameters 
providing the gold standard with the parameter --gold_
standard_file, the names of the tools with --labels, the 
description with -d, the output with --output_dir, and the 
taxonomic profiles files as positional arguments.

Comparison of metagenomic profiles with 16S rRNA 
gene‑based profiles
The 16S rRNA-based taxonomic profiler mTAGs [44] 
(v1.0.1; -ma 1000 -mr 1000) was used to generate rela-
tive abundance profiles for metagenomic samples (Sup-
plementary Table 1). The output of mTAGs was mapped 
to the NCBI taxonomy to facilitate comparative analysis. 
The same samples were profiled with MetaPhlAn3 (v3.0.7; 
--index mpa_v30_CHOCOPhlAn_201901) and Kraken/
Bracken (v2.1.2; --db=k2_standard_20201202 --paired 
/ v2.6.1; --db=k2_standard_20201202 -r 100 -l S). Sam-
ples with small read/insert coverages (mTAGs<10,000, 
mOTUs<1000, Kraken/Bracken<10,000, no filtering was 
done on MetaPhlAn3 as profiles contain relative abun-
dances) were removed, leaving 6119 samples for com-
parative analysis. Spearman correlations were calculated 
for each taxonomic rank based on concatenated relative 
abundances between mTAGs and the metagenomic pro-
filing tools.

Comparison of Pelagibacterales genome clusters 
with marker gene and 16S rRNA gene sequences
Out of 2063 genomes belonging to 1029 mOTUs anno-
tated as Pelagibacterales, 1105 genomes (from 602 
mOTUs) that contained a complete copy of the 16S 
rRNA gene were selected. These genomes were also clus-
tered based on average nucleotide identity using dRep 
[59] (v2.5.4; -comp 0 -con 1000 -sa 0.95 -nc 0.2) using a 
95% cutoff as part of the OMD [50]. In addition, these 
genomes were clustered based on their 16S rRNA gene 
identity (99% and 97%) using vsearch [56] (v2.14.1; --clus-
ter_smallmem --id 0.97 / 0.99). The consistency between 
the different clustering approaches was evaluated using 
the V-measure, which combines both the homogeneity 
and completeness metrics [60].

To correlate distances of the 1105 genomes between the 
different clustering techniques, we performed exhaustive 
distance calculations at the whole-genome level, the 10 
MGs used by mOTUs, and the 16S rRNA gene. Whole 
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genome distances were computed using MASH [61] as 
implemented in dRep (v2.5.4). MG- and 16S rRNA gene-
based distances were computed using vsearch (v2.14.1; 
--allpairs_global --id 0.0), and MG distances were aver-
aged across the 10 genes prior to computing correlations.

Differential abundance of mOTUs between low‑/
high‑methane‑emitting sheep
Samples from sheep rumen metagenomes (n=16) [48] 
were profiled with mOTUs3 (v3.0.1; -c), MetaPhlAn3 
(v3.0.7; --index mpa_v30_CHOCOPhlAn_201901), and 
Kraken/Bracken (v2.1.2; --db=k2_standard_20201202 
--paired / v2.6.1; --db=k2_standard_20201202 -r 100 -l 
S). To test for differentially abundant species between 
low-methane emitters (LMEs) and high-methane emit-
ters (HMEs), the respective profiles were analyzed 
using SIAMCAT default workflows [49]. This workflow 
includes filtering of species/mOTUs with a relative abun-
dance of >0.1% in at least one sample [49]. Wilcoxon test 
results were corrected for multiple testing using the Ben-
jamini–Hochberg method [62] at 5% FDR. The reported 
effect size measure is the generalized fold change (gFC), 
calculated as the log10 of the geometric mean of quantile 
differences between groups as defined in SIAMCAT [49].

A phylogeny was constructed for all archaeal mOTUs 
belonging to the Methanobrevibacter and Methano-
sphaera genera or the Thermoplasmata class that passed 
the relative abundance filtering (14 ext-mOTUs, 1 ref-
mOTU) together with ref-mOTUs from Methanobre-
vibacter and Methanosphaera (n=15) and a randomly 
selected Thermoplasmata ref-mOTU as an outgroup. 
Representative genomes from these 31 mOTUs were 
selected either by picking the centroid genome (for ext-
mOTUs) or the reference genome (for ref-mOTUs). 
Marker genes were individually aligned (mafft [63], 
v7.458), the alignments were concatenated and a maxi-
mum-likelihood phylogeny was calculated using RAxML 
[64] (v8.2.12; raxmlHPC -p 12345 -m PROTGAM-
MAAUTO). The distance between the 14 ext-mOTUs 
and their closest ref-mOTU was calculated based on 
averaged marker gene distances across the 10 genes 
(v2.14.1; vsearch --allpairs_global --id 0.0).

Availability and requirements
Project name: mOTUs

Project home page: https:// github. com/ motu- tool/ 
mOTUs

Operating systems: Linux, MacOS
Programming language: Python 3
License: GNU General Public License v3.0
Any restrictions to use by non-academics: None

Abbreviations
mOTUs3: A tool for marker gene‑based OTU (mOTU) profiling; mOTU: Marker 
gene‑based OTU; MAG: Metagenome‑assembled genome; 16S rRNA: 16S 
ribosomal RNA; K‑mer: A substring of a longer sequence of length k; RefG: Ref‑
erence genome; NCBI RefSeq:  National Center of Biotechnology Information 
(NCBI) Reference Sequence database; MG: Universal, protein‑coding, single‑
copy phylogenetic marker gene; SAG: Single‑cell amplified genome; NCBI 
GenBank: NIH genetic sequence database; ref‑mOTU: A mOTU containing at 
least one reference genome; meta‑mOTU: A mOTU built from co‑abundance‑
binned marker genes across metagenomes; ext‑mOTU: A mOTU built from 
genomes added in mOTUs3; CAMI: Critical Assessment of Metagenome 
Interpretation; OPAL: Open‑community Profiling Assessment tooL; OTU: 
Operational taxonomic unit; ANI: Average nucleotide identity; HME/LME: 
High‑ and low‑methane‑emitting; GTDB: Genome Taxonomy Database; OMD: 
Ocean Microbiomics Database; FDR: False discovery rate.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168‑ 022‑ 01410‑z.

Additional file 1: Supplementary Figure 1. Environment‑specific 
membership of genomes in ref‑, meta‑ and ext‑mOTUs. A total of 
499,512 genomes derived from 23 environments (environments with 
few genomes are grouped as ‘Other’, see Supplementary Tables 1 and 3) 
were used for the extension. The number of genomes was normalized 
by environments. The proportions of genomes per environment that 
are either associated with ref‑ and meta‑mOTUs or were used to build 
ex‑mOTUs are shown in the colors blue, green or orange, respectively. For 
example, the majority of genomes from the human gut match ref‑mOTUs, 
whereas the vast majority of genomes from the fish environment are used 
to build ext‑mOTUs. Supplementary Figure 2. Comparison of Shannon 
index from profiling using mOTUs and 16S rRNA gene OTUs. In order to 
improve our understanding, we compared the Shannon index evaluated 
with mOTUs (y‑axis) and 16S rRNA OTUs (x‑axis) reconstructed from the 
cattle and soil samples. Pearson correlation of indices generated from 
cattle profiles show a high agreement between mOTUs and 16S rRNA 
based methods whereas mOTUs underestimates species diversity for soil 
samples. The mOTUs profiles were generated using default parameters. 
For the 16S RNA profiles we extracted the first 100 bp from reads contain‑
ing the V4 primer sequence and clustered at 97% identity using vsearch 
(--derep_fulllength, --cluster_size --id 0.97, --usearch_global --id 0.97). Sup‑
plementary Figure 3. OPAL score broken down to individual metrics for 
the 63 mouse gut metagenomic samples. The evaluation was performed 
using the OPAL tool [1] on 63 simulated mouse gut metagenomes [2], 
which also provided taxonomic profiles for seven different taxonomic 
profiling tools, and to which we have added mOTUs3 profiling results. 
The OPAL tool ranks the tools for each sample and for each taxonomic 
level. The measures considered are completeness, purity, L1 norm error 
and weighted UniFrac error, shown individually in the bottom 4 plots. 
Tools with a lower score perform better, as the OPAL score is a sum over 
rank. The top plot represents the OPAL sum of scores, which is the sum 
over the four individual measures. mOTUs3 scored best in all categories, 
including the OPAL sum of scores. Supplementary Figure 4. Taxonomic 
consistency of marker genes from the 499,512 genomes used to extend 
the mOTUs database. Marker genes from each genome were taxonomi‑
cally annotated to evaluate taxonomic consistency. Agreeing, all marker 
genes have the same annotation; Majority agreeing, more than half of 
the marker genes agree to one taxonomic annotation; Not agreeing, 
there is no taxonomic annotation that agrees in more than 50% of the 
marker genes; Not annotated, there is no taxonomic annotation for this 
taxonomic level. Below the graph, we show a table with the percentage 
of Not agreeing annotations per taxonomic level, either as the percentage 
of all genomes (top) or of the genomes that have an annotation at that 
taxonomic level (bottom). Supplementary Table 1. Included studies and 
associated environments. Data from 91 studies from 23 environments 
were included in the extension and/or profiling of the mOTUs database. 
Of these, 39 studies were selected for in‑house MAG reconstruction and 
11,164 sequencing samples from 67 studies were used for taxonomic 
profiling. Supplementary Table 2. Sequencing samples included in the 
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taxonomic profile. A total of 11,164 samples were taxonomically profiled. 
Sample names are connected to public repositories by biosample and 
sequencing run ids. The project name column links the sample name 
to the study name used in Supplementary Table 1. Supplementary 
Table 3. Breakdown of taxonomic novelty in ext‑mOTUs. Taxonomic 
novelty increases with higher ranks, i.e., more than 50% of ext‑mOTUs 
were assigned to previously unknown families. Supplementary Table 4. 
Contribution of genomes to ref‑, meta‑ or ext‑mOTUs. Genomes/MAGs 
from different studies and environments contribute in varying propor‑
tions to the extension of the database. Supplementary Table 5. Data for 
Fig. 1. For each sample that passed the filter (total 5,756), we reported the 
relative abundance for each mOTU type. Additionally, we added the total 
number of detected mOTUs and the habitat. Supplementary Table 6. 
Data for Fig. 5a. Generalized fold change and adjusted p‑value for species 
detected in 20 sheep rumen metagenomes when profiled with mOTUs3, 
Bracken or MetaPhlAn3.
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