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Abstract 

Myelin oligodendrocyte glycoprotein antibody‐associated disease (MOGAD) is a rare demyelinating 1 

autoimmune disorder of the central nervous system. MOGAD frequently manifests with severe, bilateral, 2 

and recurrent optic neuritis (ON) episodes and is an important differential diagnosis to multiple sclerosis 3 

and aquaporin-4-IgG seropositive neuromyelitis optica spectrum disorders. The clinical manifestations of 4 

MOGAD commonly include, besides ON, transverse myelitis, acute disseminated encephalomyelitis, or 5 

brainstem encephalitis. 6 

 7 

In this article, we summarize the current knowledge of the neuro-ophthalmological presentation of 8 

MOGAD-ON. We describe epidemiological aspects, including the association with COVID-19 and other 9 

infections or vaccinations, clinical presentation, and imaging findings of MOGAD-ON in the acute stage 10 

and during remission. Furthermore, we report findings regarding prognosis, treatment response, and 11 

changes in ON-unaffected eyes. Specifically, we touch upon findings on visual acuity, visual fields, visual 12 

evoked potentials, as well as structural changes assessed with optical coherence tomography. Moreover, we 13 

elaborate on how to differentiate MOGAD from its differential diagnoses, including other 14 

neuroinflammatory disorders (multiple sclerosis and neuromyelitis optica spectrum disorders), but also 15 

idiopathic intracranial hypertension. 16 

  17 



 

 

1. Introduction 

Cases of severe, often bilateral simultaneous and recurrent optic neuritis (ON) have often been diagnosed 18 

as chronic relapsing inflammatory optic neuropathy (CRION) [1]. In the last decade, however, many of 19 

these cases have been linked to immunoglobulin G (IgG) autoantibodies against myelin oligodendrocyte 20 

glycoprotein (MOG) [1]. Besides ON, MOG-IgG are associated with further demyelinating inflammatory 21 

autoimmune syndromes of the central nervous system (CNS), i.e. transverse myelitis (long or short), acute 22 

disseminated encephalomyelitis (ADEM), brainstem and cerebellar pathology and cortical disease with 23 

seizures [2–6]. These syndromes have recently been referred to as MOG-antibody‐associated disease 24 

(MOGAD) [7]. 25 

 26 

MOGAD can have a monophasic (17-56%) or relapsing (44-83%) disease course [8]. In adults, ON is the 27 

most common clinical presentation at disease onset (55-64%) and at subsequent relapse [2], occurring 28 

bilaterally in about 50% of the cases [2,9,10]. Even though MOGAD shares similar clinical manifestations 29 

with aquaporin-4-IgG positive (AQP4-IgG+) neuromyelitis optica spectrum disorders (NMOSD), it is now 30 

recognized as a distinct disease entity [11–13]. AQP4-IgG+ NMOSD is classified as an autoimmune 31 

astrocytopathy, whereas MOGAD is an autoimmune oligodendrocytopathy [14]. Furthermore, MOGAD 32 

should also be considered as differential diagnosis of multiple sclerosis (MS). 33 

 34 

Given that there is a phenotypic overlap of MOGAD with NMOSD and MS, it is helpful to be aware of 35 

details differentiating the three disease entities. Optical coherence tomography (OCT) allows for detailed 36 

measurement of the retinal neuroaxonal loss throughout the disease course in several neuroinflammatory 37 

diseases featuring retinal and optic nerve alterations [15–18]. The integrity of the retinal ganglion cell axons 38 

is measured with peripapillary retinal nerve fiber layer thickness (pRNFL) [19,20], whereas the cell bodies 39 

and dendrites of the ganglion cell are assessed with ganglion cell and inner plexiform layer thickness 40 

(GCIPL) measurement [21]. Adjacent to the GCIPL, inner nuclear layer (INL) may also be relevant to 41 

neuroaxonal damages as a marker of inflammation [22,23]. These OCT metrics are valuable imaging 42 

biomarkers to measure the extent of neuroaxonal damage in the afferent visual system. 43 

 44 

In this review, we will describe the neuroophthalmological presentation of MOGAD-ON and summarize 45 

the current understanding of the clinical repercussions, including functional, electrophysiological and 46 

structural changes of the afferent visual system. A separate publication in this issue is dedicated to serum 47 

and cerebrospinal fluid (CSF) analysis and magnetic resonance imaging (MRI) findings in patients with 48 

MOGAD [Mewes et al.]. 49 

 50 

2. Demographic, epidemiological and clinical aspects of MOGAD-ON 



 

 

MOGAD can arise in all decades of life with one peak during childhood, most frequently presenting with 51 

monophasic ADEM [24], and a second peak in adults at a median age of onset in the thirties [8]. While 52 

younger adults aged between 20 and 45 years at disease onset most often present with unilateral ON (36%), 53 

patients above 45 years of age at onset most often present with bilateral ON (39%) [2]. In all MOGAD 54 

presentation forms, a slight female predominance with females having a slightly higher risk for a relapsing 55 

course has been shown [8]. However, MOGAD with an only ON presentation show no predilection 56 

regarding sex [25]. 57 

 58 

Bilateral ON is an important clinical hallmark for MOGAD associated ON, being less frequently observed 59 

in the two most important differential diagnoses MS and AQP4-IgG+ NMOSD (< 5% and 8-30% 60 

respectively) [2,10]. Among ON presentations, 4 to 9% are associated with MOG-IgG in the Western world 61 

[25] and around 20% in Asian populations [26]. The overall age- and sex-specific incidence of MOG-ON 62 

is 0.2 (0 – 0.4) per 100,000 people in the Western world [25]. The clinical characteristics of MOG-ON are 63 

summarized in Table 1. 64 

 65 

3. Acute MOGAD-ON presentation 

3.1 Symptoms 

A patient with typical MOGAD-ON presents during adulthood, with a simultaneous, bilateral, extensive 66 

and painful vision loss [27–29]. Retrobulbar pain presenting in up to 90% of patients with MOGAD-ON is 67 

mostly associated with eye movement [30]. Intense migraine-like headaches can precede visual loss by a 68 

few days and may be associated with an inflammatory edema that may spread to the meningeal optic nerve 69 

sheath containing nociceptive fibers of trigeminal origin [28,31]. 70 

 71 

3.2 Findings 

Acute ON in MOGAD often involves the anterior optic nerve, leading to retrobulbar optic nerve swelling 72 

[32,33]. Therefore, fundus examination of patients with acute MOGAD-ON frequently reveal optic disc 73 

edema, and sometimes with hemorrhages. During the acute presentation of ON in MOGAD, visual 74 

impairment is typically severe, with high contrast Snellen visual acuity scores of 20/40 or worse [3]. The 75 

visual functional findings in MOGAD-ON are summarized in Table 2. 76 

 77 

3.3 Differential diagnosis to idiopathic intracranial hypertension 

The finding of bilateral optic disc edema in a patient complaining of headaches and blurred vision, will 78 

often lead to prompt neuroimaging to rule out a cerebral mass. With normal neuroimaging, and especially 79 

in a young, obese female, a diagnosis of idiopathic intracranial hypertension (IIH) often comes to mind 80 

[34,35]. Therefore, when treating patients presenting with either a migraine-like headache or symptoms of 81 



 

 

raised intracranial pressure as well as visual symptoms compatible with a diagnosis of ON, MOGAD should 82 

be taken into consideration as a differential diagnosis [31,34,35]. On OCT, optic disc swelling during the 83 

acute phase of ON in MOGAD can be evidenced by thickening of the pRNFL. A recent study has 84 

investigated the potential of pRNFL, not only for diagnosing acute ON in MOGAD, but also for 85 

differentiating MOGAD from MS [36]. The study showed that during acute ON, pRNFL measurements in 86 

MOGAD are significantly higher than that in MS (164 µm vs. 103 µm). Furthermore, with a cutoff of 118 87 

µm, a sensitivity of 74% and a specificity of 82% can be reached to distinguish acute MOGAD-ON from 88 

acute MS-ON [36]. 89 

 90 

3.4 Magnetic resonance imaging and serology  

Specific radiological signs include extensive inflammation of the anterior optic nerve with perineural 91 

enhancement. The use of a cell-based assay to investigate MOG-IgG seropositivity is strongly 92 

recommended [37]. AQP4-IgG is typically negative (double-positive results are extremely rare, and should 93 

lead to critical review of the diagnosis or question the validity of the serological results). Typical CSF 94 

features comprise pleocytosis (occurring in more than 70%), elevated protein concentration in about 50% 95 

(>1g/l in 10%) and absence of evidence of oligoclonal bands [38,39]. The presence of oligoclonal bands 96 

should lead to a diagnostic review, as they are only found in less than 10% of MOGAD cases [38–41]. For 97 

details of MOGAD MRI manifestations and serology, please refer to the publication by Mewes et al. in the 98 

same issue. 99 

 100 

4. MOGAD-ON and infections 

In up to 20% of MOGAD patients, associations were found between a possible trigger and a first MOGAD 101 

event [3,8,42–45]. Temporal associations have been reported with N-methyl-d-aspartate receptor 102 

encephalitis, infections, including herpes simplex virus, Borrelia, Epstein–Barr as well as, more recently, 103 

severe acute respiratory syndrome coronavirus type 2 (SARS-sCoV-2) [8,42–47] and, albeit less frequently, 104 

with vaccinations (mostly with SARS-CoV-2 vaccination but also with diphtheria, tetanus, pertussis, polio, 105 

and influenza vaccination) [3,8,42–45]. Recent research has shown that post-vaccination ON in the 106 

presence of MOG-IgG is particularly severe, with around 50% of affected patients experiencing severe and 107 

debilitating vision loss [45]. Of note, current data suggest a favorable safety and tolerability profile of the 108 

SARS-CoV-2 vaccines among persons already diagnosed with MOGAD [48]. 109 

 110 

5. Remission and prognosis after MOGAD-ON 

5.1 Structural damage 

OCT-derived measures, particularly pRNFL and GCIPL, have proven to be useful imaging biomarkers to 111 

evaluate the extent of optic nerve damage in patients with MOGAD (Table 2). When looking at the temporal 112 



 

 

dynamic changes of the retinal neurodegeneration, the retinal ganglion cell loss following an ON episode 113 

can be observed by inner retinal layer thinning, specifically pRNFL and GCIPL. The neuroaxonal damage 114 

can accumulate after each ON episode, leading to a profound thinning of both pRNFL and GCIPL [49–51]. 115 

Real world evidence from recent publications investigating pRNFL measures in patients with MOGAD are 116 

summarized in Table 3. Patients with a higher frequency of ON episode often leads to a more extensive 117 

neuroaxonal damage (Figure 1). Nevertheless, the pRNFL thinning can be obscured by the initial axonal 118 

swelling, making it difficult to properly quantify the pRNFL thinning in the first few months after ON 119 

attack. Additionally, in comparison with other etiologies of ON, MOGAD-ON might take longer time (12 120 

months vs. 6 months) to resolve from its relatively more extensive optic disc swelling or edema [52]. 121 

 122 

Compared to AQP4-IgG+ NMOSD, each ON event in MOGAD cause less damage to the retina. However, 123 

the higher ON recurrence rate in MOGAD will lead to comparable retinal neuroaxonal loss as in AQP4-124 

IgG+ NMOSD [53]. Two recent review studies have systemically summarized the OCT metrics comparison 125 

between MOGAD-ON eyes and AQP4-IgG+ NMOSD ON eyes [26,54]. Both studies showed no significant 126 

difference between the two disease entities in terms of pRNFL and GCIPL thinning. Additionally, when 127 

compared to MS-associated ON eyes, both MOGAD-ON and AQP4-IgG+ NMOSD ON eyes had lower 128 

pRNFL and GCIPL. Last but not least, the frequency of macular microcysts in INL, which are assumed to 129 

be an inflammatory reaction to severe neuroaxonal damage, is comparable between MOGAD-ON and 130 

AQP4-IgG+ NMOSD ON eyes (both around 20% of ON eyes, in comparison to around 5% of MS-ON 131 

[53,55,56]). 132 

 133 

5.2 Functional damage 

Several studies have shown an association of neuroaxonal damage, i.e. pRNFL and GCIPL layer thinning, 134 

with visual impairment [57–59]. Moreover, retrospective studies have shown that although there is visual 135 

function recovery after an episode of ON, this recovery is not complete. Studies show that almost 50% of 136 

MOGAD patients had an incomplete visual recovery after an episode of ON [3,57,60,61]. Up to 92.3% of 137 

MOGAD patients had reduced high contrast visual acuity after an episode of ON. This has been further 138 

supported by retrospective and observational studies showing severe visual impairment in MOGAD 139 

patients after a case of ON [60]. Furthermore, a retrospective study of 32 MOGAD patients showed that 140 

ON relapses were significantly associated with poor visual outcomes [57]. Although other studies have 141 

shown different proportions [6], this can probably be explained with differences in the study design. 142 

 143 

A systematic review and meta-analysis has shown that eyes of AQP4-IgG+ NMOSD patients with history 144 

of ON have worse visual acuity outcome when compared with those of MOGAD and MS patients [26], 145 

with other studies showing similar results [62–66]. In eyes with comparable pRNFL and GCIPL thinning, 146 



 

 

the degree of visual impairment in MOGAD patients is worse than that of MS patients but better than that 147 

of AQP4-IgG+ NMOSD patients [64]. Visual acuity in MOGAD patients with a history of ON (n eyes = 11) 148 

was worse at nadir, but their recovery was better when compared with MS ON (n eyes = 22), though still 149 

worse than in healthy controls (n eyes = 33) [59]. 150 

 151 

Additionally, the visual acuity evolution after ON differs in several aspects between pediatric and adult 152 

patients. Pediatric patients show regularly a complete recovery at the last follow-up after ON, while adult 153 

patients show a high rate of visual recovery but usually a certain degree of residual visual impairment 154 

[61,67,68]. 155 

 156 

Studies have shown that visual fields are also affected in MOGAD patients with a history of ON. These 157 

patients usually presented with central scotoma [3,63], or complete visual field loss in some studies [63]. 158 

Moreover, the degree of visual field defects seems to differ between neuroimmunological diseases. For 159 

instance, MOGAD patients show a smaller mean visual field defect when compared with AQP4-IgG+ 160 

NMOSD patients [69] and MS patients [59]. However, and in line with results characterizing the visual 161 

acuity after MOGAD-ON, studies showed a complete recovery of visual field defects in more than 50% of 162 

affected patients [57,60]. 163 

 164 

Only few observational studies have used visual evoked potentials (VEP) to evaluate the functional 165 

performance of the anterior visual system. VEP records the electrical impulses that are generated in 166 

response to light stimulation. The afferent visual pathway damage can be presented in forms of prolonged 167 

latency or reduced amplitude, indicating demyelination or axonal damage, respectively. A study found that 168 

VEP latencies are moderately prolonged in both pediatric and adult MOGAD patients [68]. Apart from 169 

prolonged VEP latency, also amplitude reduction in MOGAD patients has been reported [68,70]. 170 

 171 

6. Response to treatment in MOGAD-ON 

Although MOGAD patients presenting with ON as the first symptom are at a higher risk for subsequent 172 

relapses, the overall long-term outcome tends to be more favorable than in patients first presenting with 173 

isolated transverse myelitis or an ADEM-like phenotype [2]. Despite severe vision loss in the acute stage 174 

of ON, MOGAD patients show good response to intravenous methylprednisolone treatment (1 g/day for 3–175 

5 days, first line) as well as to immunoadsorption, plasma exchange, and intravenous immunoglobulins 176 

(IVIG) (second line), and patients show a favorable long-term recovery of their visual function [2,38,71]. 177 

With treatment, unilateral MOGAD-ON has a remission rate of 66% compared to 44% in patients 178 

presenting with simultaneous bilateral ON [2,38]. Also in comparison to ON in AQP4-IgG+ NMOSD, 179 

MOGAD-ON has a far better recovery rate [2], similar to that of an MS associated ON [72]. While only 6–180 



 

 

14% of patients with MOGAD-ON expect a visual outcome of 20/200 or worse, this will be the case for 181 

over 30% of patients with AQP4-IgG+ NMOSD related ON. Data on the visual recovery without acute 182 

attack treatment of MOGAD-ON are scarce and the natural history of visual outcome in untreated 183 

MOGAD-ON patients is not well-defined [9]. Of note, long steroid taper (6 months) is associated with a 184 

lower risk for relapses [72–74]. 185 

 186 

Long-term treatment is recommended for patients at risk for relapse and current therapies comprise the off-187 

label use of prednisolone, steroid-sparing immunosuppression with azathioprine, methotrexate, 188 

mycophenolat mofetil, rituximab and IVIG [75–79]. Maintenance treatment is given either as monotherapy 189 

or as combination therapy [9,38,42]. Current data do not show any indication for a relapse-independent 190 

disease progression, but the course of symptoms including visual quality of life over time from the patients’ 191 

perspective need further investigation. 192 

 193 

7.  MOGAD in absence of ON 

Damage to retinal neuroaxonal integrity in eyes independent of ON in MOGAD (MOGAD-NON) are also 194 

of great clinical interest. If MOGAD-NON eyes do not feature retinal neurodegeneration in terms of 195 

structural damage, prevention of future ON attacks might be sufficient to maintain visual function. On the 196 

other hand, even if retinal neuroaxonal loss occurs in absence of ON, the clinical relevance of non-ON eyes 197 

may still be different from ON eyes. 198 

 199 

While multiple studies have investigated ON-independent OCT-assessed retinal neuroaxonal damage, the 200 

results are controversial. Three studies have performed exploratory investigation of retinal 201 

neurodegeneration in MOGAD-NON eyes. On a cross-sectional level compared to controls eyes, MOGAD-202 

NON eyes consistently showed inner retinal layer thinning in the macular region, while the results in 203 

pRNFL were mixed [80–82]. While two studies found pRNFL loss [80,81], particularly in the temporal 204 

quadrant, the third study revealed that the pRNFL drop in MOGAD-NON eyes was minimal when 205 

compared to disease-free controls [82]. When looking at longitudinal evidence, the latter study observed a 206 

reduction of pRNFL during follow-up, but not of GCIPL [82]. However, as the latter study included 207 

contralateral non-ON eyes of patients with unilateral ON, cross-over effects of chiasm-involving ON could 208 

not be ruled out. This could explain the fact that thinner pRNFL could not be identified at baseline as in 209 

other two studies. The pRNFL reduction during follow-up could also be attributed to the reduction of the 210 

initial swelling. Based on the above-mentioned evidence, the importance of ON prevention could be of 211 

great clinical interest if the absence of progressive retinal ganglion cell loss in eyes independent of ON in 212 

MOGAD patients can be further validated. 213 

 214 



 

 

A multi-national and multi-center retinal imaging study recently reported longitudinal OCT results from 80 215 

MOGAD patients [52]. No progressive GCIPL thinning was observed in MOGAD (in absence of ON 216 

during follow-up) compared to controls. Further studies investigating the longitudinal change differences 217 

between ON and non-ON eyes are warranted to better understand the clinical course of visual system 218 

damage in MOGAD. 219 

 220 

8. Conclusion 

Afferent visual pathway damage is one of the key clinical hallmarks in MOGAD. MOG-IgG testing should 221 

be considered in patients with bilateral ON, extensive vision loss, and optic disc edema [83,84], who 222 

previously might have been diagnosed with CRION [1]. Understanding the clinical presentation, temporal 223 

course, and functional and structural changes of the visual system are important in clinical practice. Various 224 

quantifiable neuro-ophthalmological modalities, including OCT and VEP, can help visualize and quantify 225 

microstructural changes of the visual system in patients with MOGAD. Given the fact that the current 226 

evidence of multimodal visual assessments in MOGAD are still quite limited and sometimes controversial, 227 

likely as a result of limited sample size, consistent conclusions from large, multicenter studies are warranted 228 

to define these neuro-ophthalmological measures as reliable biomarkers. Consolidating the utilities of these 229 

imaging biomarkers, the clinicians and researchers can gradually disentangle the mechanisms of underlying 230 

pathophysiology, monitor the disease course, improve clinical decisions, and eventually enhance the 231 

clinical outcome in patients with MOGAD. 232 

 233 

While long-term treatment options for MOGAD are currently rare, two randomized, double-blind, placebo-234 

controlled, multicenter phase 3 trials have recently commenced: The cosMOG study (NCT05063162) and 235 

the Meteoroid study (NCT05271409), both investigating monoclonal antibody-based treatments. 236 

Assessments of visual function and structural changes with OCT are part of the protocol of both studies, 237 

recognizing the high relevance of the visual system in MOGAD. 238 



 

 

9. Tables 

Table 1. Clinical presentation of MOGAD associated ON 239 

Predisposing factors (in 20%) • Infections  

• Borrelia burgdorferi 

• HSV 

• SARS-CoV-2 

• NMDA-receptor encephalitis 

• Vaccinations  

• Diphtheria, tetanus, pertussis, polio, and influenza  

• SARS-CoV-2 

Onset Age • Around 30 years of age 

• Pediatric onset (mainly ADEM) 

Sex • Slight female predominance for MOGAD, but no association for MOG-IgG 

ON 

Clinical features • Prodromal headache 

• Extensive painful vision loss 

• +/- Bilateral 

• RAPD (when unilateral or bilateral and asymmetric) 

• Optic disc swelling 

Acute treatment • Time is vision: early treatment 

• Prevention of rebound ON 

• 1. Line: IVMP (1 g/day for 3–5 days)  

• 2. Line: IA; PLEX, IVIG 

Long-term treatment • For patients at risk for relapse  

• Off-label use of IST 

• Azathioprine 

• Methotrexate 

• Mycophenolate mofetil 

• Rituximab 

• Prednisolone 

• IVIG 

Abbreviations: ADEM: acute disseminated encephalomyelitis; HSV: herpes simplex virus; IA: 240 

immunoadsorption; IST: immunosuppressive therapy; IVIG: intravenous immunoglobulins; IVMP: 241 

intravenous methylprednisolone; NMDA: N-methyl-d-aspartate; ON: optic neuritis; PLEX: plasma 242 

exchange; RAPD: relative afferent pupillary defect; SARS-CoV-2: severe acute respiratory syndrome 243 

coronavirus type 2. 244 

 245 

Table 2. Visual functional findings in MOGAD-ON 246 



 

 

Visual acuity • VA impairment is common during acute ON (severe, debilitating blindness to VA ≤ 20/40). 

• Visual function recovery after MOGAD-ON is usually incomplete 

• After ON, the degree of visual impairment in MOGAD is worse than in MS but better than in AQP4-IgG+ 

NMOSD.  

• Pediatric patients regularly show a complete recovery after ON, while adult patients usually have a certain 

degree of residual visual impairment 

Visual fields • Central scotoma is a common presentation after ON. 

• After ON, MOGAD patients usually have a lesser degree of visual field defect than NMOSD patients and 

a better recovery than MS patients. 

• A high proportion of MOGAD patients with visual field defects after ON will show a complete recovery. 

VEP • Both pediatric and adult cohorts commonly show a delayed latency after ON, which could stay as a 

residual alteration.  

• MOGAD patients show a significant amplitude reduction. 

OCT • In acute phase of ON, more profound optic disc edema and pRNFL thickening can be observed in 

MOGAD compared to MS and AQP4-IgG+ NMOSD. 

• In MOGAD, the initial pRNFL thickening due to optic disc edema might take longer time to resolve than 

other etiologies of ON. 

• ON in MOGAD and AQP4-IgG+ NMOSD will lead to comparable pRNFL and GCIPL thinning, which 

are more severe than ON in MS. 

• Non-ON eyes in MOGAD also have slightly thinner pRNFL and GCIPL compared to eyes in healthy 

subjects, probably due to cross-over effects of chiasm-involving ON lesions. 

Abbreviations: AQP4-IgG: aquaporin-4 immunoglobulin G; GCIPL: ganglion cell and inner plexiform 247 

layer; MOGAD: myelin oligodendrocyte glycoprotein antibody associated disorders; MS: multiple 248 

sclerosis; NMOSD: neuromyelitis optica spectrum disorder; ON: optic neuritis; pRNFL: peripapillary 249 

retinal nerve fiber layer; VA: visual acuity; VEP: visual evoked potential. 250 

 251 

Table 3. Absolute measures of pRNFL thickness in MOG-IgG seropositive patients with a history of ON. 252 

Study Age (years) Sample Size 

(Eyes with ON) 

Bilateral ON Time from onset 

(years) 

pRNFL thickness (µm) 

Akaishi et al. (2016) 

[85] 

33 (12 – 70)a 12 (17) n.s. 1 (1 – 5) - Global: 94 (73 – 147) 

- Superior Quadrant: 108 (78 – 152) 

- Inferior Quadrant: 116 (90 – 164) 

- Temporal Quadrant: 64 (47 – 90) 

- Nasal Quadrant: 71 (53 – 128) 

Martinez-Lapiscina 

et al. (2016) [86] 

54.4 53.4–58.1 4 (6) 3/4 (75%) 8.3 1.8 – 15.5b - Global: 68 [48–78] 

Pache et al. (2016) 

[53] 

44.0 ± 15.2 14 (23) 12/14 (86%) 6.9 ± 6.5 

1.4 (0.3 – 10.4)b 

- Global: 59 ± 23 

- Temporal Quadrant: 44 ± 21 

- Nasal Quadrant: 44 ± 16 

Stiebel-Kalish et al. 

(2017) [69] 

42.5 (29.5 – 52) 6 (9) 3/6 (50%) 1.5 (1.3 – 2.4) - Global: 75.3 ± 14.7 



 

 

Havla et al. (2017) 

[80] 

41.4 ± 14.0 13 (13) 3/13 (23%) 8.1 ± 6.7 

5.0 ± 6.3b 

- Global: 59.0 ± 20.1 

- Temporal Quadrant: 41.2 ± 17.5 

- Nasal Quadrant: 46.5 ± 16.2 

Akaishi et al. (2017) 

[87] 

34.1 ± 16.8 16 (16) 0/16 (0%)c 5.1 ± 3.5 - Global: 101.6 ± 24.8 

Zhao et al. (2017) 

[88] 

31.3 ± 15.3 49 (52) 15/49 (31%) 2.3 ± 1.6 - Global: 58.0 ± 8.7 

- Superior Quadrant: 79.7 ± 8.5 

- Inferior Quadrant: 81.2 ± 18.4 

- Temporal Quadrant: 46.4 ± 12.2 

- Nasal Quadrant: 47.2 ± 9.1 

Deschamps et al. 

(2018) [89] 

35 (16 – 57)a 25 (41) 10/25 (40%) 1.4 (0.3 – 15) - Global: 58 (30 – 106) 

Mekhasingharak et 

al. (2018) [90] 

38.3 ± 14.9 6 (8) 3/6 (50%) 4.4 ± 2.7 - Global: 57 ± 13 

- Superior Quadrant: 65 ± 19 

- Inferior Quadrant: 64 ± 25 

- Temporal Quadrant: 46 ± 10 

- Nasal Quadrant: 55 ± 6 

Oertel et al. (2019) 

[82] 

40.4 ± 13.5 24 (20 n.s. 2.2 (0.4 – 14.9) - Global: 58.3 ± 22.6 

Song et al. (2019) 

[91] 

9.7 (3 – 17)a 25 (24) 13/25 (52%) 1.4 ± 0.4 - Global: 76.8 ± 9.5 

- Superior Quadrant: 103.3 ± 16.9 

- Inferior Quadrant: 97.5 ± 17.1 

- Temporal Quadrant: 46.4 ± 11.2 

- Nasal Quadrant: 60.1 ± 9.5 

Song et al. (2019) 

[92] 

20.3 (3 – 61)a 44 (49) 13/44 (30%) 3.1 ± 3.2 - Global: 68.1 ± 13.8 

Sotirchos et al. 

(2020) [64] 

43.8 ± 13.3 16 (27) 11/16 (69%) 5.9 [2.1 – 10.4] - Global: 60.9 ± 11.2 

- Superior Quadrant: 72.8 ± 16.3 

- Inferior Quadrant: 74.3 ± 18.6 

- Temporal Quadrant: 39.8 ± 10.6 

- Nasal Quadrant: 56.9 ± 7.4 

Vicini et al. (2021) 

[59] 

26.3 ± 11.8 6 (11) 5/6 (83%) 3.3 ± 2.8 - Global: 59.5 ± 19.6 

- Temporal Quadrant: 37.5 ± 13.6 

- Nasal Quadrant: 43.6 ± 17.7 

Gao et al. (2021) 

[62] 

41.1 ± 12.9 11 (16) 5/11 (45%) 3.2 ± 3.7 - Global: 73.1 ± 16.9 

Oertel et al. (2022) 

[52] 

38 ± 14d 43 (69) 26/43 (60%) 3 [1 – 8] 

2.1 [0.9 – 7.0]b 

- Global: 64.3 ± 21.3 

The results were presented as mean ± SD, median [IQR], or median (range).  253 

a) age at onset, b) time since last ON attack, c) bilateral ON excluded in study design, d) includes patients 254 

without ON in both eyes. 255 

 256 

Abbreviations: MOG: myelin oligodendrocyte glycoprotein; ON: optic neuritis; n.s.: not specified; pRNFL: 257 

peripapillary retinal nerve fiber layer. 258 



 

 

 259 

10. Figures 

Figure 1. OCT peripapillary ring scan measuring pRNFL thickness (left, middle) and macular scan 260 

measuring total macular volume around the fovea (right) in eyes of MOGAD patients with (A) multiple 261 

ON episodes, (B) single ON episode and (C) no ON episode. 262 

 263 

 264 

Color-coded image of the pRNFL thickness (middle) compared to healthy controls from the device’s 265 

normative database: green: not reduced compared to healthy cohort (>5th percentile), yellow: borderline 266 

thinned compared to healthy cohort (<5th percentile), red: severely reduced compared to healthy cohort 267 

(<1st percentile). 268 

 269 

Abbreviations: MOGAD: myelin oligodendrocyte glycoprotein antibody associated disorders; OCT: 270 

optical coherence tomography; ON: optic neuritis; pRNFL: peripapillary retinal nerve fiber layer; G: global 271 

averaged; T: temporal; N: nasal; TS: temporal superior; NS: nasal superior; TI: temporal inferior; NI: nasal 272 

inferior; PMB: papillomacular bundle; N/T: nasal-to-temporal ratio. 273 

 274 

 275 

 276 
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